Resolution Lower Bounds for Refutation Statements

Michal Garlík
Polytechnic University of Catalonia

Banff, Jan 19-24, 2020

Outline and results

$\operatorname{REF}_{\text {Res }, v}^{F} \ldots$ propositional formula expressing that a CNF F has a resolution refutation of length v. Unary encoding is used.

Outline and results

REF $_{\text {Res, } v}^{F} \ldots$ propositional formula expressing that a CNF F has a resolution refutation of length v. Unary encoding is used.

- An exponential lower bound $\left(2^{v^{\delta}}\right)$ on the size of resolution refutations of $\operatorname{REF}_{\text {Res, } v}^{F}$ for any unsatisfiable F (and any v greater than a fixed small polynomial in the size of F).

Outline and results

REF $_{\text {Res }, v}^{F} \ldots$ propositional formula expressing that a CNF F has a resolution refutation of length v. Unary encoding is used.

- An exponential lower bound $\left(2^{v^{\delta}}\right)$ on the size of resolution refutations of $\operatorname{REF}_{\text {Res, } v}^{F}$ for any unsatisfiable F (and any v greater than a fixed small polynomial in the size of F).
- An exponential lower bound on the size of resolution refutations of $S A T^{n, r} \wedge \operatorname{REF}_{\text {Res }, v}^{F}$ (negation of the reflection principle for resolution).

Outline and results

REF $_{\text {Res }, v}^{F} \ldots$ propositional formula expressing that a CNF F has a resolution refutation of length v. Unary encoding is used.

- An exponential lower bound $\left(2^{v^{\delta}}\right)$ on the size of resolution refutations of $\operatorname{REF}_{\text {Res, } v}^{F}$ for any unsatisfiable F (and any v greater than a fixed small polynomial in the size of F).
- An exponential lower bound on the size of resolution refutations of $S A T^{n, r} \wedge \operatorname{REF}_{\text {Res }, v}^{F}$ (negation of the reflection principle for resolution).
- New examples of CNFs exponentially separating Res(2) from resolution.

Outline and results

$\operatorname{REF}_{\text {Res }, v}^{F} \ldots$ propositional formula expressing that a CNF F has a resolution refutation of length v. Unary encoding is used.

- An exponential lower bound $\left(2^{v^{\delta}}\right)$ on the size of resolution refutations of $\operatorname{REF}_{\text {Res, } v}^{F}$ for any unsatisfiable F (and any v greater than a fixed small polynomial in the size of F).
- An exponential lower bound on the size of resolution refutations of $S A T^{n, r} \wedge \operatorname{REF}_{\text {Res }, v}^{F}$ (negation of the reflection principle for resolution).
- New examples of CNFs exponentially separating Res(2) from resolution.
We first assign some variables in $\mathrm{REF}_{\text {Res }, v}^{F}$ to obtain its layered version $\operatorname{REF}_{s, t}^{F}$ with s levels of t clauses.
$\begin{array}{llllll}\mathbf{C}_{\mathbf{1}} & \mathbf{C}_{\mathbf{2}} & \mathbf{C}_{\mathbf{3}} & \cdots & \mathbf{C}_{\mathbf{r}} & \text { (clauses of } F \text {) }\end{array}$

$$
\begin{aligned}
& \begin{array}{llllll}
\mathbf{C}_{1} & \mathbf{C}_{\mathbf{2}} & \mathbf{C}_{3} & \cdots & \mathbf{C}_{\mathbf{r}}
\end{array} \\
& \begin{array}{lllllll}
\left(D_{1,1}\right. & D_{1,2} & D_{1,3} & D_{1,4} & D_{1,5} & D_{1,6} & \cdots
\end{array} \\
& D_{3,1} D_{3,2} D_{3,3} D_{3,4} D_{3,5} D_{3,6} \ldots D_{3, t} \\
& D_{4,1} D_{4,2} D_{4,3} D_{4,4} D_{4,5} D_{4,6} \\
& D_{s, 1} D_{s, 2} D_{s, 3} D_{s, 4} D_{s, 5} D_{s, 6} \cdots D_{s, t}
\end{aligned}
$$

$$
\begin{aligned}
& D_{2,1} D_{2,2} D_{2,3} D_{2,4} D_{2,5} D_{2,6} \circ \circ D_{2, t} \\
& D_{3,1} D_{3,2} D_{3,3} D_{3,4} D_{3,5} D_{3,6} \cdots D_{3, t} \\
& D_{4,1} D_{4,2} D_{4,3} D_{4,4} D_{4,5} D_{4,6} \\
& D_{s, 1} D_{s, 2} D_{s, 3} D_{s, 4} D_{s, 5} D_{s, 6} \cdots D_{s, t}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
\mathbf{C}_{1} & \mathbf{C}_{\mathbf{2}} & \mathbf{C}_{\mathbf{3}} & \cdots & \mathbf{C r}_{\mathbf{r}}
\end{array} \\
& \text { (2, } \\
& D_{4,1} D_{4,2} D_{4,3} D_{4,4} D_{4,6} \circ D_{4, t} \\
& D_{s, 1} D_{s, 2} D_{s, 3} D_{s, 5} D_{s, 6} \circ \circ D_{s, t}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
\mathbf{C}_{1} & \mathbf{C}_{\mathbf{2}} & \mathbf{C}_{\mathbf{3}} & \cdots & \mathbf{C r}_{\mathbf{r}}
\end{array} \\
& \text { (D, } \\
& \text { (2, } \\
& D_{4,1} D_{4,2} D_{4,3} D_{4,4} D_{4,6} \circ \circ D_{4, t} \\
& D_{s, 1} D_{s, 2} D_{s, 3} D_{s, 4} D_{s, 6} \circ \circ D_{s, t}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllll}
\mathrm{C}_{1} & \mathrm{C}_{\mathbf{2}} & \mathrm{C}_{\mathbf{3}} & \ldots & \mathrm{C}_{\mathbf{r}}
\end{array} \\
& D_{1,1} D_{1,2} D_{1,3} D_{1,4} D_{1,5} D_{1,6} \circ \circ D_{1, t} \\
& D_{2,1} D_{2,2} D_{2,3} D_{2,4} D_{2,5} D_{2,6} \circ \circ D_{2, t} \\
& \text { (D3,1) } D_{3,2} D_{3,3} D_{3,4} D_{3,5} D_{3,6} \vee\left(3,6,,^{\circ} \ell^{\prime}\right) \quad D_{3, t} \\
& \begin{array}{lllllllll}
D_{4,1} & D_{4,2} & D_{4,3} & D_{4,4} & D_{4,5} & D_{4,6} & \vdots \in[n] & D_{4, t}
\end{array} \\
& D_{s, 1} D_{s, 2} D_{s, 3} D_{s, 4} D_{s, 5} D_{s, 6} \cdots D_{s, t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \\
& D_{4,1} D_{4,2} D_{4,3} D_{4,4} D_{4,6} \circ \circ D_{4, t} \\
& D_{s, 1} D_{s, 2} D_{s, 3} D_{s, 4} D_{s, 6}
\end{aligned}
$$

Writing down the propositional formula $\mathrm{REF}_{s, t}^{F}$

$$
\neg D(s, t, \ell, b)
$$

$$
\ell \in[n], b \in\{0,1\}
$$

Clause $D_{s, t}$ is empty.

Writing down the propositional formula $\mathrm{REF}_{s, t}^{F}$

$$
\neg D(s, t, \ell, b)
$$

$$
\ell \in[n], b \in\{0,1\}
$$

Clause $D_{s, t}$ is empty.

$$
\begin{aligned}
& \neg L\left(i, j, j^{\prime}\right) \vee \neg \vee(i, j, \ell) \vee D\left(i-1, j^{\prime}, \ell, 1\right) \\
& \quad i \in[s] \backslash\{1\}, j, j^{\prime} \in[t], \ell \in[n]
\end{aligned}
$$

Clause $D_{i-1 . j^{\prime}}$ used as the premise given by $L\left(i, j, j^{\prime}\right)$ to derive $D_{i, j}$ by resolving on x_{ℓ} must contain the literal x_{ℓ}.

And so on...

The main result

- An exponential lower bound on the size of resolution refutations of $\operatorname{REF}_{s, t}^{F}$ for any unsatisfiable F.

Theorem

For each $\epsilon>0$ there is $\delta>0$ and an integer t_{0} such that if n, r, s, t are integers satisfying $t \geq s \geq n+1, r \geq n \geq 2, t \geq r^{3+\epsilon}$, $t \geq t_{0}$, and F is an unsatisfiable CNF consisting of r clauses C_{1}, \ldots, C_{r} in n variables x_{1}, \ldots, x_{n}, then any resolution refutation of $\mathrm{REF}_{s, t}^{F}$ has length greater than $2^{t^{\delta}}$.

High-level proof sketch

- Proof by contradiction: Assume there is $\epsilon>0$ s.t. for all δ and t_{0} there are n, r, s, t, F satisfying the conditions of the Theorem and there is a refutation Π of $\operatorname{REF}_{s, t}^{F}$ with $|\Pi|<2^{t^{\delta}}$.
- Find suitable δ and t_{0}, and prove a contradiction in two steps:

1. Apply a random restriction ρ to obtain $\Pi \upharpoonright \rho$ with small "width": ρ satisfies all "wide" clauses of Π w.h.p.
2. Use an adversary argument to show that small "width" refutations of $\operatorname{REF}_{s, t}^{F} \upharpoonright \rho$ don't exist.

Proof ingredients: important pairs

- Usual notions of width (or block-width or index-width) don't work: the restriction ρ has to respect functionality (e.g. $L(i, j, 1) \vee \ldots \vee L(i, j, t)$ together with $\left.\neg L\left(i, j, j^{\prime}\right) \vee \neg L\left(i, j, j^{\prime \prime}\right), j^{\prime} \neq j^{\prime \prime}\right)$, and so setting $L(i, j, \cdot)$ at random satisfies a single positive literal with too small probability $(1 / t)$.

Proof ingredients: important pairs

- Usual notions of width (or block-width or index-width) don't work: the restriction ρ has to respect functionality (e.g. $L(i, j, 1) \vee \ldots \vee L(i, j, t)$ together with $\left.\neg L\left(i, j, j^{\prime}\right) \vee \neg L\left(i, j, j^{\prime \prime}\right), j^{\prime} \neq j^{\prime \prime}\right)$, and so setting $L(i, j, \cdot)$ at random satisfies a single positive literal with too small probability $(1 / t)$.
- However, the probability of satisfying a single negative literal is very good $((t-1) / t)$. This motivates:
Definition
We say that (i, j) is L-important in a clause E of Π if E contains a negative literal of a variable in $L(i, j, \cdot)$ or if E contains at least $t / 2$ positive literals of variables in $L(i, j, \cdot)$.

Proof ingredients: random restrictions

Set $p=t^{-a}$ with $a=\min \left\{\frac{2+\epsilon / 2}{3+\epsilon / 2}, \frac{3}{4}\right\}$, and define a random restriction ρ by the following experiment:

1. For each pair $(i, j) \in[s] \times[t]$, with indep. prob. p include (i, j) in a set A_{D}. Then for each $(i, j) \in A_{D}$, independently, sample a complete clause $D_{i, j}$
2. For each $j \in[t]$, with independent probability p include the pair $(1, j)$ in a set A_{l}. Then for each $(1, j) \in A_{l} \backslash A_{D}$, independently, choose at random $m \in[r]$ and set $l(j, \cdot)$ to m.
3. For each pair $(i, j) \in\{2, \ldots, s\} \times[t]$, with independent probability p include (i, j) in a set A_{V}. Then for each $(i, j) \in A_{V}$, independently, choose at random $\ell \in[n]$ and set $V(i, j, \cdot)$ to ℓ.
4. For each pair $(i, j) \in\{2, \ldots, s\} \times[t]$, with independent probability p include the pair (i, j) in a set $A_{R L}$. Then, for each $i \in\{2, \ldots, s\}$, sample a random 1:2 injection to level $i-1$. Set $L(i, j, \cdot)$ and $R(i, j, \cdot)$ accordingly.

Proof ingredients: properties of ρ

Lemma

Each of $A_{R L}, A_{D}, A_{I}, A_{V}$ contains $<2 p t$ index pairs on each level w.h.p.

Proof ingredients: properties of ρ

Lemma

Each of $A_{R L}, A_{D}, A_{I}, A_{V}$ contains $<2 p t$ index pairs on each level w.h.p.

Lemma
W.h.p., ρ does not create "worse" connected components then the following:

ρ simplifies clauses of Π

Lemma

W.h.p. for every clause E in $\Pi \upharpoonright \rho$ and every $Z \in\{D, V, I, L, R\}$, the number of Z-important pairs in E is $<w:=t^{4 / 5}$.

Adversary argument

- We run the adversary argument with "admissible" extensions of ρ, which are partial assignments satisfying certain closure properties.
- We start the adversary argument at the empty clause of $\Pi \upharpoonright \rho$ with the minimal "admissible" extension σ_{\emptyset} of ρ, and we inductively build a path going from a clause to one of its premises, following certain rules and modifying our admissible assignment.
- We show that for each clause E we visit in $\Pi \upharpoonright \rho$, the current admissible assignment σ_{E} satisfies the following:

1. σ_{E} assigns all variables in E with important indices,
2. whenever σ_{E} evaluates a variable with a literal in E, it falsifies that literal.

Adversary argument

- We show that because the "width" of clauses E in $\Pi \upharpoonright \rho$ is small, every new σ_{E} can be found such that it never falsifies an axiom of $\operatorname{REF}_{s, t}^{F}$.
- Consider the case when the resolved variable is $L\left(i, j, j^{\prime}\right)$ and it is not set by σ_{E}. At each level, σ_{E} touches few index-pairs: ρ touches $O(p t)$ pairs and $\sigma_{E} \backslash \rho$ touches $O(w)$ (due to the small "width" of E).
- Also, we must avoid satisfying any of the variables $L\left(i, j, j^{\prime \prime}\right)$ which may be present in E. But there is at most at most $t / 2$ of them in E, since (i, j) is not L-important (otherwise $L\left(i, j, j^{\prime}\right)$ would be already set)
- We still have $O(p t+w)+t / 2<t$ untouched possibilities where to map $L(i, j, \cdot)$, which makes it easy not to falsify any axiom of $\operatorname{REF}_{s, t}^{F}$.

Thank you!

