Lifting Applied to Proof Complexity

Marc Vinyals

Technion Haifa, Israel

Banff workshop on Proof Complexity

- Proving lower bounds is hard.
- Let us prove easier lower bounds.

- Proving lower bounds is hard.
- Let us prove easier lower bounds.

Plan

- 1 Prove formula *F* hard in weak model/measure.
- **2** Compose to $F \circ g$.
- 3 Prove generic lifting theorem.
- **&** Lifted formula $F \circ g$ hard in strong model/measure.

- Proving lower bounds is hard.
- Let us prove easier lower bounds.

Plan

- 1 Prove formula F hard in weak model/measure.
- **2** Compose to $F \circ g$.
- 3 Prove generic lifting theorem.
- **&** Lifted formula $F \circ g$ hard in strong model/measure.

Many results in proof complexity follow this pattern.

...

Results Using Lifting

- Separation of Tree-like Resolution & Cutting Planes vs Resolution
- Separation of Resolution Space vs Width
- Size-space trade-offs in Resolution & Cutting Planes
- Rank lower bounds for semialgebraic proof systems
- Size-space-precision trade-offs in Cutting Planes
- Separation of Regular Resolution vs Resolution
- Supercritical trade-offs
- Separation of Polynomial Calculus vs Sherali-Adams
- Lower bounds for Tree-like Res(Lin)
- Separation of Res(k) vs Res(k+1)

Tseitin

- One variable per edge
- One constraint $\bigoplus_{e \ni v} x_e = \chi_v$ per vertex

Tseitin

- One variable per edge
- One constraint $\bigoplus_{e \ni v} x_e = \chi_v$ per vertex

Plan

- 1 Prove width lower bound for Tseitin.
- **2** Lift to $Ts \circ \oplus$.
- 9 Prove generic lifting theorem

Lemma

If $F \circ \oplus$ has a proof of size s Then F has a proof of width $O(\log s)$

a Get exponential size lower bound for $Ts \circ \oplus$.

Tseitin

- One variable per edge
- One constraint $\bigoplus_{e \ni v} x_e = \chi_v$ per vertex

Plan

- Prove width lower bound for Tseitin.
- **2** Lift to $Ts \circ \oplus$.
- 3 Prove generic lifting theorem

Lemma

If $F \circ \oplus$ has a proof of size s Then F has a proof of width $O(\log s)$

a Get exponential size lower bound for $Ts \circ \oplus$.

Lifting a CNF Formula

- Have formula *F* with variables x_1, \ldots, x_n .
- Replace variable x_i with gadget $g(x_i^1, \ldots, x_i^k)$.

Lifting a CNF Formula

- Have formula F with variables x_1, \ldots, x_n .
- Replace variable x_i with gadget $g(x_i^1, \ldots, x_i^k)$.

1

Example

$$F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$$

$$F \circ \oplus = \{ x^1 \oplus x^2 \lor y^1 \oplus y^2, \ \overline{x^1 \oplus x^2} \lor y^1 \oplus y^2, \ \overline{y^1 \oplus y^2} \}$$

Lifting a CNF Formula

- Have formula F with variables x_1, \ldots, x_n .
- Replace variable x_i with gadget $g(x_i^1, \ldots, x_i^k)$.

Example

$$F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$$

$$F \circ \oplus = \{x^1 \oplus x^2 \lor y^1 \oplus y^2, \overline{x^1 \oplus x^2} \lor y^1 \oplus y^2, \overline{y^1 \oplus y^2}\}$$
$$= x^1 \lor x^2 \lor y^1 \lor y^2, x^1 \lor x^2 \lor \overline{y^1} \lor \overline{y^2},$$
$$\overline{x^1} \lor \overline{x^2} \lor y^1 \lor y^2, \overline{x^1} \lor \overline{x^2} \lor \overline{y^1} \lor \overline{y^2},$$
$$\dots$$
$$y_1 \lor \overline{y_2}, \overline{y_1} \lor y_2$$

Tseitin

- One variable per edge
- One constraint $\bigoplus_{e \ni v} x_e = \chi_v$ per vertex

Plan

- Prove width lower bound for Tseitin.
- Lift to Ts ∘ ⊕.
- 9 Prove generic lifting theorem

Lemma

If $F \circ \oplus$ has a proof of size s Then F has a proof of width $O(\log s)$

3 Get exponential size lower bound for $Ts \circ \oplus$.

Lifting Width to Size

Lemma

If $F \circ \oplus$ has a proof of size *s* Then *F* has a proof of width $O(\log s)$

Proof

- Let ρ be the following restriction.
 - For each original variable x, pick either x^1 or x^2 at random.
 - Set the picked variable to 0 or 1 at random.

Lifting Width to Size

Lemma

If $F \circ \oplus$ has a proof of size *s* Then *F* has a proof of width $O(\log s)$

Proof

- Let ρ be the following restriction.
 - For each original variable x, pick either x^1 or x^2 at random.
 - Set the picked variable to 0 or 1 at random.
- Assume π proof of $F \circ \oplus$ of length *s*.
- Then $\pi' = \pi \upharpoonright_{\rho}$ proof of *F* (up to flipping literals).

Lifting Width to Size

Lemma

If $F \circ \oplus$ has a proof of size *s* Then *F* has a proof of width $O(\log s)$

Proof

- Let ρ be the following restriction.
 - For each original variable x, pick either x^1 or x^2 at random.
 - Set the picked variable to 0 or 1 at random.
- Assume π proof of $F \circ \oplus$ of length *s*.
- Then $\pi' = \pi \upharpoonright_{\rho}$ proof of *F* (up to flipping literals).
- Claim: some π' has width $O(\log s)$.
 - ▶ $\Pr[C \text{ survives}] \leq (3/4)^{w(C)}$.
 - ▶ By union bound $Pr[some wide C survives] \le s \cdot (3/4)^{4\log s} < 1.$

Tseitin

- One variable per edge
- One constraint $\bigoplus_{e \ni v} x_e = \chi_v$ per vertex

Plan

- Prove width lower bound for Tseitin.
- Lift to Ts ∘ ⊕.
- 9 Prove generic lifting theorem

Lemma

If $F \circ \oplus$ has a proof of size s Then F has a proof of width $O(\log s)$

a Get exponential size lower bound for $Ts \circ \oplus$.

Tseitin

- One variable per edge
- One constraint $\bigoplus_{e \ni v} x_e = \chi_v$ per vertex

Plan

- Prove width lower bound for Tseitin.
- Lift to Ts ∘ ⊕.
- 9 Prove generic lifting theorem

Lemma

If $F \circ \oplus$ has a proof of size s Then F has a proof of width $O(\log s)$

a Get exponential size lower bound for $Ts \circ \oplus$.

Communication

- Proving lower bounds is hard.
- Let us prove easier lower bounds.

Plan

- 1 Prove formula F hard in weak model/measure.
- **2** Compose to $F \circ g$.
- 3 Prove generic lifting theorem.
- **4** Lifted formula $F \circ g$ hard in strong model/measure.

Many results in proof complexity follow this pattern.

Lifting via Communication Complexity

- Proving lower bounds is hard.
- Let us prove easier lower bounds.

Plan

- 1 Prove formula F hard in weak model/measure.
- 2 Canonical search problem *S* hard in weak model/measure.
- **3** Compose to $S \circ g$.
- Ø Prove generic lifting theorem.
- **5** Lifted problem $S \circ g$ hard in communication complexity.
- **6** Lifted formula $F \circ g$ has no short proofs.
- Many results in proof complexity follow this pattern.

Falsified Clause Search Problem

Given CNF formula *F* Input Assignment to variables $\alpha : x \mapsto \{0, 1\}^n$ Output Clause $C \in F$ falsified by assignment α

Falsified Clause Search Problem

Given CNF formula *F* Input Assignment to variables $\alpha : x \mapsto \{0, 1\}^n$ Output Clause $C \in F$ falsified by assignment α

Example

```
Given F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}
Input x = 0, \ y = 1
Output \overline{y}
```

Proofs as Search Problems

• Small proof \implies small decision tree.

Proofs as Search Problems

- Small proof \implies small decision tree.
- But proofs cannot be balanced, we only get depth lower bounds.
- Use communication complexity.

- Two parties compute f(x,y)
- Alice knows $x \in X$, Bob knows $y \in Y$

- Two parties compute f(x,y)
- Alice knows $x \in X$, Bob knows $y \in Y$
- Communicate alternately

- Two parties compute f(x,y)
- Alice knows $x \in X$, Bob knows $y \in Y$
- Communicate alternately
- Unlimited computing power (deterministic)
- Cost = # bits sent in worst case

Examples

Resolution vs Cutting Planes

[Bonet, Esteban, Galesi, Johannsen '98]

Theorem

There exists a formula family F_n such that

F_n has resolution proofs of length poly(n)

But every tree-like CP proof must have length $exp(\Omega(n))$

- Alice sends sum of her variables; Bob evaluates inequality.
- Ok if small coefficients, in general solve GT.

- ▶ Want a lifting theorem for a model of communication where GT is easy.
- e.g. Randomized
- or Deterministic with a GT oracle.

- Want a lifting theorem for a model of communication where GT is easy.
- e.g. Randomized
- or Deterministic with a GT oracle.

- Send f(x), g(y) to oracle
- Both parties see answer
- Cost number of calls

- Want a lifting theorem for a model of communication where GT is easy.
- e.g. Randomized
- or Deterministic with a GT oracle.

- ► Send *f*(*x*), *g*(*y*) to oracle
- Both parties see answer
- Cost number of calls

- Want a lifting theorem for a model of communication where GT is easy.
- e.g. Randomized
- or Deterministic with a GT oracle.

- ► Send *f*(*x*), *g*(*y*) to oracle
- Both parties see answer
- Cost number of calls

Lifting With a GT Oracle

Theorem

If $f \circ IND$ has a GT-protocol of depth dThen f has a decision tree of depth $O(d/\log n)$

IND: $[n] \times \{0, 1\}^n \rightarrow \{0, 1\}$ $(x, y) \mapsto y_x$

Lifting With a GT Oracle

Theorem

If $f \circ IND$ has a GT-protocol of depth dThen f has a decision tree of depth $O(d/\log n)$

IND:
$$[n] \times \{0, 1\}^n \rightarrow \{0, 1\}$$

 $(x, y) \mapsto y_x$

Separation follows from Pebbling formula with Indexing.

Polynomial Calculus vs Cutting Planes

[Garg, Göös, Kamath, Sokolov '18; Göös, Kamath, Robere, Sokolov '19]

Theorem

There exists a formula family F_n such that

- *F_n* has polynomial calculus proof of length poly(n)
- But every CP proof must have length exp(Ω(n))

Polynomial Calculus vs Cutting Planes

[Garg, Göös, Kamath, Sokolov '18; Göös, Kamath, Robere, Sokolov '19]

Theorem

There exists a formula family F_n such that

- *F_n* has polynomial calculus proof of length poly(n)
 - But every CP proof must have length exp(Ω(n))

- Uses "DAG-like" lifting
- Need "DAG-like" protocols and decision trees

DAG-like Protocols

DAG-like Protocols

Dual of a proof:

Replace each line by set of assignments falsifying it; reverse arrows.

DAG-like Protocols

Dual of a proof:

Replace each line by set of assignments falsifying it; reverse arrows.

Properties

- Each set has the same shape (resolution: subcube; CP: halfspace).
- Start with complete set (contradiction).
- Each point goes to at least one child (soundness).

Communication-friendly shapes: rectangles, triangles.

- Subcube-shaped DAG-like protocols
- Equiv. decision trees where we can forget variables

- Subcube-shaped DAG-like protocols
- Equiv. decision trees where we can forget variables

Width of a decision-DAG: Largest co-dimension of a subcube (largest width of a clause)

- Subcube-shaped DAG-like protocols
- Equiv. decision trees where we can forget variables
- Equiv. Atserias-Dalmau game

Width of a decision-DAG:

Largest co-dimension of a subcube (largest width of a clause)

- Subcube-shaped DAG-like protocols
- Equiv. decision trees where we can forget variables
- Equiv. Atserias-Dalmau game

Width of a decision-DAG:

Largest co-dimension of a subcube (largest width of a clause)

Example: Fork has width 2 Fork: find a 1 followed by a 0; promise $x_1 = 1$ and $x_n = 0$

- Subcube-shaped DAG-like protocols
- Equiv. decision trees where we can forget variables
- Equiv. Atserias-Dalmau game

Width of a decision-DAG:

Largest co-dimension of a subcube (largest width of a clause)

Example: Fork has width 2 Fork: find a 1 followed by a 0; promise $x_1 = 1$ and $x_n = 0$

Non-example: Branching program for parity Shapes are not subcubes

DAG-like Lifting

Theorem

If $f \circ IND$ has a {rectangle,triangle}-DAG of size s Then f has a decision-DAG of width $O(\log s)$

DAG-like Lifting

Theorem

If $f \circ$ IND has a {rectangle,triangle}-DAG of size s Then f has a decision-DAG of width O(log s)

Separation follows from Tseitin formula with Indexing.

Discussion

Pros

Modular proofs

Connections to other areas

Cons

- Artificial formulas
- Lose grip on proof

Wishlist

DAG-like lifting for intersections of triangles?

Marc Vinyals (Technion) Lifting Applied to Proof Complexity

Wishlist

DAG-like lifting for intersections of triangles?

Multi-party lifting?

Wishlist

DAG-like lifting for intersections of triangles?

Multi-party lifting?

More gadgets?

Take Home

- Have a new lifting theorem?
- Chances are it implies something for proof complexity!

Thanks!

Technical Detail

- ▶ Proof for $F \circ g \implies$ protocol for Search $(F \circ g)$.
- ▶ But lower bound for $Search(F) \circ g$.

Technical Detail

- Proof for $F \circ g \implies$ protocol for Search $(F \circ g)$.
- But lower bound for $Search(F) \circ g$.

- ► Not a problem: protocol for Search(F ∘ g) ⇒ protocol for Search(F) ∘ g.
 - On input (x,y) obtain clause D falsified by (x,y).
 - ▶ $D \in CNF(C \circ g)$ with $C \in F$.
 - Answer C falsified by z = g(x, y).