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A proof theoretic version of other “uniform-nonuniform” correspondences. E.g.,
the bottom dashed arrow, for P, is the correspondence between P machines
and polynomial-size circuits.
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Theories and Proof Systems

Let us illustrate this relation on the triplet extended Frege, S1
2, and class P.

The vocabulary for S1
2 is LS2 = [0,S,+, ·, #, |x|,

⌈
1
2
x
⌉
; =,≤]. The axioms of S1

2

are standard axioms of these operations and Σb
1-IND axiom, which says that

(ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1))) → ∀z ϕ(|z|).

Let ϕ(x) be a Σb
0. Then we can write, in a natural way, a propositional formulaJϕKn,α on the variables x1, …, xn saying that A is true (α is an assignment to all

other free variables).
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Theories and Proof Systems

Let us illustrate this relation on the triplet extended Frege, S1
2, and class P.

So it is possible to prove the following theorem.

THEOREM

If S1
2 ⊢ ∀x ϕ(x), then JϕKn,α has a polynomial size proof in extended Frege.

Moreover, S1
2 proves

the reflection principle for extended Frege.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 4



Theories and Proof Systems

Let us illustrate this relation on the triplet extended Frege, S1
2, and class P.

So it is possible to prove the following theorem.

THEOREM

If S1
2 ⊢ ∀x ϕ(x), then JϕKn,α has a polynomial size proof in extended Frege. Moreover, S1

2 proves
the reflection principle for extended Frege.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 4



The Bounded Arithmetic Correspondence

Proof systems

Formal theories

Complexity classes

instantiation
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Theories and Complexity Classes

DEFINITION

A function f : N → N is Σb
1-definable by a theory R iff there is a Σb

1 formula A(x, y) such that
▶ R ⊢ ∀x ∃y ≤ t A(x, y) for some term t,
▶ R ⊢ ∀x, y1, y2 (A(x, y1) ∧ A(x, y2) → y1 = y2), and
▶ A defines the graph of f.

THEOREM

S1
2 can Σb

1-define any polynomial time function. Moreover, if f is Σb
1-definable by S1

2, then f is
polynomial time computable.
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The Bounded Arithmetic Correspondence

Formal Propositional Complexity
Theories Proof Systems Class References

PV, S1
2 eF P [Coo75, Bus86]

PSA, U1
2 G PSPACE [Dow78, Bus86]

Ti
2, Si+1

2 Gi, G∗
i+1 PΣ

p
i [KP90, KT92, Bus86]

VNC0 F ALogTime [CM05, CN10, Ara00]
VL GL∗ L [Per05, CN10]
VNL GNL∗ NL [Per09, CN10]
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Previous Works

Proof systems corresponding to L and NL have been considered in the past:
I Perron gives systems based on logical characterisations of L and NL,

namely CNF(2) and ΣKrom respectively. [Per05, Per09]
I Cook gives a game-theoretic system for L based on branching programs.

(unpublished)

Can we achieve a similar correspondence for (N)L through a natural
nonuniform model for (N)L, like for ALogTime and P?
I Inspired by Cook’s approach, we build a bona fide inference system based

on branching programs.
I In particular, we treat decision trees, the tree-like branching programs, and

recover dag-like ones by extension.
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Branching Programs

A branching program (BP) is a dag where:
I Each node is labelled by a propositional variable, 0 or 1;
I Each propositional node has two outgoing edges, labelled 0 and 1

respectively.

w

x x

y y 1

0 z 1

0 1

Key
−→ : 1

99K : 0

Can also consider nondeterministic branching programs (NBPs) and tree-like
ones, decision trees (DTs) or both (NDTs).
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A proof system for tree-like programs

Decision Tree (DT) formulas are built using a single “case” connective for
literals:

ApB = if p then B else A

Nondeterministic decision trees (NDTs) are obtained by allowing formulas to
use disjunction, ∨.
The system LDT is a sequent calculus with standard structural rules and the
following logical rules for DT formulas:

Γ,A→ p,∆ Γ, p,B→∆
dec-l

Γ,ApB→∆

Γ→A, p,∆ Γ, p→B,∆
dec-r

Γ→ApB,∆

The system LNDT extends LDT by standard rules for ∨:

Γ,A→∆ Γ,B→∆
∨-l

Γ,A ∨ B→∆

Γ→A,B,∆
∨-r

Γ→A ∨ B,∆
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L(N)DT Proofs

Tree-1-LK

Tree-LDT

Tree-2-LK←→Tree-LNDT←→LDT←→1-LK

2-LK←→LNDT

qp

Key
→ : p-simulates
→
qp

: qp-simulates

99K : separated
orange : our results
gray : immediate

RESULTS | Sam Buss, Anupam Das, Alexander Knop 11



eL(N)DT proofs

I Dags cannot be expressed naturally as formulas, which are just labelled
trees.

I They are typically handled in proof complexity via extension variables,
which allow us to encode local properties of a graph. (The very same idea
allows extended Frege to reason about Boolean circuits instead of just
formulas.)

I We allow extension variables e1, e2, etc. to be formulas, but importantly
may not occur as decision literals.

I Intuition: the variables ei are used to name subprograms, but querying
whole subprograms amounts to the power of Boolean circuits.

A proof of eLDT or eLNDT is just like that of LDT or LNDT, but comes
equipped with a set of axioms of the form en ↔ An(ei)i<n. The conclusion of
such a proof must not contain extension variables.
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Example

w

x x

y y 1

0 z 1

0 1

e00 ↔ e10we11
e10 ↔ e20xe21
e11 ↔ e21x1
e20 ↔ 0ye31
e21 ↔ e31y1
e31 ↔ 0z1

I Here eij names the jth node, left-right, of the ith row, bottom-up.
I The entire program is now expressed by e00.
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The problem of equivalence

I One technicality, arising from the fact that a single branching program
may be written in several ways with extension, is to prove the equivalence
of isomorphic branching programs.

I Works such as [Jeř04] propose to simply include axioms/rules for such
situations, but this is undesirable as isomorphism is not known to be in L.

I Instead, we enforce that this equivalence must be carried out explicitly in
proofs.

LEMMA

The equivalence of isomorphic (N)BPs has polynomial-size proofs in eL(N)DT.

NB: these proofs are crucially dag-like!
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Results

Frege←→LK←→Tree-LK

eLDT

eLNDT

eLK←→Tree-eLK

qp

Key
→ : polynomially-simulates
→
qp

: quasipolynomially-simulates

99K : exponentially separated from
orange : our results
gray : immediate

I Results follow by direct simulations, under equivalence of isomorphic
(N)BPs.

I We rely on Buss’ qp-size formulas for st-connectivity and their small proofs
in LK to evaluate NBPs and prove truth conditions. [Bus15].
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in LK to evaluate NBPs and prove truth conditions. [Bus15].
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VL and VNL

These theories are two-sorted theories.

The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈]. The axioms for the first-order objects are
standards. In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).
I b ∈ A →

(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VL also has an axiom saying that if each vertex in a directed graph has out
degree 1, then there is a path of length ℓ for any ℓ.

(∀x≤a)(∃y≤a)A(x, y)→
(∃X4⟨b, a⟩)[X(0, 0) ∧

(∀z≤b)(∀y≤a)(X(z, y) → (∀y′<y)¬X(z, y′)) ∧
(∀z<b)(∃y≤a)(∃y′≤a)(X(z, y) ∧ X(z+1, y′) ∧ A(y, y′))]
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VNL has an axiom saying that there is a function that gives distance from any
fixed vertex.
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Cook-style Translation

Let ϕ be a Σb
0 formula with one free second-order variable X.

Let α be an
assignment to all the first-order variables of ϕ. Then JϕKn,α is a propositional
formula on the variables x1, …, xn saying that A is true under the assignment α
and for X such that X(i) iff xi is true.

THEOREM

▶ If VL ⊢ ∃X ϕ(X), then there is a eLDT proof of JϕKn,α.
▶ If VNL ⊢ ∃X ϕ(X), then there is a eLNDT proof of JϕKn,α.
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Cook-style Translation

THEOREM

Let ϕ be a Σb
0 formula.

▶ If VL ⊢ ∃X ϕ(X), then there is a eLDT proof of JϕKn,α.
▶ If VNL ⊢ ∃X ϕ(X), then there is a eLNDT proof of JϕKn,α.

The idea of the proof is to use structural induction over the proofs in VL and
VNL.

In other words, we are going to try to prove that

Γ′′→∆′′ Γ→∆

Γ′→∆′

in V(N)L, then JΓ′′Kn,α→ J∆′′Kn,α JΓKn,α→ J∆Kn,αJΓ′Kn,α→ J∆′Kn,α

in eL(N)DT.
The problem of this approach is that the sequents my have Σb

1 formulas since
the axiomatizations of VL and VNL have Σb

1 axioms.
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Cook-style Translation

We create a theory T such that any Σb
0 formula provable in VL (VNL) is

provable in T; but T has a Σb
0 axiomatization.

To prove this we introduced predicate symbols instead of second-order objects
guaranteed by the axioms of VL and VNL. It is clear that they are computable
by eLDT and eLNDT, respectively. So we can extend the transformation to the
formulas in T.

In case of VL this actually works, but in case of VNL there is a problem...
Negation of the reachability has no clean representation as a eLNDT. To avoid
this, we need to prove some analogue of Immerman–Szelepcsényi’s theorem.
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Cook-style Translation

Thank you!
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