
Reversible Pebble Games and the Relation
Between Tree-Like and General Resolution Space

Jacobo Torán and Florian Wörz
Universität Ulm

Resolution

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

• only one derivation rule:

B ∨ x C ∨ x
B ∨ C

• Length of π = # of clauses in π

• Clause Space of π = max # of
clauses in memory simultaneously
during π

• Variable Space of π = max # of
variables in memory simultaneously
during π

• Tree-Res, if refutation DAG is a
tree (→ maybe need to rederive
clauses) 1/34

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be
rederived each time.

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w} {w}

{x}

{x,¬w} {w}

{z}

{z,¬w} {w}

{x}

{x,¬w} {w}

2/34

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be
rederived each time.

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w} {w}

{x}

{x,¬w} {w}

{z}

{z,¬w} {w}

{x}

{x,¬w} {w}

2/34

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be
rederived each time.

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w} {w}

{x}

{x,¬w} {w}

{z}

{z,¬w} {w}

{x}

{x,¬w} {w}

2/34

There is an almost optimal separation between general and tree-like
resolution w. r. t. length:
∃ a family (Fn)n∈N of unsatsfiable formulas in O(n) variables with

• resolution refutations of length L (linear in n),

• but any tree-like resolution refutation requires
length exp

(
Ω(L

logL)
)
.

Matching upper bound of exp
(
O
(L log logL

logL

))
for tree-like resolution

length of any formula that can be refuted in length L by general
resolution.
[Ben-Sasson, Impagliazzo, Wigderson 04]

¿What about space?

3/34

Configuration-style Resolution

A resolution refutation of an unsatisfiable CNF formula F is an ordered
sequence of memory configurations (sets of clauses)

π = (M0, . . . ,Mt),

s. th. M0 = ∅, � ∈Mt and for each i ∈ [t], the configuration Mi is
obtained from Mi−1 by applying exactly one of the following rules:

• Axiom Download: Mi = Mi−1 ∪ {C} for some axiom C ∈ F .
• Erasure: Mi = Mi−1 \ {C} for some C ∈Mi−1.
• Inference:

Mi = Mi−1 ∪ {D}
for some resolvent D inferred from C1, C2 ∈Mi by the resolution
rule.

The proof π is said to be tree-like, if we replace the inference rule with
the following rule [Esteban T. 01]:

Tree-like Inference: Mi =
(
Mi−1 ∪ {D}

)
\ {C1, C2} for some resolvent

D inferred from C1, C2 ∈Mi, ie we delete both parent
clauses immediately. 4/34

Configuration-style Resolution

A resolution refutation of an unsatisfiable CNF formula F is an ordered
sequence of memory configurations (sets of clauses)

π = (M0, . . . ,Mt),

s. th. M0 = ∅, � ∈Mt and for each i ∈ [t], the configuration Mi is
obtained from Mi−1 by applying exactly one of the following rules:

• Axiom Download: Mi = Mi−1 ∪ {C} for some axiom C ∈ F .
• Erasure: Mi = Mi−1 \ {C} for some C ∈Mi−1.
• Inference:

Mi = Mi−1 ∪ {D}
for some resolvent D inferred from C1, C2 ∈Mi by the resolution
rule.

The proof π is said to be tree-like, if we replace the inference rule with
the following rule [Esteban T. 01]:

Tree-like Inference: Mi =
(
Mi−1 ∪ {D}

)
\ {C1, C2} for some resolvent

D inferred from C1, C2 ∈Mi, ie we delete both parent
clauses immediately. 4/34

Complexity Measures for Resolution

For a memory configuration M:

• CS(M) := |M|, i. e., number of clauses in M,

For a refutation π = (M0, . . . ,Mt):

• CS(π) := maxi∈[t] CS(Mi), i. e., max. # of clauses in a config,

• L(π) := t.

For a complexity measure µ and a formula F

µ(F `�) := min
π:F `�

µ(π).

Prefix “Tree-” indicated tree-like resolution.

5/34

Games as tools

6/34

The Prover-Delayer Game

[Pudlák, Impagliazzo ’00]
Given: An unsatisfiable CNF formula F
Two players take rounds until a clause in F is falsified

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer
in / chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

Score of Delayer = # of ∗’s
7/34

The Prover-Delayer Game
A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula.
PD(F) := max pts. of Delayer on F against optimal strategy of Prover.

Theorem ([Esteban, T. ’03])

Let F be an unsatisfiable CNF formula. Then

Tree-CS(F `�) = PD(F) + 2.

8/34

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/34

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

I

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/34

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

II

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/34

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

III

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/34

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

III

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/34

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

III

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/34

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/34

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/34

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/34

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/34

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/34

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point:

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: I

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: II

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/34

Complexity Measures for the Pebble Games

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P

)

Rev(G) := min
rev. pebblings P

(
max # of pebbles used at any point in P

)
Plethora of connections to resolution i. a.:
CS(π) = minπ Black(Gπ) π : F `� [Esteban, T. ’01].

We will show:
Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2.
The minimum is over all refutation, not only tree-like ones.

11/34

Complexity Measures for the Pebble Games

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P

)

Rev(G) := min
rev. pebblings P

(
max # of pebbles used at any point in P

)
Plethora of connections to resolution i. a.:
CS(π) = minπ Black(Gπ) π : F `� [Esteban, T. ’01].

We will show:
Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2.
The minimum is over all refutation, not only tree-like ones.

11/34

Yet another game

12/34

Rev(G) is hard to compute
Raz–McKenzie Game to the help [Raz, McKenzie ’97]

Given: A single sink DAG G

Two players take rounds... until Game Over..., i. e., when we have:

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

13/34

Until

0 1 1 · · · 1

0

Either a red source or red vertex with all predecessors blue.

R-Mc(G) := smallest r s. th. Pebbler wins in ≤ r rounds
regardless of how Colourer plays

14/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Rev(G) = R-Mc(G)

Theorem ([Chan ’13])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

15/34

Upper bounds for Tree-CS

16/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

17/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

17/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

17/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

17/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

17/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

17/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

17/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

17/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

17/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

17/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

17/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

18/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

18/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

18/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

18/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

18/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

18/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

18/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

18/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2
Proof sketch:

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

18/34

Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

On the other hand:

minπ:F `� Rev(Gπ) ≤ Tree-CS(F `�)(dlog ne+ 1)

and there are formulas for which this bound is tight.

19/34

An upper bound for Tree-CS in terms of CS∗

[Razborov ’18] introduced the concept of amortised clause space:

CS∗(F `�) := min
π:F `�

(
CS(π) · log L(π)

)
Corollary

Tree-CS(F `�) ≤ CS∗(F `�) + 2.

Proof.

• [Královič ’04] Rev(Gπ) ≤ minP
(
space(P) · log time(P)

)
, where the

minimum is taken over all black pebblings P of Gπ.

• Every black pebbling P of Gπ defines a configurational refutation
of F with clause space equal to space(P) and length time(P).

20/34

An upper bound for Tree-CS in terms of CS∗

[Razborov ’18] introduced the concept of amortised clause space:

CS∗(F `�) := min
π:F `�

(
CS(π) · log L(π)

)
Corollary

Tree-CS(F `�) ≤ CS∗(F `�) + 2.

Proof.

• [Královič ’04] Rev(Gπ) ≤ minP
(
space(P) · log time(P)

)
, where the

minimum is taken over all black pebblings P of Gπ.

• Every black pebbling P of Gπ defines a configurational refutation
of F with clause space equal to space(P) and length time(P).

20/34

An upper bound for Tree-CS in terms of CS∗

[Razborov ’18] introduced the concept of amortised clause space:

CS∗(F `�) := min
π:F `�

(
CS(π) · log L(π)

)
Corollary

Tree-CS(F `�) ≤ CS∗(F `�) + 2.

Proof.

• [Královič ’04] Rev(Gπ) ≤ minP
(
space(P) · log time(P)

)
, where the

minimum is taken over all black pebblings P of Gπ.

• Every black pebbling P of Gπ defines a configurational refutation
of F with clause space equal to space(P) and length time(P).

20/34

An upper bound for Tree-CS in terms of CS∗

[Razborov ’18] introduced the concept of amortised clause space:

CS∗(F `�) := min
π:F `�

(
CS(π) · log L(π)

)
Corollary

Tree-CS(F `�) ≤ CS∗(F `�) + 2.

Proof.

• [Královič ’04] Rev(Gπ) ≤ minP
(
space(P) · log time(P)

)
, where the

minimum is taken over all black pebblings P of Gπ.

• Every black pebbling P of Gπ defines a configurational refutation
of F with clause space equal to space(P) and length time(P).

20/34

How large can be the gap between CS and Tree-CS?

21/34

Pebbling Formulas (formulas over DAGs)

22/34

Pebbling Formula

Clauses of PebG:

u
v
w
(u ∧ v)→ x = u ∨ v ∨ x
(v ∧ w)→ y = v ∨ w ∨ y
(x ∧ y)→ z = x ∨ y ∨ z
z

u v w

x y

z

Encode the rules of the black pebble game in a formula (i. e., formula is
defined over an underlying DAG):

• source vertices are true

• truth propagates upwards

• but the sink vertex is false

23/34

Pebbling Formula

Clauses of PebG:

u
v
w
(u ∧ v)→ x = u ∨ v ∨ x
(v ∧ w)→ y = v ∨ w ∨ y
(x ∧ y)→ z = x ∨ y ∨ z
z

u v w

x y

z

Encode the rules of the black pebble game in a formula (i. e., formula is
defined over an underlying DAG):

• source vertices are true

• truth propagates upwards

• but the sink vertex is false

23/34

Pebbling Formula

Clauses of PebG:

u
v
w
(u ∧ v)→ x = u ∨ v ∨ x
(v ∧ w)→ y = v ∨ w ∨ y
(x ∧ y)→ z = x ∨ y ∨ z
z

u v w

x y

z

Encode the rules of the black pebble game in a formula (i. e., formula is
defined over an underlying DAG):

• source vertices are true

• truth propagates upwards

• but the sink vertex is false

23/34

Pebbling Formula

Clauses of PebG:

u
v
w
(u ∧ v)→ x = u ∨ v ∨ x
(v ∧ w)→ y = v ∨ w ∨ y
(x ∧ y)→ z = x ∨ y ∨ z
z

u v w

x y

z

Encode the rules of the black pebble game in a formula (i. e., formula is
defined over an underlying DAG):

• source vertices are true

• truth propagates upwards

• but the sink vertex is false

23/34

XORification ⊕2
Make formulas slightly harder to refute

• For a technical reason we need the XORification of our pebbling
formulas.

• (XORification being a common technique used in proof complexity).

• Simple Idea: Substitute each variable x with x1 ⊕ x2 and expand
result into CNF.

24/34

XORification ⊕2
Make formulas slightly harder to refute

• For a technical reason we need the XORification of our pebbling
formulas.

• (XORification being a common technique used in proof complexity).

• Simple Idea: Substitute each variable x with x1 ⊕ x2 and expand
result into CNF.

24/34

Reversible Pebbling meets Tree-CS
in the Special Case of Pebbling Formulas

25/34

Theorem

For all DAGs G with a unique sink:

Rev(G) + 2 ≤ Tree-CS
(
PebG[⊕2] `�

)
≤ 2 · Rev(G) + 2.

26/34

Obtaining Space-Separations with Pebble games

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

27/34

Obtaining Space-Separations with Pebble games

Non-constant black pebbling number and Black-Rev-separation:

G(c = 3, k)

28/34

Obtaining Space-Separations with Pebble games

The best known separation

For “slowly enough” growing space functions s(n) there is a family of
pebbling formulas

(
PebGn [⊕2]

)∞
n=1

with Θ(n) variables such that

• CS(PebGn [⊕2] `�) = O
(
s(n)

)
• Tree-CS(PebGn [⊕2] `�) = Ω

(
s(n) log n

)
.

¿Can we do any better?

29/34

The Tseitin formula case

30/34

The Tseitin formula case

Theorem

• For any connected graph G with n vertices and odd marking χ
Tree-CS

(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· log n+ 2

• There are graph families {Gn} for which ∀n :
Tree-CS

(
Ts(G,χ) `�

)
= Ω(CS

(
Ts(G,χ) `�

)
· log n)

31/34

Tree-CS
(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· log n+ 2

Proof sketch:

Let π = (M0, . . . ,Mt) be a refutation of Ts(G,χ) with CS(π) =: k.
We use π to give a strategy for Prover in the Prover-Delayer game for
which he has to pay at most k log n points.

A partial assignment α of some of the variables in Ts(G,χ) is
non-splitting if after applying α to the formula, the resulting graph still
has an odd connected component of size at least n

2 and the rest are
components are even.

There is a last step s in π for which there is a partial assignment α
fulfilling:

(i) α simultaneously satisfies all clauses in Ms and

(ii) α is non-splitting.

The only new clause in configuration Ms+1 must be an axiom
of Ts(G,χ) 32/34

Tree-CS
(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· log n+ 2

Proof sketch:

Let π = (M0, . . . ,Mt) be a refutation of Ts(G,χ) with CS(π) =: k.
We use π to give a strategy for Prover in the Prover-Delayer game for
which he has to pay at most k log n points.

A partial assignment α of some of the variables in Ts(G,χ) is
non-splitting if after applying α to the formula, the resulting graph still
has an odd connected component of size at least n

2 and the rest are
components are even.

There is a last step s in π for which there is a partial assignment α
fulfilling:

(i) α simultaneously satisfies all clauses in Ms and

(ii) α is non-splitting.

The only new clause in configuration Ms+1 must be an axiom
of Ts(G,χ) 32/34

Tree-CS
(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· log n+ 2

Proof sketch:

Let π = (M0, . . . ,Mt) be a refutation of Ts(G,χ) with CS(π) =: k.
We use π to give a strategy for Prover in the Prover-Delayer game for
which he has to pay at most k log n points.

A partial assignment α of some of the variables in Ts(G,χ) is
non-splitting if after applying α to the formula, the resulting graph still
has an odd connected component of size at least n

2 and the rest are
components are even.

There is a last step s in π for which there is a partial assignment α
fulfilling:

(i) α simultaneously satisfies all clauses in Ms and

(ii) α is non-splitting.

The only new clause in configuration Ms+1 must be an axiom
of Ts(G,χ) 32/34

Tree-CS
(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· log n+ 2

Proof sketch:

Let π = (M0, . . . ,Mt) be a refutation of Ts(G,χ) with CS(π) =: k.
We use π to give a strategy for Prover in the Prover-Delayer game for
which he has to pay at most k log n points.

A partial assignment α of some of the variables in Ts(G,χ) is
non-splitting if after applying α to the formula, the resulting graph still
has an odd connected component of size at least n

2 and the rest are
components are even.

There is a last step s in π for which there is a partial assignment α
fulfilling:

(i) α simultaneously satisfies all clauses in Ms and

(ii) α is non-splitting.

The only new clause in configuration Ms+1 must be an axiom
of Ts(G,χ) 32/34

Tree-CS
(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· log n+ 2

Proof sketch:

A partial assignment α of some of the variables in Ts(G,χ) is
non-splitting if after applying α to the formula, the resulting graph still
has an odd connected component of size at least n

2 and the rest are
components are even.

There is a last step in π for which there is a partial assignment α
fulfilling:

(i) α simultaneously satisfies all clauses in Ms and

(ii) α is non-splitting.

The only new clause in configuration Ms+1 must be an axiom
of Ts(G,χ)

There is a way to query variables at stage s+ 1 paying only k points to
Delayer and splitting G or falsifying the axiom. 33/34

Tree-CS
(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· log n+ 2

Proof sketch:

A partial assignment α of some of the variables in Ts(G,χ) is
non-splitting if after applying α to the formula, the resulting graph still
has an odd connected component of size at least n

2 and the rest are
components are even.

There is a last step in π for which there is a partial assignment α
fulfilling:

(i) α simultaneously satisfies all clauses in Ms and

(ii) α is non-splitting.

The only new clause in configuration Ms+1 must be an axiom
of Ts(G,χ)

There is a way to query variables at stage s+ 1 paying only k points to
Delayer and splitting G or falsifying the axiom. 33/34

Take-Home Message
Tree-CS and CS are different measures but “not too far” from one
another

• Tree-CS
(
PebG[⊕2] `�

)
' Rev(G)

• Separations between Tree-CS and CS by graphs G exhibiting
separation between Rev(G) and Black(G)

(*)

• Tree-CS(F `�) . CS∗(F `�) for general F

(*)

• Tree-CS(F `�) . VS∗(F `�) for general F

(*)

(*) Some open questions hidden here. We’ve solved these for Tseitin formulas.

Thank you for your attention!

34/34

Take-Home Message
Tree-CS and CS are different measures but “not too far” from one
another

• Tree-CS
(
PebG[⊕2] `�

)
' Rev(G)

• Separations between Tree-CS and CS by graphs G exhibiting
separation between Rev(G) and Black(G) (*)

• Tree-CS(F `�) . CS∗(F `�) for general F (*)

• Tree-CS(F `�) . VS∗(F `�) for general F (*)

(*) Some open questions hidden here. We’ve solved these for Tseitin formulas.

Thank you for your attention!

34/34

Take-Home Message
Tree-CS and CS are different measures but “not too far” from one
another

• Tree-CS
(
PebG[⊕2] `�

)
' Rev(G)

• Separations between Tree-CS and CS by graphs G exhibiting
separation between Rev(G) and Black(G) (*)

• Tree-CS(F `�) . CS∗(F `�) for general F (*)

• Tree-CS(F `�) . VS∗(F `�) for general F (*)

(*) Some open questions hidden here. We’ve solved these for Tseitin formulas.

Thank you for your attention!

34/34

	Games as tools
	Yet another game
	Upper bounds for Tree-CS
	Pebbling Formulas (formulas over DAGs)
	Reversible Pebbling meets Tree-CS in the Special Case of Pebbling Formulas
	The Tseitin formula case

