Reversible Pebble Games and the Relation
 Between Tree-Like and General Resolution Space

Jacobo Torán and Florian Wörz
Universität Ulm

Resolution

- only one derivation rule:

$$
\frac{B \vee x \quad C \vee \bar{x}}{B \vee C}
$$

- Length of $\pi=$ \# of clauses in π
- Clause Space of $\pi=\max \#$ of clauses in memory simultaneously during π
- Variable Space of $\pi=\max \#$ of variables in memory simultaneously during π
- Tree-Res, if refutation DAG is a tree (\rightarrow maybe need to rederive clauses)

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time.

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time.

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time.

There is an almost optimal separation between general and tree-like resolution w.r.t. length:
\exists a family $\left(F_{n}\right)_{n \in \mathbb{N}}$ of unsatsfiable formulas in $\mathrm{O}(n)$ variables with

- resolution refutations of length L (linear in n),
- but any tree-like resolution refutation requires length $\exp \left(\Omega\left(\frac{L}{\log L}\right)\right)$.
Matching upper bound of $\exp \left(\mathrm{O}\left(\frac{L \log \log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.
[Ben-Sasson, Impagliazzo, Wigderson 04]

¿What about space?

Configuration-style Resolution

A resolution refutation of an unsatisfiable CNF formula F is an ordered sequence of memory configurations (sets of clauses)

$$
\pi=\left(\mathbb{M}_{0}, \ldots, \mathbb{M}_{t}\right)
$$

s. th. $\mathbb{M}_{0}=\varnothing, \square \in \mathbb{M}_{t}$ and for each $i \in[t]$, the configuration \mathbb{M}_{i} is obtained from \mathbb{M}_{i-1} by applying exactly one of the following rules:

- Axiom Download: $\mathbb{M}_{i}=\mathbb{M}_{i-1} \cup\{C\}$ for some axiom $C \in F$.
- Erasure: $\mathbb{M}_{i}=\mathbb{M}_{i-1} \backslash\{C\}$ for some $C \in \mathbb{M}_{i-1}$.
- Inference:

$$
\mathbb{M}_{i}=\mathbb{M}_{i-1} \cup\{D\}
$$

for some resolvent D inferred from $C_{1}, C_{2} \in \mathbb{M}_{i}$ by the resolution rule.

The proof π is said to be tree-like, if we replace the inference rule with the following rule

Configuration-style Resolution

A resolution refutation of an unsatisfiable CNF formula F is an ordered sequence of memory configurations (sets of clauses)

$$
\pi=\left(\mathbb{M}_{0}, \ldots, \mathbb{M}_{t}\right)
$$

s. th. $\mathbb{M}_{0}=\varnothing, \square \in \mathbb{M}_{t}$ and for each $i \in[t]$, the configuration \mathbb{M}_{i} is obtained from \mathbb{M}_{i-1} by applying exactly one of the following rules:

- Axiom Download: $\mathbb{M}_{i}=\mathbb{M}_{i-1} \cup\{C\}$ for some axiom $C \in F$.
- Erasure: $\mathbb{M}_{i}=\mathbb{M}_{i-1} \backslash\{C\}$ for some $C \in \mathbb{M}_{i-1}$.
- Inference:

$$
\mathbb{M}_{i}=\mathbb{M}_{i-1} \cup\{D\}
$$

for some resolvent D inferred from $C_{1}, C_{2} \in \mathbb{M}_{i}$ by the resolution rule.

The proof π is said to be tree-like, if we replace the inference rule with the following rule [Esteban T. 01]:
Tree-like Inference: $\mathbb{M}_{i}=\left(\mathbb{M}_{i-1} \cup\{D\}\right) \backslash\left\{C_{1}, C_{2}\right\}$ for some resolvent D inferred from $C_{1}, C_{2} \in \mathbb{M}_{i}$, ie we delete both parent clauses immediately.

Complexity Measures for Resolution

For a memory configuration \mathbb{M} :

- $\operatorname{CS}(\mathbb{M}):=|\mathbb{M}|$, i. e., number of clauses in \mathbb{M},

For a refutation $\pi=\left(\mathbb{M}_{0}, \ldots, \mathbb{M}_{t}\right)$:

- $\operatorname{CS}(\pi):=\max _{i \in[t]} \operatorname{CS}\left(\mathbb{M}_{i}\right)$, i. e., max. \# of clauses in a config,
- $\mathrm{L}(\pi):=t$.

For a complexity measure μ and a formula F

$$
\mu(F \vdash \square):=\min _{\pi: F \vdash \square} \mu(\pi) .
$$

Prefix "Tree-" indicated tree-like resolution.

Games as tools

The Prover-Delayer Game

[Pudlák, Impagliazzo '00]

Given: An unsatisfiable CNF formula F
Two players take rounds until a clause in F is falsified

Prover

Delayer

- Wants to falisify $C \in F$ (then Game Over)
- Queries a variable x of F
- Plugs answer of Delayer
- Answers

$$
\begin{aligned}
& -x=0 \\
& -x=1 \text { or } \\
& -x=*(\text { "you choose" })
\end{aligned}
$$

in / chooses value for $*$

The Prover-Delayer Game
A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula.
$\mathrm{PD}(F):=$ max pts. of Delayer on F against optimal strategy of Prover.

Theorem ([Esteban, T. '03])
Let F be an unsatisfiable CNF formula. Then

$$
\text { Tree-CS }(F \vdash \square)=\mathrm{PD}(F)+2
$$

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max \# of pebbles used at any point:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max \# of pebbles
used at any point:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max \# of pebbles
used at any point:
II

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max \# of pebbles used at any point:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max \# of pebbles
used at any point:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max \# of pebbles
used at any point:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max \# of pebbles used at any point:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max \# of pebbles used at any point: IIII

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max \# of pebbles used at any point: IIII

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max \# of pebbles used at any point: IIII

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max \# of pebbles used at any point: IIII

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max \# of pebbles used at any point: IIII

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point:

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: I

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: II

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: III

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: III

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: III

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: III

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: III

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max \# of pebbles used at any point: IIII

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Complexity Measures for the Pebble Games

$\operatorname{Black}(G):=\min _{\text {black pebblings } \mathcal{P}}(\max \#$ of pebbles used at any point in $\mathcal{P})$

$$
\operatorname{Rev}(G):=\min _{\text {rev. pebblings } \mathcal{P}}(\max \# \text { of pebbles used at any point in } \mathcal{P})
$$

Plethora of connections to resolution i. a.:
$\left.\operatorname{CS}(\pi)=\min _{\pi} \operatorname{Black}\left(G_{\pi}\right) \pi: F \vdash \square[\text { Esteban, }]^{1} \cdot 1\right]$.

We will show:
Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$.
The minimum is over all refutation, not only tree-like ones.

Complexity Measures for the Pebble Games

$\operatorname{Black}(G):=\min _{\text {black pebblings } \mathcal{P}}(\max \#$ of pebbles used at any point in $\mathcal{P})$

$$
\operatorname{Rev}(G):=\min _{\text {rev. pebblings } \mathcal{P}}(\max \# \text { of pebbles used at any point in } \mathcal{P})
$$

Plethora of connections to resolution i. a.:
$\mathrm{CS}(\pi)=\min _{\pi} \operatorname{Black}\left(G_{\pi}\right) \pi: F \vdash \square$ [Esteban, T. '01].

We will show:
Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$.
The minimum is over all refutation, not only tree-like ones.

Yet another game

$\operatorname{Rev}(G)$ is hard to compute Raz-McKenzie Game to the help [Raz, McKenzie '97]

Given: A single sink DAG G

Two players take rounds... until Game Over..., i. e., when we have:
Pebbler

- Places pebble on sink
- Colours it with red $\widehat{=} 0$
- Chooses empty vertex
- Colours it red $\widehat{=} 0$ or blue $\widehat{=} 1$

Until

Either a red source or red vertex with all predecessors blue.

$\mathrm{R}-\mathrm{Mc}(G):=$ smallest r s.th. Pebbler wins in $\leq r$ rounds regardless of how Colourer plays

$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])
For any single-sink DAG G :

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R-Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$

$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G:

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$

$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G:

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$

$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G:

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$

$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G:

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$

$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G:

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$

$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G:

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$
$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G:

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$
$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G:

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$
$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G :

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$
$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G :

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$
$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G :

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$
$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G:

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$
$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G :

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$
$\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)$

Theorem ([Chan '13])

For any single-sink DAG G :

$$
\operatorname{Rev}(G)=\operatorname{R}-\operatorname{Mc}(G)
$$

Example: $\operatorname{Rev}\left(P_{n}\right)=\operatorname{R}-\operatorname{Mc}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$

Upper bounds for Tree-CS

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

Given: a res. refutation π of F with a ref.-graph G_{π} and $\operatorname{Rev}\left(G_{\pi}\right)=: k$.
AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz-McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (\& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α
2. a variable is given $*$ by Delayer

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

Given: a res. refutation π of F with a ref.-graph G_{π} and $\operatorname{Rev}\left(G_{\pi}\right)=: k$.
AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz-McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (\& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α
2. a variable is given $*$ by Delayer

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

Given: a res. refutation π of F with a ref.-graph G_{π} and $\operatorname{Rev}\left(G_{\pi}\right)=: k$.
AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz-McKenzie game
\rightarrow a falsifying part. assignment α of init. clause will be produced
Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (\& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α
2. a variable is given $*$ by Delayer

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

Given: a res. refutation π of F with a ref.-graph G_{π} and $\operatorname{Rev}\left(G_{\pi}\right)=: k$.
AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz-McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (\& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α
2. a variable is given $*$ by Delayer

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

Given: a res. refutation π of F with a ref.-graph G_{π} and $\operatorname{Rev}\left(G_{\pi}\right)=: k$.
AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz-McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (\& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α
2. a variable is given $*$ by Delayer

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

Given: a res. refutation π of F with a ref.-graph G_{π} and $\operatorname{Rev}\left(G_{\pi}\right)=: k$.
AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz-McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C
not yet assigned by α (\& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α
2. a variable is given $*$ by Delayer

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

Given: a res. refutation π of F with a ref.-graph G_{π} and $\operatorname{Rev}\left(G_{\pi}\right)=: k$.
AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz-McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (\& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α
2. a variable is given $*$ by Delayer

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

Given: a res. refutation π of F with a ref.-graph G_{π} and $\operatorname{Rev}\left(G_{\pi}\right)=: k$.
AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz-McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (\& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α
\rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C \upharpoonright_{\alpha}$
2. a variable is given $*$ by Delayer

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

Given: a res. refutation π of F with a ref.-graph G_{π} and $\operatorname{Rev}\left(G_{\pi}\right)=: k$.
AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz-McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (\& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α
\rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C \upharpoonright_{\alpha}$
2. a variable is given $*$ by Delayer

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

Given: a res. refutation π of F with a ref.-graph G_{π} and $\operatorname{Rev}\left(G_{\pi}\right)=: k$.
AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz-McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (\& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α
\rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C \upharpoonright_{\alpha}$
2. a variable is given $*$ by Delayer

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$

Proof sketch:

Given: a res. refutation π of F with a ref.-graph G_{π} and $\operatorname{Rev}\left(G_{\pi}\right)=: k$.
AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz-McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (\& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α
\rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C \upharpoonright_{\alpha}$
2. a variable is given $*$ by Delayer
\rightarrow Prover extends α with value of x that sat's C and simulates corresponding strategy of Pebbler (assuming C has colour blue/1)

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:
The game is played until α falsifies a clause in F.

After at most k stages the Raz-McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz-McKenzie finishes:

1. either a source vertex in G_{π} is assigned colour 0 by Colourer,
2. or a vertex with all its direct predecessors being coloured 1 is coloured 0 .

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:
The game is played until α falsifies a clause in F.
After at most k stages the Raz-McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.
When Raz-McKenzie finishes:

1. either a source vertex in G_{π} is assigned colour 0 by Colourer,
2. or a vertex with all its direct predecessors being coloured 1 is coloured 0 .

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:
The game is played until α falsifies a clause in F.
After at most k stages the Raz-McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.
When Raz-McKenzie finishes:

1. either a source vertex in G_{π} is assigned colour 0 by Colourer,
2. or a vertex with all its direct predecessors being coloured 1 is coloured 0 .

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

The game is played until α falsifies a clause in F.

After at most k stages the Raz-McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz-McKenzie finishes:

1. either a source vertex in G_{π} is assigned colour 0 by Colourer,
2. or a vertex with all its direct predecessors being coloured 1 is coloured 0 .

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

The game is played until α falsifies a clause in F.

After at most k stages the Raz-McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz-McKenzie finishes:

1. either a source vertex in G_{π} is assigned colour 0 by Colourer,
2. or a vertex with all its direct predecessors being coloured 1 is coloured 0 .

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:

The game is played until α falsifies a clause in F.

After at most k stages the Raz-McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.
When Raz-McKenzie finishes:

1. either a source vertex in G_{π} is assigned colour 0 by Colourer,
2. or a vertex with all its direct predecessors being coloured 1 is coloured 0 .

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$
Proof sketch:
The game is played until α falsifies a clause in F.
After at most k stages the Raz-McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.
When Raz-McKenzie finishes:

1. either a source vertex in G_{π} is assigned colour 0 by Colourer,
2. or a vertex with all its direct predecessors being coloured 1 is coloured 0 .
\rightarrow not possible, since no α can sat'y two parent clauses in a resolution proof, while falsifying their resolvent!

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$
Proof sketch:
The game is played until α falsifies a clause in F.

After at most k stages the Raz-McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.
When Raz-McKenzie finishes:

1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.
\rightarrow not possible, since no α can sat'y two parent clauses in a resolution proof, while falsifying their resolvent!

Tree-CS $(F \vdash \square) \leq \min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right)+2$ Proof sketch:
The game is played until α falsifies a clause in F.
After at most k stages the Raz-McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.
When Raz-McKenzie finishes:

1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
2. or a vertex with all its direct predecessors being coloured 1 is coloured 0 .
\rightarrow not possible, since no α can sat'y two parent clauses in a resolution proof, while falsifying their resolvent!

$\operatorname{Tree}-\operatorname{CS}(F \vdash \square) \leq \min _{\pi: F \vdash \square \operatorname{Rev}}\left(G_{\pi}\right)+2$

On the other hand:

$$
\min _{\pi: F \vdash \square} \operatorname{Rev}\left(G_{\pi}\right) \leq \operatorname{Tree}-\operatorname{CS}(F \vdash \square)(\lceil\log n\rceil+1)
$$

and there are formulas for which this bound is tight.

An upper bound for Tree-CS in terms of CS*
[Razborov '18] introduced the concept of amortised clause space:

$$
\mathrm{CS}^{*}(F \vdash \square):=\min _{\pi: F \vdash \square}(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi))
$$

Corollary

Tree-CS $(F \vdash \square) \leq$ CS $^{*}(F \vdash \square)+2$.

Proof

An upper bound for Tree-CS in terms of CS*
[Razborov '18] introduced the concept of amortised clause space:

$$
\mathrm{CS}^{*}(F \vdash \square):=\min _{\pi: F \vdash \square}(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi))
$$

Corollary

Tree-CS $(F \vdash \square) \leq$ CS $^{*}(F \vdash \square)+2$.

Proof

An upper bound for Tree-CS in terms of CS*
[Razborov '18] introduced the concept of amortised clause space:

$$
\mathrm{CS}^{*}(F \vdash \square):=\min _{\pi: F \vdash \square}(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi))
$$

Corollary

Tree-CS $(F \vdash \square) \leq$ CS $^{*}(F \vdash \square)+2$.

Proof.

- [Královič '04] $\operatorname{Rev}\left(G_{\pi}\right) \leq \min \mathcal{P}(\operatorname{space}(\mathcal{P}) \cdot \log \operatorname{time}(\mathcal{P}))$, where the minimum is taken over all black pebblings \mathcal{P} of G_{π}.
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space (\mathcal{P}) and length time (\mathcal{P}).

An upper bound for Tree-CS in terms of CS*
[Razborov '18] introduced the concept of amortised clause space:

$$
\mathrm{CS}^{*}(F \vdash \square):=\min _{\pi: F \vdash \square}(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi))
$$

Corollary

Tree-CS $(F \vdash \square) \leq$ CS $^{*}(F \vdash \square)+2$.

Proof.

- [Královič '04] $\operatorname{Rev}\left(G_{\pi}\right) \leq \min \mathcal{P}(\operatorname{space}(\mathcal{P}) \cdot \log \operatorname{time}(\mathcal{P}))$, where the minimum is taken over all black pebblings \mathcal{P} of G_{π}.
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space (\mathcal{P}) and length $\operatorname{time}(\mathcal{P})$.

How large can be the gap between CS and Tree-CS?

Pebbling Formulas (formulas over DAGs)

Pebbling Formula

Clauses of Peb_{G} :
u
v
w
$(u \wedge v) \rightarrow x=\bar{u} \vee \bar{v} \vee x$
$(v \wedge w) \rightarrow y=\bar{v} \vee \bar{w} \vee y$
$(x \wedge y) \rightarrow z=\bar{x} \vee \bar{y} \vee z$ \bar{z}

Encode the rules of the black pebble game in a formula (i. e., formula is defined over an underlying DAG):

- source vertices are true
- truth propagates upwards
- but the sink vertex is false

Pebbling Formula

Clauses of Peb_{G} :
u
v
w
$(u \wedge v) \rightarrow x=\bar{u} \vee \bar{v} \vee x$
$(v \wedge w) \rightarrow y=\bar{v} \vee \bar{w} \vee y$
$(x \wedge y) \rightarrow z=\bar{x} \vee \bar{y} \vee z$ \bar{z}

Encode the rules of the black pebble game in a formula (i. e., formula is defined over an underlying DAG):

- source vertices are true
- truth propagates upwards
- but the sink vertex is false

Pebbling Formula

```
Clauses of \(\mathrm{Peb}_{G}\) :
u
\(v\)
w
\((u \wedge v) \rightarrow x=\bar{u} \vee \bar{v} \vee x\)
\((v \wedge w) \rightarrow y=\bar{v} \vee \bar{w} \vee y\)
\((x \wedge y) \rightarrow z=\bar{x} \vee \bar{y} \vee z\)
\(\bar{z}\)
```


Encode the rules of the black pebble game in a formula (i. e., formula is defined over an underlying DAG):

- source vertices are true
- truth propagates upwards
- but the sink vertex is false

Pebbling Formula

Clauses of Peb_{G} :
u
v
w
$(u \wedge v) \rightarrow x=\bar{u} \vee \bar{v} \vee x$
$(v \wedge w) \rightarrow y=\bar{v} \vee \bar{w} \vee y$
$(x \wedge y) \rightarrow z=\bar{x} \vee \bar{y} \vee z$ \bar{z}

Encode the rules of the black pebble game in a formula (i. e., formula is defined over an underlying DAG):

- source vertices are true
- truth propagates upwards
- but the sink vertex is false

XORification \oplus_{2}

Make formulas slightly harder to refute

- For a technical reason we need the XORification of our pebbling formulas.
- (XORification being a common technique used in proof complexity).
- Simple Idea: Substitute each variable x with $x_{1} \oplus x_{2}$ and expand result into CNF.

XORification \oplus_{2}

Make formulas slightly harder to refute

- For a technical reason we need the XORification of our pebbling formulas.
- (XORification being a common technique used in proof complexity).
- Simple Idea: Substitute each variable x with $x_{1} \oplus x_{2}$ and expand result into CNF.

Reversible Pebbling meets Tree-CS in the Special Case of Pebbling Formulas

Theorem

For all DAGs G with a unique sink:

$$
\operatorname{Rev}(G)+2 \leq \operatorname{Tree-CS}\left(\operatorname{Peb}_{G}\left[\oplus_{2}\right] \vdash \square\right) \leq 2 \cdot \operatorname{Rev}(G)+2
$$

Obtaining Space-Separations with Pebble games

Idea:

- $\mathrm{CS}\left(\operatorname{Peb}_{G}\left[\oplus_{2}\right] \vdash \square\right)=\mathrm{O}(\operatorname{Black}(G))$
- Tree-CS $\left(\operatorname{Peb}_{G}\left[\oplus_{2}\right] \vdash \square\right)=\Omega(\operatorname{Rev}(G))$
\Longrightarrow Construct a graph family with a gap between its black and reversible pebbling price

Example: Path graphs P_{n} of length n

- $\operatorname{Black}\left(P_{n}\right)=\mathrm{O}(1) \forall n \in \mathbb{N}$
- $\operatorname{Rev}\left(P_{n}\right)=\Theta(\log n) \forall n \in \mathbb{N}$

Obtaining Space-Separations with Pebble games

Non-constant black pebbling number and Black-Rev-separation:

Obtaining Space-Separations with Pebble games

The best known separation

For "slowly enough" growing space functions $s(n)$ there is a family of pebbling formulas $\left(\operatorname{Peb}_{G_{n}}\left[\oplus_{2}\right]\right)_{n=1}^{\infty}$ with $\Theta(n)$ variables such that

- $\mathrm{CS}\left(\mathrm{Peb}_{G_{n}}\left[\oplus_{2}\right] \vdash \square\right)=\mathrm{O}(s(n))$
- Tree-CS $\left(\operatorname{Peb}_{G_{n}}\left[\oplus_{2}\right] \vdash \square\right)=\Omega(s(n) \log n)$.
¿Can we do any better?

The Tseitin formula case

The Tseitin formula case

Theorem

- For any connected graph G with n vertices and odd marking χ Tree-CS $(\operatorname{Ts}(G, \chi) \vdash \square) \leq \operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \cdot \log n+2$
- There are graph families $\left\{G_{n}\right\}$ for which $\forall n$: $\operatorname{Tree}-\operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square)=\Omega(\operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \cdot \log n)$
$\operatorname{Tree}-\operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \leq \operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \cdot \log n+2$ Proof sketch:

Let $\pi=\left(\mathbb{M}_{0}, \ldots, \mathbb{M}_{t}\right)$ be a refutation of $\operatorname{Ts}(G, \chi)$ with $\operatorname{CS}(\pi)=: k$. We use π to give a strategy for Prover in the Prover-Delayer game for which he has to pay at most $k \log n$ points.

A partial assignment α of some of the variables in $\operatorname{Ts}(G, \chi)$ is non-splitting if after applying α to the formula, the resulting graph still has an odd connected component of size at least $\frac{n}{2}$ and the rest are components are even.

There is a last step s in π for which there is a partial assignment α fulfilling:
(i) α simultaneously satisfies all clauses in \mathbb{M}_{s} and
(ii) α is non-splitting.

The only new clause in configuration \mathbb{M}_{s+1} must be an axiom
$\operatorname{Tree}-\operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \leq \operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \cdot \log n+2$ Proof sketch:
Let $\pi=\left(\mathbb{M}_{0}, \ldots, \mathbb{M}_{t}\right)$ be a refutation of $\operatorname{Ts}(G, \chi)$ with $\operatorname{CS}(\pi)=: k$. We use π to give a strategy for Prover in the Prover-Delayer game for which he has to pay at most $k \log n$ points.

A partial assignment α of some of the variables in $\operatorname{Ts}(G, \chi)$ is non-splitting if after applying α to the formula, the resulting graph still has an odd connected component of size at least $\frac{n}{2}$ and the rest are components are even.

> There is a last step s in π for which there is a partial assignment α fulfilling:
> (i) α simultaneously satisfies all clauses in \mathbb{M}_{s} and
> (ii) α is non-splitting.
$\operatorname{Tree}-\operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \leq \operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \cdot \log n+2$ Proof sketch:
Let $\pi=\left(\mathbb{M}_{0}, \ldots, \mathbb{M}_{t}\right)$ be a refutation of $\operatorname{Ts}(G, \chi)$ with $\operatorname{CS}(\pi)=: k$. We use π to give a strategy for Prover in the Prover-Delayer game for which he has to pay at most $k \log n$ points.

A partial assignment α of some of the variables in $\operatorname{Ts}(G, \chi)$ is non-splitting if after applying α to the formula, the resulting graph still has an odd connected component of size at least $\frac{n}{2}$ and the rest are components are even.

There is a last step s in π for which there is a partial assignment α fulfilling:
(i) α simultaneously satisfies all clauses in \mathbb{M}_{s} and
(ii) α is non-splitting.
$\operatorname{Tree}-\operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \leq \operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \cdot \log n+2$ Proof sketch:
Let $\pi=\left(\mathbb{M}_{0}, \ldots, \mathbb{M}_{t}\right)$ be a refutation of $\operatorname{Ts}(G, \chi)$ with $\operatorname{CS}(\pi)=: k$. We use π to give a strategy for Prover in the Prover-Delayer game for which he has to pay at most $k \log n$ points.

A partial assignment α of some of the variables in $\operatorname{Ts}(G, \chi)$ is non-splitting if after applying α to the formula, the resulting graph still has an odd connected component of size at least $\frac{n}{2}$ and the rest are components are even.

There is a last step s in π for which there is a partial assignment α fulfilling:
(i) α simultaneously satisfies all clauses in \mathbb{M}_{s} and
(ii) α is non-splitting.

The only new clause in configuration \mathbb{M}_{s+1} must be an axiom of $\operatorname{Ts}(G, \chi)$
$\operatorname{Tree}-\operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \leq \operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \cdot \log n+2$ Proof sketch:

A partial assignment α of some of the variables in $\operatorname{Ts}(G, \chi)$ is non-splitting if after applying α to the formula, the resulting graph still has an odd connected component of size at least $\frac{n}{2}$ and the rest are components are even.

There is a last step in π for which there is a partial assignment α fulfilling:
(i) α simultaneously satisfies all clauses in \mathbb{M}_{s} and
(ii) α is non-splitting.

The only new clause in configuration \mathbb{M}_{s+1} must be an axiom of $\operatorname{Ts}(G, \chi)$
$\operatorname{Tree}-\operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \leq \operatorname{CS}(\operatorname{Ts}(G, \chi) \vdash \square) \cdot \log n+2$ Proof sketch:

A partial assignment α of some of the variables in $\operatorname{Ts}(G, \chi)$ is non-splitting if after applying α to the formula, the resulting graph still has an odd connected component of size at least $\frac{n}{2}$ and the rest are components are even.

There is a last step in π for which there is a partial assignment α fulfilling:
(i) α simultaneously satisfies all clauses in \mathbb{M}_{s} and
(ii) α is non-splitting.

The only new clause in configuration \mathbb{M}_{s+1} must be an axiom of $\operatorname{Ts}(G, \chi)$

There is a way to query variables at stage $s+1$ paying only k points to Delayer and splitting G or falsifying the axiom.

Take-Home Message

Tree-CS and CS are different measures but "not too far" from one another

- Tree-CS $\left(\operatorname{Peb}_{G}\left[\oplus_{2}\right] \vdash \square\right) \simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between $\operatorname{Rev}(G)$ and $\operatorname{Black}(G)$
- Tree-CS $(F \vdash \square) \lesssim \mathrm{CS}^{*}(F \vdash \square)$ for general F
- Tree-CS $(F \vdash \square) \lesssim \mathrm{VS}^{*}(F \vdash \square)$ for general F

Take-Home Message

Tree-CS and CS are different measures but "not too far" from one another

- Tree-CS $\left(\operatorname{Peb}_{G}\left[\oplus_{2}\right] \vdash \square\right) \simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between $\operatorname{Rev}(G)$ and $\operatorname{Black}(G)\left(^{*}\right)$
- Tree-CS $(F \vdash \square) \lesssim \mathrm{CS}^{*}(F \vdash \square)$ for general $F\left({ }^{*}\right)$
- Tree-CS $(F \vdash \square) \lesssim \mathrm{VS}^{*}(F \vdash \square)$ for general $F(*)$
(*) Some open questions hidden here. We've solved these for Tseitin formulas.

Take-Home Message

Tree-CS and CS are different measures but "not too far" from one another

- $\operatorname{Tree}-\operatorname{CS}\left(\operatorname{Peb}_{G}\left[\oplus_{2}\right] \vdash \square\right) \simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between $\operatorname{Rev}(G)$ and $\operatorname{Black}(G)\left(^{*}\right)$
- Tree-CS $(F \vdash \square) \lesssim \mathrm{CS}^{*}(F \vdash \square)$ for general $F\left({ }^{*}\right)$
- Tree-CS $(F \vdash \square) \lesssim \mathrm{VS}^{*}(F \vdash \square)$ for general $F\left({ }^{*}\right)$
(*) Some open questions hidden here. We've solved these for Tseitin formulas.

Thank you for your attention!

