

Reversible Pebble Games and the Relation Between Tree-Like and General Resolution Space

Jacobo Torán and Florian Wörz

Universität Ulm

Resolution

• only one derivation rule:

 $\frac{B \lor x \quad C \lor \overline{x}}{B \lor C}$

- Length of $\pi = \#$ of clauses in π
- Clause Space of π = max # of clauses in memory simultaneously during π
- Variable Space of π = max # of variables in memory simultaneously during π
- Tree-Res, if refutation DAG is a tree (→ maybe need to rederive clauses)

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time.

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time.

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time.

There is an almost optimal separation between general and tree-like resolution w. r. t. length:

 \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatsfiable formulas in $\mathrm{O}(n)$ variables with

- resolution refutations of length L (linear in n),
- but any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

```
[Ben-Sasson, Impagliazzo, Wigderson 04]
```

¿What about space?

Configuration-style Resolution

A resolution refutation of an unsatisfiable CNF formula F is an ordered sequence of memory configurations (sets of clauses)

 $\pi = (\mathbb{M}_0, \ldots, \mathbb{M}_t),$

s. th. $\mathbb{M}_0 = \emptyset$, $\Box \in \mathbb{M}_t$ and for each $i \in [t]$, the configuration \mathbb{M}_i is obtained from \mathbb{M}_{i-1} by applying exactly one of the following rules:

- Axiom Download: $\mathbb{M}_i = \mathbb{M}_{i-1} \cup \{C\}$ for some axiom $C \in F$.
- **Erasure:** $\mathbb{M}_i = \mathbb{M}_{i-1} \setminus \{C\}$ for some $C \in \mathbb{M}_{i-1}$.
- Inference:

$$\mathbb{M}_i = \mathbb{M}_{i-1} \cup \{D\}$$

for some resolvent D inferred from $C_1,C_2\in \mathbb{M}_i$ by the resolution rule.

The proof π is said to be tree-like, if we replace the inference rule with the following rule [Esteban T. 01]:

Tree-like Inference: $\mathbb{M}_i = (\mathbb{M}_{i-1} \cup \{D\}) \setminus \{C_1, C_2\}$ for some resolvent D inferred from $C_1, C_2 \in \mathbb{M}_i$, ie we delete both parent clauses immediately. 4/34

Configuration-style Resolution

A resolution refutation of an unsatisfiable CNF formula F is an ordered sequence of memory configurations (sets of clauses)

 $\pi = (\mathbb{M}_0, \ldots, \mathbb{M}_t),$

s. th. $\mathbb{M}_0 = \emptyset$, $\Box \in \mathbb{M}_t$ and for each $i \in [t]$, the configuration \mathbb{M}_i is obtained from \mathbb{M}_{i-1} by applying exactly one of the following rules:

- Axiom Download: $\mathbb{M}_i = \mathbb{M}_{i-1} \cup \{C\}$ for some axiom $C \in F$.
- **Erasure:** $\mathbb{M}_i = \mathbb{M}_{i-1} \setminus \{C\}$ for some $C \in \mathbb{M}_{i-1}$.
- Inference:

$$\mathbb{M}_i = \mathbb{M}_{i-1} \cup \{D\}$$

for some resolvent D inferred from $C_1,C_2\in\mathbb{M}_i$ by the resolution rule.

The proof π is said to be tree-like, if we replace the inference rule with the following rule [Esteban T. 01]:

Tree-like Inference: $\mathbb{M}_i = (\mathbb{M}_{i-1} \cup \{D\}) \setminus \{C_1, C_2\}$ for some resolvent D inferred from $C_1, C_2 \in \mathbb{M}_i$, ie we delete both parent clauses immediately.

Complexity Measures for Resolution

For a memory configuration \mathbb{M} :

• $\mathrm{CS}(\mathbb{M}) := |\mathbb{M}|$, i.e., number of clauses in \mathbb{M} ,

For a refutation $\pi = (\mathbb{M}_0, \dots, \mathbb{M}_t)$:

• $CS(\pi) := \max_{i \in [t]} CS(\mathbb{M}_i)$, i. e., max. # of clauses in a config,

•
$$L(\pi) := t$$
.

For a complexity measure μ and a formula F

$$\mu(F\vdash\Box):=\min_{\pi:F\vdash\Box}\mu(\pi).$$

Prefix "Tree-" indicated tree-like resolution.

Games as tools

The Prover-Delayer Game

 $\begin{array}{l} \mbox{[Pudlák, Impagliazzo '00]} \\ \mbox{Given: An unsatisfiable CNF formula } F \\ \mbox{Two players take rounds until a clause in } F \mbox{ is falsified} \end{array}$

Prover	Delayer
• Wants to falisify $C \in F$ (then Game Over)	
• Queries a variable x of F	
	Answers
	-x=0,
	- $x = 1$ or
 Plugs answer of Delayer in / chooses value for * 	- $x = *$ ("you choose")

Score of Delayer = # of *'s

The Prover-Delayer Game A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula. PD $(F) := \max$ pts. of Delayer on F against optimal strategy of Prover.

Theorem ([Esteban, T. '03])

Let F be an unsatisfiable CNF formula. Then

Tree-CS $(F \vdash \Box) = \mathsf{PD}(F) + 2.$

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

 $\max \# \text{ of pebbles}$ used at any point:

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point:

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: I

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: II

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Complexity Measures for the Pebble Games

 $\mathsf{Black}(G) := \min_{\mathsf{black pebblings } \mathcal{P}} \Big(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \Big)$

 $\mathsf{Rev}(G) := \min_{\mathsf{rev. pebblings } \mathcal{P}} \Big(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \Big)$

Plethora of connections to resolution i.a.: $CS(\pi) = \min_{\pi} Black(G_{\pi}) \ \pi : F \vdash \Box$ [Esteban, T. '01].

We will show: Tree-CS $(F \vdash \Box) \leq \min_{\pi:F \vdash \Box} \text{Rev}(G_{\pi}) + 2$. The minimum is over all refutation, not only tree-like ones.

Complexity Measures for the Pebble Games

 $\mathsf{Black}(G) := \min_{\mathsf{black pebblings } \mathcal{P}} \Big(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \Big)$

$$\mathsf{Rev}(G) := \min_{\mathsf{rev. pebblings } \mathcal{P}} \Big(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \Big)$$

Plethora of connections to resolution i.a.: $CS(\pi) = \min_{\pi} Black(G_{\pi}) \ \pi : F \vdash \Box$ [Esteban, T. '01].

We will show: Tree-CS $(F \vdash \Box) \leq \min_{\pi:F \vdash \Box} \text{Rev}(G_{\pi}) + 2$. The minimum is over all refutation, not only tree-like ones.

Yet another game

Rev(G) is hard to compute Raz-McKenzie Game to the help [Raz, McKenzie '97]

Given: A single sink DAG ${\it G}$

Two players take rounds... until Game Over..., i. e., when we have:

Pebbler	Colourer
 Places pebble on sink 	
	• Colours it with red $\widehat{=}0$
• Chooses empty vertex	
	• Colours it red $\hat{=} 0$ or blue $\hat{=} 1$

13/34

Either a red source or red vertex with all predecessors blue.

 $\operatorname{R-Mc}(G) :=$ smallest r s.th. Pebbler wins in $\leq r$ rounds regardless of how Colourer plays

 $\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\mathsf{Rev}(G) = \mathsf{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\mathsf{Rev}(G) = \mathsf{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

Upper bounds for Tree-CS

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by lpha

 \rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C \! \upharpoonright_{\! \alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\restriction}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C{\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C{\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C{\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C{\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz-McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz-McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz-McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz-McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured $1 \mbox{ is coloured } 0.$

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured $1 \mbox{ is coloured } 0.$

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

On the other hand:

 $\min_{\pi:F \vdash \Box} \mathsf{Rev}(G_{\pi}) \leq \operatorname{Tree-CS}(F \vdash \Box)(\lceil \log n \rceil + 1)$

and there are formulas for which this bound is tight.

[Razborov '18] introduced the concept of amortised clause space:

$$\mathrm{CS}^*(F \vdash \Box) := \min_{\pi: F \vdash \Box} \left(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi) \right)$$

Corollary

Tree-CS $(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2.$

- [Královič '04] $\operatorname{Rev}(G_{\pi}) \leq \min_{\mathcal{P}} (\operatorname{space}(\mathcal{P}) \cdot \log \operatorname{time}(\mathcal{P}))$, where the minimum is taken over all black pebblings \mathcal{P} of G_{π} .
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

[Razborov '18] introduced the concept of amortised clause space:

$$\mathrm{CS}^*(F \vdash \Box) := \min_{\pi: F \vdash \Box} \left(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi) \right)$$

Corollary

Tree-CS $(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2.$

- [Královič '04] $\operatorname{Rev}(G_{\pi}) \leq \min_{\mathcal{P}} (\operatorname{space}(\mathcal{P}) \cdot \log \operatorname{time}(\mathcal{P}))$, where the minimum is taken over all black pebblings \mathcal{P} of G_{π} .
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

[Razborov '18] introduced the concept of amortised clause space:

$$\mathrm{CS}^*(F \vdash \Box) := \min_{\pi:F \vdash \Box} \left(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi) \right)$$

Corollary

Tree-CS $(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2.$

- [Královič '04] $\operatorname{Rev}(G_{\pi}) \leq \min_{\mathcal{P}} (\operatorname{space}(\mathcal{P}) \cdot \log \operatorname{time}(\mathcal{P}))$, where the minimum is taken over all black pebblings \mathcal{P} of G_{π} .
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

[Razborov '18] introduced the concept of amortised clause space:

$$\mathrm{CS}^*(F \vdash \Box) := \min_{\pi:F \vdash \Box} \left(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi) \right)$$

Corollary

Tree-CS $(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2.$

- [Královič '04] $\operatorname{Rev}(G_{\pi}) \leq \min_{\mathcal{P}} (\operatorname{space}(\mathcal{P}) \cdot \log \operatorname{time}(\mathcal{P}))$, where the minimum is taken over all black pebblings \mathcal{P} of G_{π} .
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

How large can be the gap between CS and $\mathrm{Tree}\text{-}\mathrm{CS}$?

Pebbling Formulas (formulas over DAGs)

Clauses of Peb_{G} : u v w $(u \wedge v) \rightarrow x = \overline{u} \vee \overline{v} \vee x$ $(v \wedge w) \rightarrow y = \overline{v} \vee \overline{w} \vee y$ $(x \wedge y) \rightarrow z = \overline{x} \vee \overline{y} \vee z$ \overline{z}

- source vertices are true
- truth propagates upwards
- but the sink vertex is false

- source vertices are true
- truth propagates upwards
- but the sink vertex is false

- source vertices are true
- truth propagates upwards
- but the sink vertex is false

- source vertices are true
- truth propagates upwards
- but the sink vertex is false

XORification \oplus_2 *Make formulas slightly harder to refute*

- For a technical reason we need the XORification of our pebbling formulas.
- (XORification being a common technique used in proof complexity).
- Simple Idea: Substitute each variable x with $x_1 \oplus x_2$ and expand result into CNF.

XORification \oplus_2 *Make formulas slightly harder to refute*

- For a technical reason we need the XORification of our pebbling formulas.
- (XORification being a common technique used in proof complexity).
- Simple Idea: Substitute each variable x with $x_1 \oplus x_2$ and expand result into CNF.

Reversible Pebbling meets Tree-CS in the Special Case of Pebbling Formulas

Theorem

For all DAGs G with a unique sink:

 $\operatorname{Rev}(G) + 2 \leq \operatorname{Tree-CS}\left(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box\right) \leq 2 \cdot \operatorname{Rev}(G) + 2.$

Obtaining Space-Separations with Pebble games

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- \implies Construct a graph family with a gap between its black and reversible pebbling price

Example: Path graphs P_n of length n

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$

Obtaining Space-Separations with Pebble games

Non-constant black pebbling number and Black-Rev-separation:

Obtaining Space-Separations with Pebble games

The best known separation

For "slowly enough" growing space functions s(n) there is a family of pebbling formulas $(\operatorname{Peb}_{G_n}[\oplus_2])_{n=1}^{\infty}$ with $\Theta(n)$ variables such that

- $\operatorname{CS}(\operatorname{Peb}_{G_n}[\oplus_2] \vdash \Box) = \operatorname{O}(s(n))$
- Tree-CS(Peb_{G_n}[\oplus_2] $\vdash \Box$) = $\Omega(s(n) \log n)$.

¿Can we do any better?

The Tseitin formula case

The Tseitin formula case

Theorem

- For any connected graph G with n vertices and odd marking χ Tree-CS $(Ts(G, \chi) \vdash \Box) \leq CS(Ts(G, \chi) \vdash \Box) \cdot \log n + 2$
- There are graph families $\{G_n\}$ for which $\forall n$: Tree-CS $(Ts(G, \chi) \vdash \Box) = \Omega(CS(Ts(G, \chi) \vdash \Box) \cdot \log n)$

Let $\pi = (\mathbb{M}_0, \dots, \mathbb{M}_t)$ be a refutation of $\operatorname{Ts}(G, \chi)$ with $\operatorname{CS}(\pi) =: k$. We use π to give a strategy for Prover in the Prover-Delayer game for which he has to pay at most $k \log n$ points.

A partial assignment α of some of the variables in $Ts(G, \chi)$ is non-splitting if after applying α to the formula, the resulting graph still has an odd connected component of size at least $\frac{n}{2}$ and the rest are components are even.

There is a last step s in π for which there is a partial assignment α fulfilling:

- (i) α simultaneously satisfies all clauses in \mathbb{M}_s and
- (ii) α is non-splitting.

Let $\pi = (\mathbb{M}_0, \dots, \mathbb{M}_t)$ be a refutation of $\operatorname{Ts}(G, \chi)$ with $\operatorname{CS}(\pi) =: k$. We use π to give a strategy for Prover in the Prover-Delayer game for which he has to pay at most $k \log n$ points.

A partial assignment α of some of the variables in $Ts(G, \chi)$ is non-splitting if after applying α to the formula, the resulting graph still has an odd connected component of size at least $\frac{n}{2}$ and the rest are components are even.

There is a last step s in π for which there is a partial assignment α fulfilling:

- (i) α simultaneously satisfies all clauses in \mathbb{M}_s and
- (ii) α is non-splitting.

Let $\pi = (\mathbb{M}_0, \dots, \mathbb{M}_t)$ be a refutation of $\operatorname{Ts}(G, \chi)$ with $\operatorname{CS}(\pi) =: k$. We use π to give a strategy for Prover in the Prover-Delayer game for which he has to pay at most $k \log n$ points.

A partial assignment α of some of the variables in $Ts(G, \chi)$ is non-splitting if after applying α to the formula, the resulting graph still has an odd connected component of size at least $\frac{n}{2}$ and the rest are components are even.

There is a last step s in π for which there is a partial assignment α fulfilling:

- (i) α simultaneously satisfies all clauses in \mathbb{M}_s and
- (ii) α is non-splitting.

Let $\pi = (\mathbb{M}_0, \dots, \mathbb{M}_t)$ be a refutation of $\operatorname{Ts}(G, \chi)$ with $\operatorname{CS}(\pi) =: k$. We use π to give a strategy for Prover in the Prover-Delayer game for which he has to pay at most $k \log n$ points.

A partial assignment α of some of the variables in $Ts(G, \chi)$ is non-splitting if after applying α to the formula, the resulting graph still has an odd connected component of size at least $\frac{n}{2}$ and the rest are components are even.

There is a last step s in π for which there is a partial assignment α fulfilling:

- (i) α simultaneously satisfies all clauses in \mathbb{M}_s and
- (ii) α is non-splitting.

A partial assignment α of some of the variables in $Ts(G, \chi)$ is non-splitting if after applying α to the formula, the resulting graph still has an odd connected component of size at least $\frac{n}{2}$ and the rest are components are even.

There is a last step in π for which there is a partial assignment α fulfilling:

- (i) α simultaneously satisfies all clauses in \mathbb{M}_s and
- (ii) α is non-splitting.

The only new clause in configuration \mathbb{M}_{s+1} must be an axiom of $\mathrm{Ts}(G,\chi)$

There is a way to query variables at stage s + 1 paying only k points to Delayer and splitting G or falsifying the axiom. 33/34

A partial assignment α of some of the variables in $Ts(G, \chi)$ is non-splitting if after applying α to the formula, the resulting graph still has an odd connected component of size at least $\frac{n}{2}$ and the rest are components are even.

There is a last step in π for which there is a partial assignment α fulfilling:

- (i) α simultaneously satisfies all clauses in \mathbb{M}_s and
- (ii) α is non-splitting.

The only new clause in configuration \mathbb{M}_{s+1} must be an axiom of $\mathrm{Ts}(G,\chi)$

There is a way to query variables at stage s + 1 paying only k points to Delayer and splitting G or falsifying the axiom. ^{33/34}

Take-Home Message Tree-CS and CS are different measures but "not too far" from one another

- Tree-CS (Peb_G[\oplus_2] $\vdash \Box$) $\simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between Rev(G) and Black(G)
- Tree-CS $(F \vdash \Box) \lesssim CS^*(F \vdash \Box)$ for general F
- Tree-CS $(F \vdash \Box) \lesssim VS^*(F \vdash \Box)$ for general F

Take-Home Message $\rm Tree-CS$ and $\rm CS$ are different measures but "not too far" from one another

- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) \simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between Rev(G) and Black(G) (*)
- Tree-CS $(F \vdash \Box) \lesssim CS^*(F \vdash \Box)$ for general F (*)
- Tree-CS $(F \vdash \Box) \lesssim VS^*(F \vdash \Box)$ for general F (*)

(*) Some open questions hidden here. We've solved these for Tseitin formulas.

Take-Home Message ${\rm Tree-CS}$ and ${\rm CS}$ are different measures but "not too far" from one another

- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) \simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between Rev(G) and Black(G) (*)
- Tree-CS $(F \vdash \Box) \lesssim CS^*(F \vdash \Box)$ for general F (*)
- Tree-CS $(F \vdash \Box) \lesssim VS^*(F \vdash \Box)$ for general F (*)

(*) Some open questions hidden here. We've solved these for Tseitin formulas.

Thank you for your attention!