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Resolution

e only one derivation rule:

Bvz CVzx
BvC

Gy} {ymemz o) qeow) o) (0} o | ength of T = # of clauses in

{ymw, -2y {a} {2} e Clause Space of 1 = max # of
clauses in memory simultaneously
during 7

e Variable Space of m = max # of
variables in memory simultaneously
during

e Tree-Res, if refutation DAG is a
tree (— maybe need to rederive
clauses) ™



General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be
rederived each time.

{z, -y} Ay, e, oz e} {z e} {z,w) {w)

{y, -z} {} {=}
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General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be
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There is an almost optimal separation between general and tree-like
resolution w.r.t. length:
3 a family (F},)nen of unsatsfiable formulas in O(n) variables with

e resolution refutations of length L (linear in n),
e but any tree-like resolution refutation requires
L
|ength exp (Q(m)) .
Lloglog L

Matching upper bound of exp (O(W)) for tree-like resolution
length of any formula that can be refuted in length L by general
resolution.

[Ben-Sasson, Impagliazzo, Wigderson 04]

iWhat about space?
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Configuration-style Resolution

A resolution refutation of an unsatisfiable CNF formula F' is an ordered
sequence of memory configurations (sets of clauses)

™= (Mo,...,Mt),
s.th. My = @, O € M, and for each i € [t], the configuration M is
obtained from M;_; by applying exactly one of the following rules:

e Axiom Download: M; = M;_; U {C'} for some axiom C € F.
e Erasure: M; = M;_; \ {C} for some C € M;_;.
e Inference:

M, =M;_1 U {D}

for some resolvent D inferred from C1,Cy € M; by the resolution
rule.
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A resolution refutation of an unsatisfiable CNF formula F' is an ordered
sequence of memory configurations (sets of clauses)

™= (Mo,...,Mt),
s.th. My = @, O € M, and for each i € [t], the configuration M is
obtained from M;_; by applying exactly one of the following rules:
e Axiom Download: M; = M;_; U {C'} for some axiom C € F.

e Erasure: M; = M;_; \ {C} for some C € M;_;.
e Inference:
M, =M;_1 U {D}
for some resolvent D inferred from C1,Cy € M; by the resolution
rule.
The proof 7 is said to be tree-like, if we replace the inference rule with
the following rule [Esteban T. 01]:
Tree-like Inference: M; = (M1 U{D}) \ {C1,C5} for some resolvent

D inferred from C',Cy € M, ie we delete both parent
clauses immediately. 4/34



Complexity Measures for Resolution
For a memory configuration M:
e CS(M) := |M]|, i.e., number of clauses in M,

For a refutation m = (M, ..., My):
e CS(m) := max;e CS(M;), i.e., max. # of clauses in a config,
o L(m) :=t.

For a complexity measure p and a formula F
Fr0O):= mi .
I )= min u(m)

Prefix “Tree-" indicated tree-like resolution.
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Games as tools
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The Prover-Delayer Game

[Pudldk, Impagliazzo '00]
Given: An unsatisfiable CNF formula F
Two players take rounds until a clause in F'is falsified

Prover Delayer

e Wants to falisify C € F
(then Game Over)

e Queries a variable z of F

e Answers
- x=0,
—x=1or

— x = ("you choose")
e Plugs answer of Delayer

in / chooses value for

Score of Delayer = # of %'s
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The Prover-Delayer Game
A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F' be an unsatisfiable CNF formula.
PD(F') := max pts. of Delayer on F' against optimal strategy of Prover.

Theorem ( )
Let F' be an unsatisfiable CNF formula. Then

Tree-CS(F F0O) = PD(F') + 2.
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The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:
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The Reversible Pebble Game
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Same measure: max # of pebbles used at any point:

@ O O O @)
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Complexity Measures for the Pebble Games

Black(G) := min (max # of pebbles used at any point in P)
black pebblings P
Rev(G) := min (max # of pebbles used at any point in P)
rev. pebblings P
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Complexity Measures for the Pebble Games

Black(G) := min (max # of pebbles used at any point in 77)
black pebblings P
Rev(G) := min (max # of pebbles used at any point in P)
rev. pebblings P

Plethora of connections to resolution i. a.:
CS(7) = min, Black(Gr) 7 : F't- 0O [Esteban, T. '01].

We will show:
Tree-CS(F F0O) < ming.pr o Rev(Gr) + 2.
The minimum is over all refutation, not only tree-like ones.
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Yet another game
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Rev(G) is hard to compute
Raz—McKenzie Game to the help [Raz, McKenzie '97]

Given: A single sink DAG G
Two players take rounds... until Game QOver..., i.e., when we have:

Pebbler Colourer

e Places pebble on sink
e Colours it with red =0

e Chooses empty vertex
e Colours it red=0 or blue=1

13/34



Until

Either a red source or red vertex with all predecessors blue.

R-Mc(G) := smallest r s. th. Pebbler wins in < r rounds
regardless of how Colourer plays

14/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

@—0—@®

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

O0—e—0

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

O0—0—0

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

0—0

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

0—0—0

15/34



Rev(G) = R-Mc(G)

Theorem ( )
For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(P,) = R-Mc(P,,) = ©(logn) ¥n € N

o—0

15/34



Upper bounds for Tree-CS
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Tree-CS(F FO) < ming.pr o Rev(Gr) + 2
Proof sketch:

Given: a res. refutation 7 of F' with a ref.-graph G and Rev(G,) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz—McKenzie game

— a falsifying part. assignment « of init. clause will be produced

Stages of the game: Pebbler chooses C' — Prover queries vars. in C'
not yet assigned by a (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by «

2. a variable is given x by Delayer
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Tree-CS(F FO) < min,.pr- o Rev(G;) + 2
Proof sketch:

Given: a res. refutation 7 of F' with a ref.-graph G, and Rev(G,) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
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Idea: Simulate the strategy of Pebbler in the Raz—McKenzie game

— a falsifying part. assignment « of init. clause will be produced

Stages of the game: Pebbler chooses C' — Prover queries vars. in C
not yet assigned by « (& extends with Delayer's answers) until either
1. the clause C ist sat./fals. by «
— Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C' is given colour C7,

2. a variable is given x by Delayer
— Prover extends o with value of x that sat's C and simulates

corresponding strategy of Pebbler (assuming C' has colour blue/1)
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Tree-CS(F FO) < min,.pr- o Rev(G;) + 2
Proof sketch:
The game is played until « falsifies a clause in F'.

After at most k stages the Raz-McKenzie game finished
= Delayer can score at most k points.

Only left to show: At the end of the game a clause of F'is fals. by «.

When Raz—McKenzie finishes:
1. either a source vertex in G is assigned colour 0 by Colourer,
— since « defines Colourer's answer: « fals. a clause in F.
2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
— not possible, since no a can sat'y two parent clauses in a
resolution proof, while falsifying their resolvent! O

b ode
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Tree-CS(F F0O) < ming. g Rev(Gr) + 2

On the other hand:

ming.pr o Rev(Gr) < Tree-CS(F F0O)([logn] + 1)

and there are formulas for which this bound is tight.
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An upper bound for Tree-CS in terms of CS*

|[Razborov "18] introduced the concept of amortised clause space:

CS*(Frn) := ml}li:lm (CS(m) - log L())
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An upper bound for Tree-CS in terms of CS*

|Razborov "18] introduced the concept of amortised clause space:

CS*(Frn) := :I}liglm (CS(m) - log L())

™

Corollary
Tree-CS(F F0) < CS*(F FO) + 2.

e [Krélovit '04] Rev(Gr) < minp (space(P) - log time(P)), where the
minimum is taken over all black pebblings P of G..

e Every black pebbling P of GG defines a configurational refutation
of F with clause space equal to space(P) and length time(P). O
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How large can be the gap between CS and Tree-CS?
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Pebbling Formulas (formulas over DAGs)
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Pebbling Formula

Clauses of Pebg:

u
v
w
(uAv) >z =TVTVI
(vAw) —wy=oVuwVy
(xANy) >z =TVyVz

]

Encode the rules of the black pebble game in a formula (i.e., formula is
defined over an underlying DAG):

e source vertices are true
e truth propagates upwards

e but the sink vertex is false
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XORification @9
Make formulas slightly harder to refute

e For a technical reason we need the XORification of our pebbling
formulas.

e (XORification being a common technique used in proof complexity).
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XORification @9
Make formulas slightly harder to refute

e For a technical reason we need the XORification of our pebbling
formulas.

e (XORification being a common technique used in proof complexity).

e Simple Idea: Substitute each variable = with 1 & x5 and expand
result into CNF.

24/34



Reversible Pebbling meets Tree-CS
in the Special Case of Pebbling Formulas

25/34



For all DAGs GG with a unique sink:

Rev(G) + 2 < Tree-CS (Pebg[@2] FO) < 2- Rev(G) + 2.
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Obtaining Space-Separations with Pebble games

Idea:
o CS(Pebg[®s] FO) = O(Black(G))
o Tree-CS(Pebg[®s] FO) = Q(Rev(())

— Construct a graph family with a gap between its black and
reversible pebbling price

Example: Path graphs P, of length n

o0—0—0—0—0—0—0—0

e Black(P,) = 0O(1) Vn e N
e Rev(P,) = O(logn) Vn € N
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Obtaining Space-Separations with Pebble games

Non-constant black pebbling number and Black-Rev-separation:
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Obtaining Space-Separations with Pebble games

The best known separation

For “slowly enough” growing space functions s(n) there is a family of
pebbling formulas (Pebg, [692])2021 with ©(n) variables such that

e CS(Pebg, [®2] FO) = O(S(n))
e Tree-CS(Pebg, [®2] F0O) = Q(s(n)logn).

iCan we do any better?
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The Tseitin formula case
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The Tseitin formula case

e For any connected graph G with n vertices and odd marking x
Tree-CS (TS(G,X) I—D) < CS (TS(G, X) I—D) -logn + 2

e There are graph families {G},} for which Vn :
Tree-CS (Ts(G, x) FO) = Q(CS(Ts(G, x) FO) - logn)
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Tree-CS(Ts(G, x) FO) < CS(Ts(G, x) FO) -logn + 2
Proof sketch:

Let m = (M, ..., M;) be a refutation of Ts(G, x) with CS(7) =: k.
We use 7 to give a strategy for Prover in the Prover-Delayer game for
which he has to pay at most klogn points.
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Proof sketch:

A partial assignment « of some of the variables in Ts(G, x) is
non-splitting if after applying « to the formula, the resulting graph still
has an odd connected component of size at least 5 and the rest are
components are even.

There is a last step in 7 for which there is a partial assignment «
fulfilling:
(i) « simultaneously satisfies all clauses in M and

(i) « is non-splitting.

The only new clause in configuration Mz 1 must be an axiom
of Ts(G, x)
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Tree-CS(Ts(G, x) FO) < CS(Ts(G, x) FO) -logn + 2
Proof sketch:

A partial assignment « of some of the variables in Ts(G, x) is
non-splitting if after applying « to the formula, the resulting graph still
has an odd connected component of size at least 5 and the rest are
components are even.

There is a last step in 7 for which there is a partial assignment «
fulfilling:
(i) « simultaneously satisfies all clauses in M and

(i) « is non-splitting.

The only new clause in configuration Mz 1 must be an axiom
of Ts(G, x)

There is a way to query variables at stage s + 1 paying only k points to
Delayer and splitting G or falsifying the axiom. 33/34



Take-Home Message
Tree-CS and CS are different measures but “not too far” from one
another

Tree-CS (Pebg[®2] F0) ~ Rev(G)

Separations between Tree-CS and CS by graphs G exhibiting
separation between Rev(G) and Black(G)

Tree-CS(F F0O) < CS*(F +0) for general F'
Tree-CS(F F0O) < VS*(F F0O) for general F
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another

Tree-CS (Pebg[®2] F0) ~ Rev(G)

Separations between Tree-CS and CS by graphs G exhibiting
separation between Rev(G) and Black(G) (*)

Tree-CS(F F0O) < CS*(F F0O) for general F (*)
Tree-CS(F F0O) < VS*(F F0O) for general F (*)

(*) Some open questions hidden here. We've solved these for Tseitin formulas.

Thank you for your attention!
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