SETH and Resolution

Ilario Bonacina January 23, 2020 This talk: what are the strongest possible resolution size lower bounds?

2 open problems

 $1 \ {\rm proof \ sketch}$

$$\frac{C \lor x \qquad D \lor \neg x}{C \lor D}$$

- w(F): width needed to refute the CNF formula F in resolution
- S(F), S_{tree}(F), S_{reg}(F): size needed to refute F in general, treelike and regular resolution resp.

 $S(F) \geqslant 2^{n^{\delta}}$ for some $0 < \delta < 1$?

 $S(F) \ge 2^{n^{\delta}}$ for some $0 < \delta < 1$? E.g. for F the pigeonhole principle, reflection principle, mutilated chessboard, coloring principle...

 $S(F) \ge 2^{n^{\delta}}$ for some $0 < \delta < 1$? E.g. for F the pigeonhole principle, reflection principle, mutilated chessboard, coloring principle...

 $S(F) \ge 2^{n/c}$ for some c > 1?

 $S(F) \ge 2^{n^{\delta}}$ for some $0 < \delta < 1$? E.g. for F the pigeonhole principle, reflection principle, mutilated chessboard, coloring principle...

 $S(F) \ge 2^{n/c}$ for some c > 1? E.g. for F random 3-CNFs, random 3-XOR, Tseitin, graph-pigeonhole principle...

 $S(F) \ge 2^{n^{\delta}}$ for some $0 < \delta < 1$? E.g. for F the pigeonhole principle, reflection principle, mutilated chessboard, coloring principle...

 $S(F) \ge 2^{n/c}$ for some c > 1? E.g. for F random 3-CNFs, random 3-XOR, Tseitin, graph-pigeonhole principle...

 $S(F) = 2^{n}?$

 $S(F) \ge 2^{n^{\delta}}$ for some $0 < \delta < 1$? E.g. for F the pigeonhole principle, reflection principle, mutilated chessboard, coloring principle...

 $S(F) \ge 2^{n/c}$ for some c > 1? E.g. for F random 3-CNFs, random 3-XOR, Tseitin, graph-pigeonhole principle...

 $S(F) = 2^n$? None!

Thm

For every unsatisfiable k-CNF F_n in n variables

$$S_{tree}(F_n) \leqslant 2^{n(1-\sigma_k)}$$

where $\sigma_k = \frac{1}{28k}$.

Thm

For every unsatisfiable k-CNF F_n in n variables

 $S_{tree}(F_n) \leqslant 2^{n(1-\sigma_k)}$,

where $\sigma_k = \frac{1}{28k}$.

Open problem 1

Show there are unsatisfiable k-CNF formulas F_n in n variables s.t.

$$S(F_n) \ge 2^{n(1-\sigma_k)}$$

where $\sigma_k \xrightarrow{k \to +\infty} 0$ (maybe $\sigma_k = \mathcal{O}(k^{-1})$?).

Open Problem 1 \Rightarrow no CDCL solver can refute SETH, since resolution refutations \equiv CDCL solvers execution traces

Open problem 1

Show there are unsatisfiable k-CNF formulas F_n in n variables s.t.

$$S(F_n) \geqslant 2^{n(1-\sigma_k)}$$
 ,

where $\sigma_k \xrightarrow{k \to +\infty} 0$ (maybe $\sigma_k = \mathcal{O}(k^{-1})$?).

Open Problem 1 \Rightarrow no CDCL solver can refute SETH, since resolution refutations \equiv CDCL solvers execution traces

Open problem 2

Show that for every unsatisfiable k-CNF formula F_n in n variables

$$S(F_n) \geq 2^{(w(F_n)-k)^2/n}$$

I.e. remove the " Ω " from the size-width inequality

 $S_{tree}(random \ k-CNF) \leq 2^{n/c}$ for some c < 1 [follows from BKPS'98]

(same u.b. for random k-XOR)

 S_{tree} (Tseitin formulas) $\leq 2^{n/c}$ for some constant c < 1 [KRT'19?]

 $S_{tree}(random \ k-CNF) \leqslant 2^{n/c}$ for some c < 1 [follows from BKPS'98]

(same u.b. for random k-XOR)

 S_{tree} (Tseitin formulas) $\leq 2^{n/c}$ for some constant c < 1 [KRT'19?]

Size-width Inequality

For every unsatisfiable k-CNF formula F_n in n variables

$$S(F_n) \geq 2^{\Omega((w(F_n)-k)^2/n)}$$

Unfortunately the Ω -notation is hiding a constant c < 1/5.

 $S_{tree}(random \ k-CNF) \leqslant 2^{n/c}$ for some c < 1 [follows from BKPS'98]

(same u.b. for random k-XOR)

 $S_{tree}(\text{Tseitin formulas}) \leqslant 2^{n/c}$ for some constant c < 1 [KRT'19?]

Size-width Inequality

For every unsatisfiable k-CNF formula F_n in n variables

$$S(F_n) \geq 2^{\Omega((w(F_n)-k)^2/n)}$$

Unfortunately the Ω -notation is hiding a constant c < 1/5.

XOR-ifications

For every unsatisfiable k-CNF F, $S(F[\oplus^2]) \ge 2^{\Omega(w(F)-k)}$

F unsatisfiable k-CNF in n vars (a different formula in all the l.b. below...)

$$S_{tree}(F) \ge 2^{n(1-\sigma_k)} \text{ with } \sigma_k = \widetilde{\mathcal{O}}(k^{-1/8}) \text{ [PI'00]}$$

$$S_{reg}(F) \ge 2^{n(1-\sigma_k)} \text{ with } \sigma_k = \widetilde{\mathcal{O}}(k^{-1/4}) \text{ [BI'13]}$$

$$S_{\delta\text{-}reg}(F) \ge 2^{n(1-\sigma_k)} \text{ with } \sigma_k \text{ and } \delta \text{ both } \widetilde{\mathcal{O}}(k^{-1/4}) \text{ [BT'16]}$$

$$S(F) \ge 2^{0.585 \cdot n(1-\sigma_k)} \text{ with } \sigma_k = \widetilde{\mathcal{O}}(k^{-1/3}) \text{ [BI'13,BT'16]}$$

Thm (BI'13)

For large *n* and *k* there are unsatisfiable *k*-CNF formulas Ψ_n

$$w(\Psi_n) \geqslant n(1-\sigma_k)$$
 ,

where $\sigma_{k} = \widetilde{\mathcal{O}}(k^{-1/4})$. (We can actually get $\sigma_{k} = \widetilde{\mathcal{O}}(k^{-1/3})$ [**B**T'16])

In particular Open problem 2 \Rightarrow Open problem 1 and

$$S_{tree}(\Psi_{n}) \geqslant 2^{n(1-\sigma_{k})}$$
 ,

where $\sigma_{\mathbf{k}} = \widetilde{\mathcal{O}}(\mathbf{k}^{-1/3}).$

Ψ_n & the width l.b.

Take p prime

1. there exist a system \mathscr{E} of lin.eq. mod p in m vars s.t.

- each equation in \mathscr{E} has $\leqslant p^2$ vars
- every $\mathscr{G} \subseteq \mathscr{E}$ of size $\ge 3m/p$ is unsatisfiable
- (~ expansion) for every 𝒢 ⊆ 𝔅 with |𝒢| ∈ [m/p, 3m/p], every lin. comb. of the equations in 𝒢 has ≥ m(1 − c/p) variables

2. write each mod p var as a sum of p^2 Boolean variables & encode as a CNF, this is Ψ_n . It is a $\widetilde{\mathcal{O}}(p^4)$ -CNF in $n = \widetilde{\mathcal{O}}(mp)$ vars (A less naive construction gives a $\widetilde{\mathcal{O}}(p^3)$ -CNF in $n = \widetilde{\mathcal{O}}(mp)$ vars)

3. a "clause-of-medium-complexity" type of argument implies $w(\Psi_n) \ge n(1 - \widetilde{\mathcal{O}}(p^{-1}))$

Thm

There are unsatisfiable k-CNF formulas Θ_n in n variables s.t.

$$S_{reg}(\Theta_n) \geqslant 2^{n(1-\sigma_k)}$$
 ,

where $\sigma_{\mathbf{k}} = \widetilde{\mathcal{O}}(\mathbf{k}^{-1/4}).$

Thm

There are unsatisfiable k-CNF formulas Θ_n in n variables s.t.

$$S_{reg}(\Theta_n) \geqslant 2^{n(1-\sigma_k)}$$
 ,

where $\sigma_{\mathbf{k}} = \widetilde{\mathcal{O}}(\mathbf{k}^{-1/4}).$

A resolution refutation π of a CNF formula in *n* vars is δ -regular if on every path in π a set of $\leq \delta n$ is resolved more than once.

Thm

There are unsatisfiable k-CNF formulas Θ_n in n variables s.t.

$$S_{\delta\text{-}reg}(\Theta_n) \geqslant 2^{n(1-\sigma_k)}$$
 ,

where both σ_k and δ are $\widetilde{\mathcal{O}}(k^{-1/4})$

Lemma

F **k**-CNF in *n* vars, if $w(F) \ge w$ then

 $S_{reg}(F[\oplus^\ell]) \geqslant 2^{{f w}\ell(1-arepsilon)}$,

where $\varepsilon = \frac{c}{\ell} \log(\frac{\ell n}{w})$.

Lemma

F k-CNF in *n* vars, if $w(F) \ge w$ then

 $S_{reg}(F[\oplus^\ell]) \geqslant 2^{{f w}\ell(1-arepsilon)}$,

where $\varepsilon = \frac{c}{\ell} \log(\frac{\ell n}{w})$.

0. Assume $w(F) \ge w$ and let π be regular refutation of $F[\oplus^{\ell}]$ 1. for every $\beta \in \{0,1\}^{n\ell}$ exists $C_{\beta} \in \pi$ mentioning $\ge w$ full blocks of vars and $\neg C_{\beta}$ disagrees with β on most w vars (this uses regularity)

2. a counting argument shows a l.b. on $|\pi|$. ~QED

Lemma

F k-CNF in *n* vars, if $w(F) \ge w$ then

 $S_{reg}(F[\oplus^\ell]) \geqslant 2^{{f w}\ell(1-arepsilon)}$,

where $\varepsilon = \frac{c}{\ell} \log(\frac{\ell n}{w})$.

0. Assume $w(F) \ge w$ and let π be regular refutation of $F[\oplus^{\ell}]$ 1. for every $\beta \in \{0,1\}^{n\ell}$ exists $C_{\beta} \in \pi$ mentioning $\ge w$ full blocks of vars and $\neg C_{\beta}$ disagrees with β on most w vars (this uses regularity)

2. a counting argument shows a l.b. on $|\pi|_{\cdot}$ ~QED

 Θ_n is $\Psi_n[\oplus^{\ell}]$ where $\ell = \widetilde{\mathcal{O}}(k^{1/4})$.

Thanks!

References

[BI'13] Strong ETH Holds for Regular Resolution
[BT'17] Strong ETH and Resolution via Games and the Multiplicity of Strategies
[BT'16] Improving resolution width lower bounds for k-CNFs with applications to the Strong Exponential Time Hypothesis

applications to the Strong Exponential Time Hypothesis

A game for size and width

F unsat CNF, R set of partial assignments — the "records"

Game(F, R)

Prover: find assignment in *R* falsifying *F*

Delayer: delay as much as possible

At step *i*, **Prover** has an assignment $r_i \in R$ and ask for the

Boolean value of a variable $x \notin dom(r_i)$;

Delayer chooses $b \in \{0, 1\}$;

Prover sets $r_{i+1} \subseteq r_i \cup \{x = b\}$.

 $Game_{reg}(F, R)$ if **Prover** cannot ask the same variable twice.

- if whenever **Prover** wins $Game_{(reg)}(F, R)$, $|R| \ge s$ then $S_{(reg)}(F) \ge s$.
- w(F) ≥ w iff Prover does not win Game(F, R) with R set of all partial assignments of ≤ w vars