
Banff 2020

Proof complexity of systems of
(non-deterministic)
decision trees and branching programs

Authors:
Sam Buss, Anupam Das, Alexander Knop

Institute:
UC San Diego

The Bounded Arithmetic Correspondence

Proof systems

Formal theories

Complexity classes

instantiation

reflection

witnessing

definability

evaluation/instantiation

A proof theoretic version of other “uniform-nonuniform” correspondences. E.g.,
the bottom dashed arrow, for P, is the correspondence between P machines
and polynomial-size circuits.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 2

The Bounded Arithmetic Correspondence

Proof systems

Formal theories

Complexity classes

instantiation

reflection

witnessing

definability

evaluation/instantiation

A proof theoretic version of other “uniform-nonuniform” correspondences.

E.g.,
the bottom dashed arrow, for P, is the correspondence between P machines
and polynomial-size circuits.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 2

The Bounded Arithmetic Correspondence

Proof systems

Formal theories

Complexity classes

instantiation

reflection

witnessing

definability

evaluation/instantiation

A proof theoretic version of other “uniform-nonuniform” correspondences. E.g.,
the bottom dashed arrow, for P, is the correspondence between P machines
and polynomial-size circuits.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 2

Theories and Proof Systems

Let us illustrate this relation on the triplet extended Frege, S1
2, and class P.

The vocabulary for S1
2 is LS2 = [0,S,+, ·, #, |x|,

⌈
1
2
x
⌉
; =,≤]. The axioms of S1

2

are standard axioms of these operations and Σb
1-IND axiom, which says that

(ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1))) → ∀z ϕ(|z|).

Let ϕ(x) be a Σb
0. Then we can write, in a natural way, a propositional formulaJϕKn,α on the variables x1, …, xn saying that A is true (α is an assignment to all

other free variables).

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 3

Theories and Proof Systems

Let us illustrate this relation on the triplet extended Frege, S1
2, and class P.

The vocabulary for S1
2 is LS2 = [0,S,+, ·, #, |x|,

⌈
1
2
x
⌉
; =,≤].

The axioms of S1
2

are standard axioms of these operations and Σb
1-IND axiom, which says that

(ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1))) → ∀z ϕ(|z|).

Let ϕ(x) be a Σb
0. Then we can write, in a natural way, a propositional formulaJϕKn,α on the variables x1, …, xn saying that A is true (α is an assignment to all

other free variables).

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 3

Theories and Proof Systems

Let us illustrate this relation on the triplet extended Frege, S1
2, and class P.

The vocabulary for S1
2 is LS2 = [0,S,+, ·, #, |x|,

⌈
1
2
x
⌉
; =,≤]. The axioms of S1

2

are standard axioms of these operations and Σb
1-IND axiom, which says that

(ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1))) → ∀z ϕ(|z|).

Let ϕ(x) be a Σb
0. Then we can write, in a natural way, a propositional formulaJϕKn,α on the variables x1, …, xn saying that A is true (α is an assignment to all

other free variables).

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 3

Theories and Proof Systems

Let us illustrate this relation on the triplet extended Frege, S1
2, and class P.

The vocabulary for S1
2 is LS2 = [0,S,+, ·, #, |x|,

⌈
1
2
x
⌉
; =,≤]. The axioms of S1

2

are standard axioms of these operations and Σb
1-IND axiom, which says that

(ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1))) → ∀z ϕ(|z|).

Let ϕ(x) be a Σb
0. Then we can write, in a natural way, a propositional formulaJϕKn,α on the variables x1, …, xn saying that A is true (α is an assignment to all

other free variables).

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 3

Theories and Proof Systems

Let us illustrate this relation on the triplet extended Frege, S1
2, and class P.

The vocabulary for S1
2 is LS2 = [0,S,+, ·, #, |x|,

⌈
1
2
x
⌉
; =,≤]. The axioms of S1

2

are standard axioms of these operations and Σb
1-IND axiom, which says that

(ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1))) → ∀z ϕ(|z|).

Let ϕ(x) be a Σb
0. Then we can write, in a natural way, a propositional formulaJϕKn,α on the variables x1, …, xn saying that A is true (α is an assignment to all

other free variables).

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 3

Theories and Proof Systems

Let us illustrate this relation on the triplet extended Frege, S1
2, and class P.

So it is possible to prove the following theorem.

THEOREM

If S1
2 ⊢ ∀x ϕ(x), then JϕKn,α has a polynomial size proof in extended Frege.

Moreover, S1
2 proves

the reflection principle for extended Frege.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 4

Theories and Proof Systems

Let us illustrate this relation on the triplet extended Frege, S1
2, and class P.

So it is possible to prove the following theorem.

THEOREM

If S1
2 ⊢ ∀x ϕ(x), then JϕKn,α has a polynomial size proof in extended Frege. Moreover, S1

2 proves
the reflection principle for extended Frege.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 4

The Bounded Arithmetic Correspondence

Proof systems

Formal theories

Complexity classes

instantiation

reflection

witnessing

definability

evaluation/instantiation

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 5

Theories and Complexity Classes

DEFINITION

A function f : N → N is Σb
1-definable by a theory R iff there is a Σb

1 formula A(x, y) such that
▶ R ⊢ ∀x ∃y ≤ t A(x, y) for some term t,
▶ R ⊢ ∀x, y1, y2 (A(x, y1) ∧ A(x, y2) → y1 = y2), and
▶ A defines the graph of f.

THEOREM

S1
2 can Σb

1-define any polynomial time function. Moreover, if f is Σb
1-definable by S1

2, then f is
polynomial time computable.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 6

Theories and Complexity Classes

DEFINITION

A function f : N → N is Σb
1-definable by a theory R iff there is a Σb

1 formula A(x, y) such that
▶ R ⊢ ∀x ∃y ≤ t A(x, y) for some term t,
▶ R ⊢ ∀x, y1, y2 (A(x, y1) ∧ A(x, y2) → y1 = y2), and
▶ A defines the graph of f.

THEOREM

S1
2 can Σb

1-define any polynomial time function.

Moreover, if f is Σb
1-definable by S1

2, then f is
polynomial time computable.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 6

Theories and Complexity Classes

DEFINITION

A function f : N → N is Σb
1-definable by a theory R iff there is a Σb

1 formula A(x, y) such that
▶ R ⊢ ∀x ∃y ≤ t A(x, y) for some term t,
▶ R ⊢ ∀x, y1, y2 (A(x, y1) ∧ A(x, y2) → y1 = y2), and
▶ A defines the graph of f.

THEOREM

S1
2 can Σb

1-define any polynomial time function. Moreover, if f is Σb
1-definable by S1

2, then f is
polynomial time computable.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 6

The Bounded Arithmetic Correspondence

Formal Propositional Complexity
Theories Proof Systems Class References

PV, S1
2 eF P [Coo75, Bus86]

PSA, U1
2 G PSPACE [Dow78, Bus86]

Ti
2, Si+1

2 Gi, G∗
i+1 PΣ

p
i [KP90, KT92, Bus86]

VNC0 F ALogTime [CM05, CN10, Ara00]
VL GL∗ L [Per05, CN10]
VNL GNL∗ NL [Per09, CN10]

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 7

Previous Works

Proof systems corresponding to L and NL have been considered in the past:
I Perron gives systems based on logical characterisations of L and NL,

namely CNF(2) and ΣKrom respectively. [Per05, Per09]
I Cook gives a game-theoretic system for L based on branching programs.

(unpublished)

Can we achieve a similar correspondence for (N)L through a natural
nonuniform model for (N)L, like for ALogTime and P?
I Inspired by Cook’s approach, we build a bona fide inference system based

on branching programs.
I In particular, we treat decision trees, the tree-like branching programs, and

recover dag-like ones by extension.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 8

Previous Works

Proof systems corresponding to L and NL have been considered in the past:
I Perron gives systems based on logical characterisations of L and NL,

namely CNF(2) and ΣKrom respectively. [Per05, Per09]
I Cook gives a game-theoretic system for L based on branching programs.

(unpublished)

Can we achieve a similar correspondence for (N)L through a natural
nonuniform model for (N)L, like for ALogTime and P?

I Inspired by Cook’s approach, we build a bona fide inference system based
on branching programs.

I In particular, we treat decision trees, the tree-like branching programs, and
recover dag-like ones by extension.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 8

Previous Works

Proof systems corresponding to L and NL have been considered in the past:
I Perron gives systems based on logical characterisations of L and NL,

namely CNF(2) and ΣKrom respectively. [Per05, Per09]
I Cook gives a game-theoretic system for L based on branching programs.

(unpublished)

Can we achieve a similar correspondence for (N)L through a natural
nonuniform model for (N)L, like for ALogTime and P?
I Inspired by Cook’s approach, we build a bona fide inference system based

on branching programs.

I In particular, we treat decision trees, the tree-like branching programs, and
recover dag-like ones by extension.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 8

Previous Works

Proof systems corresponding to L and NL have been considered in the past:
I Perron gives systems based on logical characterisations of L and NL,

namely CNF(2) and ΣKrom respectively. [Per05, Per09]
I Cook gives a game-theoretic system for L based on branching programs.

(unpublished)

Can we achieve a similar correspondence for (N)L through a natural
nonuniform model for (N)L, like for ALogTime and P?
I Inspired by Cook’s approach, we build a bona fide inference system based

on branching programs.
I In particular, we treat decision trees, the tree-like branching programs, and

recover dag-like ones by extension.

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 8

Branching Programs

A branching program (BP) is a dag where:
I Each node is labelled by a propositional variable, 0 or 1;
I Each propositional node has two outgoing edges, labelled 0 and 1

respectively.

w

x x

y y 1

0 z 1

0 1

Key
−→ : 1

99K : 0

Can also consider nondeterministic branching programs (NBPs) and tree-like
ones, decision trees (DTs) or both (NDTs).

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 9

Branching Programs

A branching program (BP) is a dag where:
I Each node is labelled by a propositional variable, 0 or 1;
I Each propositional node has two outgoing edges, labelled 0 and 1

respectively.

w

x x

y y 1

0 z 1

0 1

Key
−→ : 1

99K : 0

Can also consider nondeterministic branching programs (NBPs) and tree-like
ones, decision trees (DTs) or both (NDTs).

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 9

Branching Programs

A branching program (BP) is a dag where:
I Each node is labelled by a propositional variable, 0 or 1;
I Each propositional node has two outgoing edges, labelled 0 and 1

respectively.

w

x x

y y 1

0 z 1

0 1

Key
−→ : 1

99K : 0

Can also consider nondeterministic branching programs (NBPs) and tree-like
ones, decision trees (DTs) or both (NDTs).

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 9

A proof system for tree-like programs

Decision Tree (DT) formulas are built using a single “case” connective for
literals:

ApB = if p then B else A

Nondeterministic decision trees (NDTs) are obtained by allowing formulas to
use disjunction, ∨.
The system LDT is a sequent calculus with standard structural rules and the
following logical rules for DT formulas:

Γ,A→ p,∆ Γ, p,B→∆
dec-l

Γ,ApB→∆

Γ→A, p,∆ Γ, p→B,∆
dec-r

Γ→ApB,∆

The system LNDT extends LDT by standard rules for ∨:

Γ,A→∆ Γ,B→∆
∨-l

Γ,A ∨ B→∆

Γ→A,B,∆
∨-r

Γ→A ∨ B,∆

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 10

A proof system for tree-like programs

Decision Tree (DT) formulas are built using a single “case” connective for
literals:

ApB = if p then B else A
Nondeterministic decision trees (NDTs) are obtained by allowing formulas to
use disjunction, ∨.

The system LDT is a sequent calculus with standard structural rules and the
following logical rules for DT formulas:

Γ,A→ p,∆ Γ, p,B→∆
dec-l

Γ,ApB→∆

Γ→A, p,∆ Γ, p→B,∆
dec-r

Γ→ApB,∆

The system LNDT extends LDT by standard rules for ∨:

Γ,A→∆ Γ,B→∆
∨-l

Γ,A ∨ B→∆

Γ→A,B,∆
∨-r

Γ→A ∨ B,∆

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 10

A proof system for tree-like programs

Decision Tree (DT) formulas are built using a single “case” connective for
literals:

ApB = if p then B else A
Nondeterministic decision trees (NDTs) are obtained by allowing formulas to
use disjunction, ∨.
The system LDT is a sequent calculus with standard structural rules and the
following logical rules for DT formulas:

Γ,A→ p,∆ Γ, p,B→∆
dec-l

Γ,ApB→∆

Γ→A, p,∆ Γ, p→B,∆
dec-r

Γ→ApB,∆

The system LNDT extends LDT by standard rules for ∨:

Γ,A→∆ Γ,B→∆
∨-l

Γ,A ∨ B→∆

Γ→A,B,∆
∨-r

Γ→A ∨ B,∆

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 10

A proof system for tree-like programs

Decision Tree (DT) formulas are built using a single “case” connective for
literals:

ApB = if p then B else A
Nondeterministic decision trees (NDTs) are obtained by allowing formulas to
use disjunction, ∨.
The system LDT is a sequent calculus with standard structural rules and the
following logical rules for DT formulas:

Γ,A→ p,∆ Γ, p,B→∆
dec-l

Γ,ApB→∆

Γ→A, p,∆ Γ, p→B,∆
dec-r

Γ→ApB,∆

The system LNDT extends LDT by standard rules for ∨:

Γ,A→∆ Γ,B→∆
∨-l

Γ,A ∨ B→∆

Γ→A,B,∆
∨-r

Γ→A ∨ B,∆

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 10

A proof system for tree-like programs

Decision Tree (DT) formulas are built using a single “case” connective for
literals:

ApB = if p then B else A
Nondeterministic decision trees (NDTs) are obtained by allowing formulas to
use disjunction, ∨.
The system LDT is a sequent calculus with standard structural rules and the
following logical rules for DT formulas:

Γ,A→ p,∆ Γ, p,B→∆
dec-l

Γ,ApB→∆

Γ→A, p,∆ Γ, p→B,∆
dec-r

Γ→ApB,∆

The system LNDT extends LDT by standard rules for ∨:

Γ,A→∆ Γ,B→∆
∨-l

Γ,A ∨ B→∆

Γ→A,B,∆
∨-r

Γ→A ∨ B,∆

MOTIVATION | Sam Buss, Anupam Das, Alexander Knop 10

L(N)DT Proofs

Tree-1-LK

Tree-LDT

Tree-2-LK←→Tree-LNDT←→LDT←→1-LK

2-LK←→LNDT

qp

Key
→ : p-simulates
→
qp

: qp-simulates

99K : separated
orange : our results
gray : immediate

RESULTS | Sam Buss, Anupam Das, Alexander Knop 11

eL(N)DT proofs

I Dags cannot be expressed naturally as formulas, which are just labelled
trees.

I They are typically handled in proof complexity via extension variables,
which allow us to encode local properties of a graph. (The very same idea
allows extended Frege to reason about Boolean circuits instead of just
formulas.)

I We allow extension variables e1, e2, etc. to be formulas, but importantly
may not occur as decision literals.

I Intuition: the variables ei are used to name subprograms, but querying
whole subprograms amounts to the power of Boolean circuits.

A proof of eLDT or eLNDT is just like that of LDT or LNDT, but comes
equipped with a set of axioms of the form en ↔ An(ei)i<n. The conclusion of
such a proof must not contain extension variables.

RESULTS | Sam Buss, Anupam Das, Alexander Knop 12

eL(N)DT proofs

I Dags cannot be expressed naturally as formulas, which are just labelled
trees.

I They are typically handled in proof complexity via extension variables,
which allow us to encode local properties of a graph.

(The very same idea
allows extended Frege to reason about Boolean circuits instead of just
formulas.)

I We allow extension variables e1, e2, etc. to be formulas, but importantly
may not occur as decision literals.

I Intuition: the variables ei are used to name subprograms, but querying
whole subprograms amounts to the power of Boolean circuits.

A proof of eLDT or eLNDT is just like that of LDT or LNDT, but comes
equipped with a set of axioms of the form en ↔ An(ei)i<n. The conclusion of
such a proof must not contain extension variables.

RESULTS | Sam Buss, Anupam Das, Alexander Knop 12

eL(N)DT proofs

I Dags cannot be expressed naturally as formulas, which are just labelled
trees.

I They are typically handled in proof complexity via extension variables,
which allow us to encode local properties of a graph. (The very same idea
allows extended Frege to reason about Boolean circuits instead of just
formulas.)

I We allow extension variables e1, e2, etc. to be formulas, but importantly
may not occur as decision literals.

I Intuition: the variables ei are used to name subprograms, but querying
whole subprograms amounts to the power of Boolean circuits.

A proof of eLDT or eLNDT is just like that of LDT or LNDT, but comes
equipped with a set of axioms of the form en ↔ An(ei)i<n. The conclusion of
such a proof must not contain extension variables.

RESULTS | Sam Buss, Anupam Das, Alexander Knop 12

eL(N)DT proofs

I Dags cannot be expressed naturally as formulas, which are just labelled
trees.

I They are typically handled in proof complexity via extension variables,
which allow us to encode local properties of a graph. (The very same idea
allows extended Frege to reason about Boolean circuits instead of just
formulas.)

I We allow extension variables e1, e2, etc. to be formulas, but importantly
may not occur as decision literals.

I Intuition: the variables ei are used to name subprograms, but querying
whole subprograms amounts to the power of Boolean circuits.

A proof of eLDT or eLNDT is just like that of LDT or LNDT, but comes
equipped with a set of axioms of the form en ↔ An(ei)i<n. The conclusion of
such a proof must not contain extension variables.

RESULTS | Sam Buss, Anupam Das, Alexander Knop 12

eL(N)DT proofs

I Dags cannot be expressed naturally as formulas, which are just labelled
trees.

I They are typically handled in proof complexity via extension variables,
which allow us to encode local properties of a graph. (The very same idea
allows extended Frege to reason about Boolean circuits instead of just
formulas.)

I We allow extension variables e1, e2, etc. to be formulas, but importantly
may not occur as decision literals.

I Intuition: the variables ei are used to name subprograms, but querying
whole subprograms amounts to the power of Boolean circuits.

A proof of eLDT or eLNDT is just like that of LDT or LNDT, but comes
equipped with a set of axioms of the form en ↔ An(ei)i<n. The conclusion of
such a proof must not contain extension variables.

RESULTS | Sam Buss, Anupam Das, Alexander Knop 12

eL(N)DT proofs

I Dags cannot be expressed naturally as formulas, which are just labelled
trees.

I They are typically handled in proof complexity via extension variables,
which allow us to encode local properties of a graph. (The very same idea
allows extended Frege to reason about Boolean circuits instead of just
formulas.)

I We allow extension variables e1, e2, etc. to be formulas, but importantly
may not occur as decision literals.

I Intuition: the variables ei are used to name subprograms, but querying
whole subprograms amounts to the power of Boolean circuits.

A proof of eLDT or eLNDT is just like that of LDT or LNDT, but comes
equipped with a set of axioms of the form en ↔ An(ei)i<n. The conclusion of
such a proof must not contain extension variables.

RESULTS | Sam Buss, Anupam Das, Alexander Knop 12

Example

w

x x

y y 1

0 z 1

0 1

e00 ↔ e10we11
e10 ↔ e20xe21
e11 ↔ e21x1
e20 ↔ 0ye31
e21 ↔ e31y1
e31 ↔ 0z1

I Here eij names the jth node, left-right, of the ith row, bottom-up.
I The entire program is now expressed by e00.

RESULTS | Sam Buss, Anupam Das, Alexander Knop 13

Example

w

x x

y y 1

0 z 1

0 1

e00 ↔ e10we11
e10 ↔ e20xe21
e11 ↔ e21x1
e20 ↔ 0ye31
e21 ↔ e31y1
e31 ↔ 0z1

I Here eij names the jth node, left-right, of the ith row, bottom-up.
I The entire program is now expressed by e00.

RESULTS | Sam Buss, Anupam Das, Alexander Knop 13

The problem of equivalence

I One technicality, arising from the fact that a single branching program
may be written in several ways with extension, is to prove the equivalence
of isomorphic branching programs.

I Works such as [Jeř04] propose to simply include axioms/rules for such
situations, but this is undesirable as isomorphism is not known to be in L.

I Instead, we enforce that this equivalence must be carried out explicitly in
proofs.

LEMMA

The equivalence of isomorphic (N)BPs has polynomial-size proofs in eL(N)DT.

NB: these proofs are crucially dag-like!

RESULTS | Sam Buss, Anupam Das, Alexander Knop 14

The problem of equivalence

I One technicality, arising from the fact that a single branching program
may be written in several ways with extension, is to prove the equivalence
of isomorphic branching programs.

I Works such as [Jeř04] propose to simply include axioms/rules for such
situations, but this is undesirable as isomorphism is not known to be in L.

I Instead, we enforce that this equivalence must be carried out explicitly in
proofs.

LEMMA

The equivalence of isomorphic (N)BPs has polynomial-size proofs in eL(N)DT.

NB: these proofs are crucially dag-like!

RESULTS | Sam Buss, Anupam Das, Alexander Knop 14

The problem of equivalence

I One technicality, arising from the fact that a single branching program
may be written in several ways with extension, is to prove the equivalence
of isomorphic branching programs.

I Works such as [Jeř04] propose to simply include axioms/rules for such
situations, but this is undesirable as isomorphism is not known to be in L.

I Instead, we enforce that this equivalence must be carried out explicitly in
proofs.

LEMMA

The equivalence of isomorphic (N)BPs has polynomial-size proofs in eL(N)DT.

NB: these proofs are crucially dag-like!

RESULTS | Sam Buss, Anupam Das, Alexander Knop 14

The problem of equivalence

I One technicality, arising from the fact that a single branching program
may be written in several ways with extension, is to prove the equivalence
of isomorphic branching programs.

I Works such as [Jeř04] propose to simply include axioms/rules for such
situations, but this is undesirable as isomorphism is not known to be in L.

I Instead, we enforce that this equivalence must be carried out explicitly in
proofs.

LEMMA

The equivalence of isomorphic (N)BPs has polynomial-size proofs in eL(N)DT.

NB: these proofs are crucially dag-like!

RESULTS | Sam Buss, Anupam Das, Alexander Knop 14

The problem of equivalence

I One technicality, arising from the fact that a single branching program
may be written in several ways with extension, is to prove the equivalence
of isomorphic branching programs.

I Works such as [Jeř04] propose to simply include axioms/rules for such
situations, but this is undesirable as isomorphism is not known to be in L.

I Instead, we enforce that this equivalence must be carried out explicitly in
proofs.

LEMMA

The equivalence of isomorphic (N)BPs has polynomial-size proofs in eL(N)DT.

NB: these proofs are crucially dag-like!

RESULTS | Sam Buss, Anupam Das, Alexander Knop 14

Results

Frege←→LK←→Tree-LK

eLDT

eLNDT

eLK←→Tree-eLK

qp

Key
→ : polynomially-simulates
→
qp

: quasipolynomially-simulates

99K : exponentially separated from
orange : our results
gray : immediate

I Results follow by direct simulations, under equivalence of isomorphic
(N)BPs.

I We rely on Buss’ qp-size formulas for st-connectivity and their small proofs
in LK to evaluate NBPs and prove truth conditions. [Bus15].

RESULTS | Sam Buss, Anupam Das, Alexander Knop 15

Results

Frege←→LK←→Tree-LK

eLDT

eLNDT

eLK←→Tree-eLK

qp

Key
→ : polynomially-simulates
→
qp

: quasipolynomially-simulates

99K : exponentially separated from
orange : our results
gray : immediate

I Results follow by direct simulations, under equivalence of isomorphic
(N)BPs.

I We rely on Buss’ qp-size formulas for st-connectivity and their small proofs
in LK to evaluate NBPs and prove truth conditions. [Bus15].

RESULTS | Sam Buss, Anupam Das, Alexander Knop 15

Results

Frege←→LK←→Tree-LK

eLDT

eLNDT

eLK←→Tree-eLK

qp

Key
→ : polynomially-simulates
→
qp

: quasipolynomially-simulates

99K : exponentially separated from
orange : our results
gray : immediate

I Results follow by direct simulations, under equivalence of isomorphic
(N)BPs.

I We rely on Buss’ qp-size formulas for st-connectivity and their small proofs
in LK to evaluate NBPs and prove truth conditions. [Bus15].

RESULTS | Sam Buss, Anupam Das, Alexander Knop 15

VL and VNL

These theories are two-sorted theories.

The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈]. The axioms for the first-order objects are
standards. In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).
I b ∈ A →

(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VL also has an axiom saying that if each vertex in a directed graph has out
degree 1, then there is a path of length ℓ for any ℓ.

(∀x≤a)(∃y≤a)A(x, y)→
(∃X4⟨b, a⟩)[X(0, 0) ∧

(∀z≤b)(∀y≤a)(X(z, y) → (∀y′<y)¬X(z, y′)) ∧
(∀z<b)(∃y≤a)(∃y′≤a)(X(z, y) ∧ X(z+1, y′) ∧ A(y, y′))]

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 16

VL and VNL

These theories are two-sorted theories. The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈].

The axioms for the first-order objects are
standards. In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).
I b ∈ A →

(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VL also has an axiom saying that if each vertex in a directed graph has out
degree 1, then there is a path of length ℓ for any ℓ.

(∀x≤a)(∃y≤a)A(x, y)→
(∃X4⟨b, a⟩)[X(0, 0) ∧

(∀z≤b)(∀y≤a)(X(z, y) → (∀y′<y)¬X(z, y′)) ∧
(∀z<b)(∃y≤a)(∃y′≤a)(X(z, y) ∧ X(z+1, y′) ∧ A(y, y′))]

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 16

VL and VNL

These theories are two-sorted theories. The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈]. The axioms for the first-order objects are
standards.

In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).
I b ∈ A →

(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VL also has an axiom saying that if each vertex in a directed graph has out
degree 1, then there is a path of length ℓ for any ℓ.

(∀x≤a)(∃y≤a)A(x, y)→
(∃X4⟨b, a⟩)[X(0, 0) ∧

(∀z≤b)(∀y≤a)(X(z, y) → (∀y′<y)¬X(z, y′)) ∧
(∀z<b)(∃y≤a)(∃y′≤a)(X(z, y) ∧ X(z+1, y′) ∧ A(y, y′))]

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 16

VL and VNL

These theories are two-sorted theories. The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈]. The axioms for the first-order objects are
standards. In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).

I b ∈ A →
(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VL also has an axiom saying that if each vertex in a directed graph has out
degree 1, then there is a path of length ℓ for any ℓ.

(∀x≤a)(∃y≤a)A(x, y)→
(∃X4⟨b, a⟩)[X(0, 0) ∧

(∀z≤b)(∀y≤a)(X(z, y) → (∀y′<y)¬X(z, y′)) ∧
(∀z<b)(∃y≤a)(∃y′≤a)(X(z, y) ∧ X(z+1, y′) ∧ A(y, y′))]

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 16

VL and VNL

These theories are two-sorted theories. The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈]. The axioms for the first-order objects are
standards. In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).
I b ∈ A →

(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VL also has an axiom saying that if each vertex in a directed graph has out
degree 1, then there is a path of length ℓ for any ℓ.

(∀x≤a)(∃y≤a)A(x, y)→
(∃X4⟨b, a⟩)[X(0, 0) ∧

(∀z≤b)(∀y≤a)(X(z, y) → (∀y′<y)¬X(z, y′)) ∧
(∀z<b)(∃y≤a)(∃y′≤a)(X(z, y) ∧ X(z+1, y′) ∧ A(y, y′))]

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 16

VL and VNL

These theories are two-sorted theories. The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈]. The axioms for the first-order objects are
standards. In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).
I b ∈ A →

(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VL also has an axiom saying that if each vertex in a directed graph has out
degree 1, then there is a path of length ℓ for any ℓ.

(∀x≤a)(∃y≤a)A(x, y)→
(∃X4⟨b, a⟩)[X(0, 0) ∧

(∀z≤b)(∀y≤a)(X(z, y) → (∀y′<y)¬X(z, y′)) ∧
(∀z<b)(∃y≤a)(∃y′≤a)(X(z, y) ∧ X(z+1, y′) ∧ A(y, y′))]

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 16

VL and VNL

These theories are two-sorted theories. The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈]. The axioms for the first-order objects are
standards. In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).
I b ∈ A →

(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VL also has an axiom saying that if each vertex in a directed graph has out
degree 1, then there is a path of length ℓ for any ℓ.

(∀x≤a)(∃y≤a)A(x, y)→
(∃X4⟨b, a⟩)[X(0, 0) ∧

(∀z≤b)(∀y≤a)(X(z, y) → (∀y′<y)¬X(z, y′)) ∧
(∀z<b)(∃y≤a)(∃y′≤a)(X(z, y) ∧ X(z+1, y′) ∧ A(y, y′))]

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 16

VL and VNL

These theories are two-sorted theories. The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈]. The axioms for the first-order objects are
standards. In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).
I b ∈ A →

(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VL also has an axiom saying that if each vertex in a directed graph has out
degree 1, then there is a path of length ℓ for any ℓ.

(∀x≤a)(∃y≤a)A(x, y)→
(∃X4⟨b, a⟩)[X(0, 0) ∧

(∀z≤b)(∀y≤a)(X(z, y) → (∀y′<y)¬X(z, y′)) ∧
(∀z<b)(∃y≤a)(∃y′≤a)(X(z, y) ∧ X(z+1, y′) ∧ A(y, y′))]

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 16

VL and VNL

These theories are two-sorted theories. The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈]. The axioms for the first-order objects are
standards. In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).
I b ∈ A →

(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VL also has an axiom saying that if each vertex in a directed graph has out
degree 1, then there is a path of length ℓ for any ℓ.

(∀x≤a)(∃y≤a)A(x, y)→
(∃X4⟨b, a⟩)[X(0, 0) ∧

(∀z≤b)(∀y≤a)(X(z, y) → (∀y′<y)¬X(z, y′)) ∧
(∀z<b)(∃y≤a)(∃y′≤a)(X(z, y) ∧ X(z+1, y′) ∧ A(y, y′))]

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 16

VL and VNL

These theories are two-sorted theories.

The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈]. The axioms for the first-order objects are
standards. In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).
I b ∈ A →

(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VNL has an axiom saying that there is a function that gives distance from any
fixed vertex.

∃X ≤ ⟨a, a⟩(∀i ≤ a X(0, i) ↔ (i = 0))∧(
∀w, x ≤ a (X(x,w + 1) ↔ [∃y ≤ a X(y,w) ∧ ϕ(y, x)])

)

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 17

VL and VNL

These theories are two-sorted theories. The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈]. The axioms for the first-order objects are
standards. In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).
I b ∈ A →

(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VNL has an axiom saying that there is a function that gives distance from any
fixed vertex.

∃X ≤ ⟨a, a⟩(∀i ≤ a X(0, i) ↔ (i = 0))∧(
∀w, x ≤ a (X(x,w + 1) ↔ [∃y ≤ a X(y,w) ∧ ϕ(y, x)])

)

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 17

VL and VNL

These theories are two-sorted theories. The vocabulary for both theories is
LV0 = [0, 1, pd,+, ·; =,≤,∈]. The axioms for the first-order objects are
standards. In addition, we have boundedness, minimization, and
Σb

0-comprehension:
I ∃x ∀y (A(x) → x ≤ y).
I b ∈ A →

(
∃x ≤ b A(x) ∧ (∀y < x ¬A(y))

)
.

I ∃X ∀x ≤ a (X(x) ↔ ϕ(x)), where ϕ is a Σb
0 formula.

VNL has an axiom saying that there is a function that gives distance from any
fixed vertex.

∃X ≤ ⟨a, a⟩(∀i ≤ a X(0, i) ↔ (i = 0))∧(
∀w, x ≤ a (X(x,w + 1) ↔ [∃y ≤ a X(y,w) ∧ ϕ(y, x)])

)

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 17

Cook-style Translation

Let ϕ be a Σb
0 formula with one free second-order variable X.

Let α be an
assignment to all the first-order variables of ϕ. Then JϕKn,α is a propositional
formula on the variables x1, …, xn saying that A is true under the assignment α
and for X such that X(i) iff xi is true.

THEOREM

▶ If VL ⊢ ∃X ϕ(X), then there is a eLDT proof of JϕKn,α.
▶ If VNL ⊢ ∃X ϕ(X), then there is a eLNDT proof of JϕKn,α.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 18

Cook-style Translation

Let ϕ be a Σb
0 formula with one free second-order variable X. Let α be an

assignment to all the first-order variables of ϕ.

Then JϕKn,α is a propositional
formula on the variables x1, …, xn saying that A is true under the assignment α
and for X such that X(i) iff xi is true.

THEOREM

▶ If VL ⊢ ∃X ϕ(X), then there is a eLDT proof of JϕKn,α.
▶ If VNL ⊢ ∃X ϕ(X), then there is a eLNDT proof of JϕKn,α.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 18

Cook-style Translation

Let ϕ be a Σb
0 formula with one free second-order variable X. Let α be an

assignment to all the first-order variables of ϕ. Then JϕKn,α is a propositional
formula on the variables x1, …, xn saying that A is true under the assignment α
and for X such that X(i) iff xi is true.

THEOREM

▶ If VL ⊢ ∃X ϕ(X), then there is a eLDT proof of JϕKn,α.
▶ If VNL ⊢ ∃X ϕ(X), then there is a eLNDT proof of JϕKn,α.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 18

Cook-style Translation

Let ϕ be a Σb
0 formula with one free second-order variable X. Let α be an

assignment to all the first-order variables of ϕ. Then JϕKn,α is a propositional
formula on the variables x1, …, xn saying that A is true under the assignment α
and for X such that X(i) iff xi is true.

THEOREM

▶ If VL ⊢ ∃X ϕ(X), then there is a eLDT proof of JϕKn,α.
▶ If VNL ⊢ ∃X ϕ(X), then there is a eLNDT proof of JϕKn,α.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 18

Cook-style Translation

THEOREM

Let ϕ be a Σb
0 formula.

▶ If VL ⊢ ∃X ϕ(X), then there is a eLDT proof of JϕKn,α.
▶ If VNL ⊢ ∃X ϕ(X), then there is a eLNDT proof of JϕKn,α.

The idea of the proof is to use structural induction over the proofs in VL and
VNL.

In other words, we are going to try to prove that

Γ′′→∆′′ Γ→∆

Γ′→∆′

in V(N)L, then JΓ′′Kn,α→ J∆′′Kn,α JΓKn,α→ J∆Kn,αJΓ′Kn,α→ J∆′Kn,α

in eL(N)DT.
The problem of this approach is that the sequents my have Σb

1 formulas since
the axiomatizations of VL and VNL have Σb

1 axioms.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 19

Cook-style Translation

THEOREM

Let ϕ be a Σb
0 formula.

▶ If VL ⊢ ∃X ϕ(X), then there is a eLDT proof of JϕKn,α.
▶ If VNL ⊢ ∃X ϕ(X), then there is a eLNDT proof of JϕKn,α.

The idea of the proof is to use structural induction over the proofs in VL and
VNL. In other words, we are going to try to prove that

Γ′′→∆′′ Γ→∆

Γ′→∆′

in V(N)L, then JΓ′′Kn,α→ J∆′′Kn,α JΓKn,α→ J∆Kn,αJΓ′Kn,α→ J∆′Kn,α

in eL(N)DT.

The problem of this approach is that the sequents my have Σb
1 formulas since

the axiomatizations of VL and VNL have Σb
1 axioms.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 19

Cook-style Translation

THEOREM

Let ϕ be a Σb
0 formula.

▶ If VL ⊢ ∃X ϕ(X), then there is a eLDT proof of JϕKn,α.
▶ If VNL ⊢ ∃X ϕ(X), then there is a eLNDT proof of JϕKn,α.

The idea of the proof is to use structural induction over the proofs in VL and
VNL. In other words, we are going to try to prove that

Γ′′→∆′′ Γ→∆

Γ′→∆′

in V(N)L, then JΓ′′Kn,α→ J∆′′Kn,α JΓKn,α→ J∆Kn,αJΓ′Kn,α→ J∆′Kn,α

in eL(N)DT.
The problem of this approach is that the sequents my have Σb

1 formulas since
the axiomatizations of VL and VNL have Σb

1 axioms.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 19

Cook-style Translation

We create a theory T such that any Σb
0 formula provable in VL (VNL) is

provable in T; but T has a Σb
0 axiomatization.

To prove this we introduced predicate symbols instead of second-order objects
guaranteed by the axioms of VL and VNL. It is clear that they are computable
by eLDT and eLNDT, respectively. So we can extend the transformation to the
formulas in T.

In case of VL this actually works, but in case of VNL there is a problem...
Negation of the reachability has no clean representation as a eLNDT. To avoid
this, we need to prove some analogue of Immerman–Szelepcsényi’s theorem.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 20

Cook-style Translation

We create a theory T such that any Σb
0 formula provable in VL (VNL) is

provable in T; but T has a Σb
0 axiomatization.

To prove this we introduced predicate symbols instead of second-order objects
guaranteed by the axioms of VL and VNL.

It is clear that they are computable
by eLDT and eLNDT, respectively. So we can extend the transformation to the
formulas in T.

In case of VL this actually works, but in case of VNL there is a problem...
Negation of the reachability has no clean representation as a eLNDT. To avoid
this, we need to prove some analogue of Immerman–Szelepcsényi’s theorem.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 20

Cook-style Translation

We create a theory T such that any Σb
0 formula provable in VL (VNL) is

provable in T; but T has a Σb
0 axiomatization.

To prove this we introduced predicate symbols instead of second-order objects
guaranteed by the axioms of VL and VNL. It is clear that they are computable
by eLDT and eLNDT, respectively. So we can extend the transformation to the
formulas in T.

In case of VL this actually works, but in case of VNL there is a problem...

Negation of the reachability has no clean representation as a eLNDT. To avoid
this, we need to prove some analogue of Immerman–Szelepcsényi’s theorem.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 20

Cook-style Translation

We create a theory T such that any Σb
0 formula provable in VL (VNL) is

provable in T; but T has a Σb
0 axiomatization.

To prove this we introduced predicate symbols instead of second-order objects
guaranteed by the axioms of VL and VNL. It is clear that they are computable
by eLDT and eLNDT, respectively. So we can extend the transformation to the
formulas in T.

In case of VL this actually works, but in case of VNL there is a problem...
Negation of the reachability has no clean representation as a eLNDT.

To avoid
this, we need to prove some analogue of Immerman–Szelepcsényi’s theorem.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 20

Cook-style Translation

We create a theory T such that any Σb
0 formula provable in VL (VNL) is

provable in T; but T has a Σb
0 axiomatization.

To prove this we introduced predicate symbols instead of second-order objects
guaranteed by the axioms of VL and VNL. It is clear that they are computable
by eLDT and eLNDT, respectively. So we can extend the transformation to the
formulas in T.

In case of VL this actually works, but in case of VNL there is a problem...
Negation of the reachability has no clean representation as a eLNDT. To avoid
this, we need to prove some analogue of Immerman–Szelepcsényi’s theorem.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 20

Cook-style Translation

Thank you!

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 21

References I

Toshiyasu Arai.
A bounded arithmetic AID for Frege systems.
Annals of Pure and Applied Logic, 103:155–199, 2000.

Samuel R. Buss.
Bounded Arithmetic.
Bibliopolis, Naples, Italy, 1986.
Revision of 1985 Princeton University Ph.D. thesis.

Sam Buss.
Quasipolynomial size proofs of the propositional pigeonhole principle.
Theoretical Computer Science, 576(C):77–84, 2015.

Stephen A. Cook and Tsuyoshi Morioka.
Quantified propositional calculus and a second-order theory for NC1.
Archive for Mathematical Logic, 44:711–749, 2005.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 22

References II

Stephen A. Cook and Phuong Nguyen.
Foundations of Proof Complexity: Bounded Arithmetic and Propositional
Translations.
ASL and Cambridge University Press, 2010.
496 pages.

Stephen A. Cook.
Feasibly constructive proofs and the propositional calculus.
In Proceedings of the Seventh Annual ACM Symposium on Theory of
Computing, pages 83–97. Association for Computing Machinery, 1975.

Martin Dowd.
Propositional representation of arithmetic proofs.
In Proceedings of the 10th ACM Symposium on Theory of Computing (STOC),
pages 246–252, 1978.

Emil Jeřábek.
Dual weak pigeonhole principle, Boolean complexity, and derandomization.
Annals of Pure and Applied Logic, 124:1–37, 2004.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 23

References III

Jan Krajíček and Pavel Pudlák.
Quantified propositional calculi and fragments of bounded arithmetic.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 36:29–46,
1990.

Jan Krajíček and Gaisi Takeuti.
On induction-free provability.
Annals of Mathematics and Artificial Intelligence, pages 107–126, 1992.

Steven Perron.
A propositional proof system for log space.
In Proc. 14th Annual Conf. Computer Science Logic (CSL), Springer Verlag
Lecture Notes in Computer Science 3634, pages 509–524, 2005.

Steven Perron.
Power of Non-Uniformity in Proof Complexity.
PhD thesis, Department of Computer Science, University of Toronto, 2009.

WORK IN PROGRESS | Sam Buss, Anupam Das, Alexander Knop 24

	Motivation
	Results
	Work In Progress

