Almost tight lower bounds on regular resolution refutations of Tseitin Formulas for all constant-degree graphs

$\underline{\text { Dmitry Itsykson }}{ }^{1} \quad$ Artur Riazanov ${ }^{1} \quad$ Danil Sagunov ${ }^{1}$ Petr Smirnov ${ }^{2}$
${ }^{1}$ Steklov institute of Mathematics at St. Petersburg
${ }^{2}$ St. Petersburg State University
Proof Complexity Workshop Banff International Research Station January 23, 2020

Tseitin formulas

- Let $G(V, E)$ be an undirected graph.
- $f: V \rightarrow\{0,1\}$ is a charging function.
- Edge $e \in E \mapsto$ variable x_{e}.
- $T(G, f)=\bigwedge_{v \in v} \operatorname{Parity}(v)$, where $\operatorname{Parity}(v)=$

$$
\left(\sum_{e \text { is incident to } v} x_{e}=f(v) \bmod 2\right) .
$$

- $T(G, f)$ is represented in CNF.

- [Urquhart, 1987] $T(G, f)$ is satisfiable \Longleftrightarrow for every connected component $U \subseteq V, \sum_{v \in U} f(v)=0$.

Tseitin formulas

- Let $G(V, E)$ be an undirected graph.
- $f: V \rightarrow\{0,1\}$ is a charging function.
- Edge $e \in E \mapsto$ variable x_{e}.
- $T(G, f)=\bigwedge_{v \in v} \operatorname{Parity}(v)$, where $\operatorname{Parity}(v)=$

$$
\left(\sum_{e \text { is incident to } v} x_{e}=f(v) \bmod 2\right) .
$$

- $T(G, f)$ is represented in CNF.

- [Urquhart, 1987] $T(G, f)$ is satisfiable \Longleftrightarrow for every connected component $U \subseteq V, \sum_{v \in U} f(v)=0$.

Resolution and its subsystems

- Resolution refutation of a CNF formula ϕ
- Resolution rule $\frac{C \vee x, D \vee \neg x}{C \vee D}$,
- A refutation of ϕ is a sequence of clauses $C_{1}, C_{2}, \ldots, C_{s}$ such that
- for every i, C_{i} is either a clause of ϕ or is obtained by the resolution rule from previous.
- C_{s} is an empty clause.
- Regular resolution: for any path in the proof-graph no variable is used twice in a resolution rule.
- Tree-like resolution: the proof-graph is a tree.

$$
S(\phi) \leq S_{\text {reg }}(\phi) \leq S_{T}(\phi)
$$

- Resolution width The width of a clause is the number of literals in it. The width of a refutation is the maximal width of a clause in it. $w(\phi)$ is the minimal posible width of resolution refutation of ϕ.

Tseitin formulas and resolution

- Lower bounds for particular graphs
- $S_{r e g}\left(T\left(\boxplus_{n}, f\right)\right)=n^{\omega(1)}$ where \boxplus_{n} is $n \times n$ grid (Tseitin, 1968).
- $S\left(T\left(\boxplus_{n}, f\right)\right)=2^{\Omega(n)}$ (Dantchev, Riis, 2001)
- $S(T(G, f))=2^{\Omega(n)}$ for an expander G with n vertices (Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
> Upper bound (Alekhnovich, Razborov, 2011)
- $S_{\text {reg }}\left(T(G, f)=2^{O(w(T(G, f)))}\right.$ poly $(|V|)$, where $w(\phi)$ is a resolution width of ϕ.
- Urquhart's conjecture. Regular resolution polynomially simulates general resolution on Tseitin formulas.
- Stronger conjecture. $S(T(G, f))=2^{\Omega(w(T(G, f)))}$

- It is false for star graph S_{n},

- Perhaps, the conjecture is true for
constant-degree graphs.

Tseitin formulas and resolution

- Lower bounds for particular graphs
- $S_{r e g}\left(T\left(\boxplus_{n}, f\right)\right)=n^{\omega(1)}$ where \boxplus_{n} is $n \times n$ grid (Tseitin, 1968).
- $S\left(T\left(\boxplus_{n}, f\right)\right)=2^{\Omega(n)}$ (Dantchev, Riis, 2001)
- $S(T(G, f))=2^{\Omega(n)}$ for an expander G with n vertices (Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
- Upper bound (Alekhnovich, Razborov, 2011)
- $S_{\text {reg }}\left(T(G, f)=2^{O(w(T(G, f)))} \operatorname{poly}(|V|)\right.$, where $w(\phi)$ is a resolution width of ϕ.
- Urquhart's conjecture. Regular resolution polynomially simulates general resolution on Tseitin formulas. - Stronger conjecture. $S(T(G, f))=2^{\Omega(w(T(G, f)))}$

- It is false for star graph S_{n},

- Perhaps, the conjecture is true for
constant-degree graphs.

Tseitin formulas and resolution

- Lower bounds for particular graphs
- $S_{r e g}\left(T\left(\boxplus_{n}, f\right)\right)=n^{\omega(1)}$ where \boxplus_{n} is $n \times n$ grid (Tseitin, 1968).
- $S\left(T\left(\boxplus_{n}, f\right)\right)=2^{\Omega(n)}$ (Dantchev, Riis, 2001)
- $S(T(G, f))=2^{\Omega(n)}$ for an expander G with n vertices (Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
- Upper bound (Alekhnovich, Razborov, 2011)
- $S_{\text {reg }}\left(T(G, f)=2^{O(w(T(G, f)))} \operatorname{poly}(|V|)\right.$, where $w(\phi)$ is a resolution width of ϕ.
- Urquhart's conjecture. Regular resolution polynomially simulates general resolution on Tseitin formulas.

Tseitin formulas and resolution

- Lower bounds for particular graphs
- $S_{\text {reg }}\left(T\left(\boxplus_{n}, f\right)\right)=n^{\omega(1)}$ where \boxplus_{n} is $n \times n$ grid (Tseitin, 1968).
- $S\left(T\left(\boxplus_{n}, f\right)\right)=2^{\Omega(n)}$ (Dantchev, Riis, 2001)
- $S(T(G, f))=2^{\Omega(n)}$ for an expander G with n vertices (Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
- Upper bound (Alekhnovich, Razborov, 2011)
- $S_{\text {reg }}\left(T(G, f)=2^{O(w(T(G, f)))} \operatorname{poly}(|V|)\right.$, where $w(\phi)$ is a resolution width of ϕ.
- Urquhart's conjecture. Regular resolution polynomially simulates general resolution on Tseitin formulas.
- Stronger conjecture. $S(T(G, f))=2^{\Omega(w(T(G, f)))}$

Tseitin formulas and resolution

- Lower bounds for particular graphs
- $S_{\text {reg }}\left(T\left(\boxplus_{n}, f\right)\right)=n^{\omega(1)}$ where \boxplus_{n} is $n \times n$ grid (Tseitin, 1968).
- $S\left(T\left(\boxplus_{n}, f\right)\right)=2^{\Omega(n)}$ (Dantchev, Riis, 2001)
- $S(T(G, f))=2^{\Omega(n)}$ for an expander G with n vertices (Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
- Upper bound (Alekhnovich, Razborov, 2011)
- $S_{\text {reg }}\left(T(G, f)=2^{O(w(T(G, f)))} \operatorname{poly}(|V|)\right.$, where $w(\phi)$ is a resolution width of ϕ.
- Urquhart's conjecture. Regular resolution polynomially simulates general resolution on Tseitin formulas.
- Stronger conjecture. $S(T(G, f))=2^{\Omega(w(T(G, f)))}$

- It is false for star graph S_{n}, $S\left(T\left(S_{n}, f\right)=O(n)\right.$, while $w\left(T\left(S_{n}, f\right)\right)=n$.

Tseitin formulas and resolution

- Lower bounds for particular graphs
- $S_{\text {reg }}\left(T\left(\boxplus_{n}, f\right)\right)=n^{\omega(1)}$ where \boxplus_{n} is $n \times n$ grid (Tseitin, 1968).
- $S\left(T\left(\boxplus_{n}, f\right)\right)=2^{\Omega(n)}$ (Dantchev, Riis, 2001)
- $S(T(G, f))=2^{\Omega(n)}$ for an expander G with n vertices (Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
- Upper bound (Alekhnovich, Razborov, 2011)
- $S_{\text {reg }}\left(T(G, f)=2^{O(w(T(G, f)))} \operatorname{poly}(|V|)\right.$, where $w(\phi)$ is a resolution width of ϕ.
- Urquhart's conjecture. Regular resolution polynomially simulates general resolution on Tseitin formulas.
- Stronger conjecture. $S(T(G, f))=2^{\Omega(w(T(G, f)))}$

- It is false for star graph S_{n}, $S\left(T\left(S_{n}, f\right)=O(n)\right.$, while $w\left(T\left(S_{n}, f\right)\right)=n$.
- Perhaps, the conjecture is true for constant-degree graphs.

Constant degree graphs

- (Galesi et al. 2018) $w(T(G, f))=\Theta(\operatorname{tw}(G))$ for $O(1)$-degree graphs.
\rightarrow The inequality $S(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$ is known for following $O(1)$-degree graphs:
- (Size-width relation): graphs with large treewidth: $\operatorname{tw}(G)=\Omega(n)$
- (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity - (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size $t \times t$, where $t=\Omega\left(\operatorname{tw}(G)^{\delta}\right)$
\rightarrow Known for $\delta=1 / 10$. Necessary: $\delta \leq \frac{1}{2}$
- (Håstad, 2017) Let S be the size of the shortest d-depth Frege proof of $T\left(\boxplus_{n}, f\right)$. Then $S \geq 2^{n^{\Omega(1 / d)}}$ for $d \leq \frac{C \log n}{\log \log n}$
\Rightarrow For resolution this method gives $S(T(G, f)) \geq 2^{\operatorname{tw}(G)^{\delta}}$
- Tree-like resolution

```
\(\rightarrow S_{T}(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}\) (size-width relation)
\(\Rightarrow S_{T}(T(G, f)) \leq 2^{\Omega(t w(G) \log |V|)}\) (Beame, Beck, Impagliazzo,
    2013, I., Oparin, 2013)
```


Constant degree graphs

- (Galesi et al. 2018) $w(T(G, f))=\Theta(\operatorname{tw}(G))$ for $O(1)$-degree graphs.
- The inequality $S(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$ is known for following $O(1)$-degree graphs:

Constant degree graphs

- (Galesi et al. 2018) $w(T(G, f))=\Theta(\operatorname{tw}(G))$ for $O(1)$-degree graphs.
- The inequality $S(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$ is known for following $O(1)$-degree graphs:
- (Size-width relation): graphs with large treewidth: $\operatorname{tw}(G)=\Omega(n)$

Constant degree graphs

- (Galesi et al. 2018) $w(T(G, f))=\Theta(\operatorname{tw}(G))$ for $O(1)$-degree graphs.
- The inequality $S(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$ is known for following $O(1)$-degree graphs:
- (Size-width relation): graphs with large treewidth: $\operatorname{tw}(G)=\Omega(n)$
- (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
 where $t=\Omega\left(\operatorname{tw}(G)^{\delta}\right)$
 proof of $T\left(\boxplus_{n}, f\right)$. Then $S \geq 2^{n^{n(1 / d)}}$ for $d \leq \frac{C \log n}{\log \log n}$
- Tree-like resolution
$>S_{T}(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$ (size-width relation)

Constant degree graphs

- (Galesi et al. 2018) $w(T(G, f))=\Theta(\operatorname{tw}(G))$ for $O(1)$-degree graphs.
- The inequality $S(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$ is known for following $O(1)$-degree graphs:
- (Size-width relation): graphs with large treewidth: $\operatorname{tw}(G)=\Omega(n)$
- (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
- (xorification): graphs with doubled edges

Constant degree graphs

- (Galesi et al. 2018) $w(T(G, f))=\Theta(\operatorname{tw}(G))$ for $O(1)$-degree graphs.
- The inequality $S(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$ is known for following $O(1)$-degree graphs:
- (Size-width relation): graphs with large treewidth: $\operatorname{tw}(G)=\Omega(n)$
- (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
- (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size $t \times t$, where $t=\Omega\left(\operatorname{tw}(G)^{\delta}\right)$.
- Known for $\delta=1 / 10$. Necessary: $\delta \leq \frac{1}{2}$.

Constant degree graphs

- (Galesi et al. 2018) $w(T(G, f))=\Theta(\operatorname{tw}(G))$ for $O(1)$-degree graphs.
- The inequality $S(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$ is known for following $O(1)$-degree graphs:
- (Size-width relation): graphs with large treewidth: $\operatorname{tw}(G)=\Omega(n)$
- (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
- (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size $t \times t$, where $t=\Omega\left(\operatorname{tw}(G)^{\delta}\right)$.
- Known for $\delta=1 / 10$. Necessary: $\delta \leq \frac{1}{2}$.
- (Håstad, 2017) Let S be the size of the shortest d-depth Frege proof of $T\left(\boxplus_{n}, f\right)$. Then $S \geq 2^{n^{n(1 / d)}}$ for $d \leq \frac{C \log n}{\log \log n}$

Constant degree graphs

- (Galesi et al. 2018) $w(T(G, f))=\Theta(\operatorname{tw}(G))$ for $O(1)$-degree graphs.
- The inequality $S(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$ is known for following $O(1)$-degree graphs:
- (Size-width relation): graphs with large treewidth: $\operatorname{tw}(G)=\Omega(n)$
- (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
- (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size $t \times t$, where $t=\Omega\left(\operatorname{tw}(G)^{\delta}\right)$.
- Known for $\delta=1 / 10$. Necessary: $\delta \leq \frac{1}{2}$.
- (Galesi et. al., 2019) Let S be the size of the shortest d-depth Frege proof of $T(G, f)$. Then $S \geq 2^{\operatorname{tw}(G)^{\Omega(1 / d)}}$ for $d \leq \frac{C \log n}{\log \log n}$.

Constant degree graphs

- (Galesi et al. 2018) $w(T(G, f))=\Theta(\operatorname{tw}(G))$ for $O(1)$-degree graphs.
- The inequality $S(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$ is known for following $O(1)$-degree graphs:
- (Size-width relation): graphs with large treewidth: $\operatorname{tw}(G)=\Omega(n)$
- (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
- (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size $t \times t$, where $t=\Omega\left(\operatorname{tw}(G)^{\delta}\right)$.
- Known for $\delta=1 / 10$. Necessary: $\delta \leq \frac{1}{2}$.
- (Galesi et. al., 2019) Let S be the size of the shortest d-depth Frege proof of $T(G, f)$. Then $S \geq 2^{\operatorname{tw}(G)^{\Omega(1 / d)}}$ for $d \leq \frac{C \log n}{\log \log n}$.
- For resolution this method gives $S(T(G, f)) \geq 2^{\operatorname{tw}(G)^{\delta}}$.

Constant degree graphs

- (Galesi et al. 2018) $w(T(G, f))=\Theta(\operatorname{tw}(G))$ for $O(1)$-degree graphs.
- The inequality $S(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$ is known for following $O(1)$-degree graphs:
- (Size-width relation): graphs with large treewidth:
$\operatorname{tw}(G)=\Omega(n)$
- (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
- (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size $t \times t$, where $t=\Omega\left(\operatorname{tw}(G)^{\delta}\right)$.
- Known for $\delta=1 / 10$. Necessary: $\delta \leq \frac{1}{2}$.
- (Galesi et. al., 2019) Let S be the size of the shortest d-depth Frege proof of $T(G, f)$. Then $S \geq 2^{\operatorname{tw}(G)^{\Omega(1 / d)}}$ for $d \leq \frac{C \log n}{\log \log n}$.
- For resolution this method gives $S(T(G, f)) \geq 2^{\operatorname{tw}(G)^{\delta}}$.
- Tree-like resolution
- $S_{T}(T(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$ (size-width relation)
- $S_{T}(T(G, f)) \leq 2^{\Omega(t \mathrm{tw}(G) \log |V|)}$ (Beame, Beck, Impagliazzo, 2013, I., Oparin, 2013)

Our results

Main theorem. $S_{\text {reg }}\left(T(G, f) \geq 2^{\Omega(t w(G) / \log |V|)}\right.$.

Example. There exist $O(1)$-degree graphs $G_{n}\left(V_{n}, E_{n}\right)$ such that $1-\mathrm{BP}\left(\mathrm{T}\left(G_{n}, c\right)\right) \geq 2^{\Omega\left(\operatorname{tw}\left(G_{n}\right) \log \left|V_{n}\right|\right)}$ and $\operatorname{tw}\left(G_{n}\right)=n^{\Omega(1)}$ $\Rightarrow S_{T}\left(T\left(G_{n}, c\right)\right) \geq 2^{\Omega\left(\operatorname{tww}\left(G_{n}\right) \log \left|V_{n}\right|\right)}, S_{\text {reg }}\left(T\left(G_{n}, c\right)\right)=2^{\Theta\left(\operatorname{tw}\left(G_{n}\right)\right)}$

Our results

Main theorem. $S_{\text {reg }}\left(T(G, f) \geq 2^{\Omega(\operatorname{tw}(G) / \log |V|)}\right.$.
Plan of the proof

1. If $S_{\text {reg }}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size $S^{O(\log |V|)}$.
satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size S.
2. $1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \geq 2^{\Omega(\operatorname{tw}(G))}$

- Previouse result: (Glinskih, I., 2019)
$2^{O(\operatorname{tw}(G) \log |V|)} \geq 1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \geq 2^{\Omega\left(\operatorname{tw}(G)^{\delta}\right)}$, where δ is a constant from Grid Minor Theorem.

Our results

Main theorem. $S_{\text {reg }}\left(T(G, f) \geq 2^{\Omega(\operatorname{tw}(G) / \log |V|)}\right.$.
Plan of the proof

1. If $S_{\text {reg }}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size $S^{O(\log |V|)}$.

- If $S_{T}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size S.

Our results

Main theorem. $S_{r e g}\left(T(G, f) \geq 2^{\Omega(\operatorname{tw}(G) / \log |V|)}\right.$.
Plan of the proof

1. If $S_{\text {reg }}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size $S^{O(\log |V|)}$.

- If $S_{T}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size S.
- Remark: it is not true for decision trees. Let P_{n} be a path with doubled edges. Then $S_{T}\left(T\left(P_{n}, f\right)\right)=O\left(n^{2}\right)$ but any decision tree computing satisfiable $T\left(P_{n}, f\right)$ has size at least 2^{n}.

2. $1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \geq 2^{\Omega(\operatorname{tw}(G))}$

Our results

Main theorem. $S_{\text {reg }}\left(T(G, f) \geq 2^{\Omega(t w(G) / \log |V|)}\right.$.
Plan of the proof

1. If $S_{\text {reg }}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size $S^{O(\log |V|)}$.

- If $S_{T}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size S.
- Remark: it is not true for decision trees. Let P_{n} be a path with doubled edges. Then $S_{T}\left(T\left(P_{n}, f\right)\right)=O\left(n^{2}\right)$ but any decision tree computing satisfiable $T\left(P_{n}, f\right)$ has size at least 2^{n}.

2. $1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \geq 2^{\Omega(\operatorname{tw}(G))}$

- Previouse result: (Glinskih, I., 2019)
$2^{O(\operatorname{tw}(G) \log |V|)} \geq 1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \geq 2^{\Omega\left(\operatorname{tw}(G)^{\delta}\right)}$, where δ is a constant from Grid Minor Theorem.

Example. There exist $O(1)$-degree graphs $G_{n}\left(V_{n}, E_{n}\right)$ such that
$1-\operatorname{BP}\left(T\left(G_{n}, c\right)\right) \geq 2^{\Omega\left(\operatorname{tw}\left(G_{n}\right) \log \left|V_{n}\right|\right)}$ and $\operatorname{tw}\left(G_{n}\right)=n^{\Omega(1)}$.
$\quad S_{T}\left(T\left(G_{n}, c\right)\right) \geq 2^{\Omega\left(\operatorname{tw}\left(G_{n}\right) \log \left|V_{n}\right|\right)}, S_{\text {reg }}\left(T\left(G_{n}, c\right)\right)=2^{\Theta\left(\operatorname{tw}\left(G_{n}\right)\right)}$

Our results

Main theorem. $S_{\text {reg }}\left(T(G, f) \geq 2^{\Omega(t w(G) / \log |V|)}\right.$.
Plan of the proof

1. If $S_{\text {reg }}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size $S^{O(\log |V|)}$.

- If $S_{T}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size S.
- Remark: it is not true for decision trees. Let P_{n} be a path with doubled edges. Then $S_{T}\left(T\left(P_{n}, f\right)\right)=O\left(n^{2}\right)$ but any decision tree computing satisfiable $T\left(P_{n}, f\right)$ has size at least 2^{n}.

2. $1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \geq 2^{\Omega(\operatorname{tw}(G))}$

- Previouse result: (Glinskih, I., 2019) $2^{O(\operatorname{tw}(G) \log |V|)} \geq 1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \geq 2^{\Omega\left(\operatorname{tw}(G)^{\delta}\right)}$, where δ is a constant from Grid Minor Theorem.

Example. There exist $O(1)$-degree graphs $G_{n}\left(V_{n}, E_{n}\right)$ such that $1-\operatorname{BP}\left(\mathrm{T}\left(G_{n}, c\right)\right) \geq 2^{\Omega\left(\operatorname{tw}\left(G_{n}\right) \log \left|V_{n}\right|\right)}$ and $\operatorname{tw}\left(G_{n}\right)=n^{\Omega(1)}$.

Our results

Main theorem. $S_{\text {reg }}\left(T(G, f) \geq 2^{\Omega(t w(G) / \log |V|)}\right.$.
Plan of the proof

1. If $S_{\text {reg }}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size $S^{O(\log |V|)}$.

- If $S_{T}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size S.
- Remark: it is not true for decision trees. Let P_{n} be a path with doubled edges. Then $S_{T}\left(T\left(P_{n}, f\right)\right)=O\left(n^{2}\right)$ but any decision tree computing satisfiable $T\left(P_{n}, f\right)$ has size at least 2^{n}.

2. $1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \geq 2^{\Omega(\operatorname{tw}(G))}$

- Previouse result: (Glinskih, I., 2019) $2^{O(\operatorname{tw}(G) \log |V|)} \geq 1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \geq 2^{\Omega\left(\operatorname{tw}(G)^{\delta}\right)}$, where δ is a constant from Grid Minor Theorem.

Example. There exist $O(1)$-degree graphs $G_{n}\left(V_{n}, E_{n}\right)$ such that $1-\operatorname{BP}\left(\mathrm{T}\left(G_{n}, c\right)\right) \geq 2^{\Omega\left(\operatorname{tw}\left(G_{n}\right) \log \left|V_{n}\right|\right)}$ and $\operatorname{tw}\left(G_{n}\right)=n^{\Omega(1)}$.

- $S_{T}\left(\mathrm{~T}\left(G_{n}, c\right)\right) \geq 2^{\Omega\left(\operatorname{tw}\left(G_{n}\right) \log \left|V_{n}\right|\right)}, S_{r e g}\left(\mathrm{~T}\left(G_{n}, c\right)\right)=2^{\Theta\left(\operatorname{tw}\left(G_{n}\right)\right)}$.

Our results

Main theorem. $S_{\text {reg }}\left(T(G, f) \geq 2^{\Omega(t w(G) / \log |V|)}\right.$.
Plan of the proof

1. If $S_{\text {reg }}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size $S^{O(\log |V|)}$.
2. $1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \geq 2^{\Omega(\operatorname{tw}(G))}$

$1-\mathrm{BP}$

- $f:\{0,1\}^{n} \rightarrow X$ is represented by a DAG with the unique source.
- Sinks are labeled with distinct elements of X. Each non-sink node is labeled with a variable and has two outgoing edges: 0-edge and 1-edge.

Given an assignment ξ a branching program returns the label of the sink at the end of the path
corresponding to ξ
\rightarrow Read-once branching program (1-BP): in every path every variable appears at most once.
\rightarrow In 1-BP: $u \xrightarrow{d} v$, and u is labeled with x. If u computes f_{u} and v computes f_{v}, then $f_{v}=\left.f_{u}\right|_{x=a}$.

$1-\mathrm{BP}$

- $f:\{0,1\}^{n} \rightarrow X$ is represented by a DAG with the unique source.
- Sinks are labeled with distinct elements of X. Each non-sink node is labeled with a variable and has two outgoing edges: 0-edge and 1-edge.
- Given an assignment ξ a branching program returns the label of the sink at the end of the path corresponding to ξ.
\rightarrow Read-once branching program (1-BP): in every path every variable appears at most once.

1-BP

- $f:\{0,1\}^{n} \rightarrow X$ is represented by a DAG with the unique source.
- Sinks are labeled with distinct elements of X. Each non-sink node is labeled with a variable and has two outgoing edges: 0-edge and 1-edge.
- Given an assignment ξ a branching program returns the label of the sink at the end of the path corresponding to ξ.
- Read-once branching program (1-BP): in every path every variable appears at most once.
\Rightarrow In 1-BP: $u \xrightarrow{a} v$, and u is labeled with x. If u computes f_{u} and v computes f_{v}, then $f_{v}=\left.f_{u}\right|_{x=a}$.

1-BP

- $f:\{0,1\}^{n} \rightarrow X$ is represented by a DAG with the unique source.
- Sinks are labeled with distinct elements of X. Each non-sink node is labeled with a variable and has two outgoing edges: 0-edge and 1-edge.
- Given an assignment ξ a branching program returns the label of the sink at the end of the path corresponding to ξ.
- Read-once branching program (1-BP): in every path every variable appears at most once.
- In 1-BP: $u \xrightarrow{a} v$, and u is labeled with x. If u computes f_{u} and v computes f_{v}, then $f_{v}=\left.f_{u}\right|_{x=a}$.

SearchVertex

- Search $_{\phi}$: Let ϕ be an unsatisfiable CNF. Given an assignment σ, find a clause of ϕ falsified by σ.
$>$ Theorem (folklore). ϕ has a regular resolution refutation of size S iff there exists a 1-BP of size S computing Search $_{\phi}$.
- For an unsatisfiable formula $\mathrm{T}(G, f)$:
- Search $_{T(G, f)}$: given an assignment, find a falsified clause of - SearchVertex (G, f) : given an assignment, find a vertex of G with violated parity condition.
- Simple observation
$1-\mathrm{BP}\left(\operatorname{Search}_{\mathrm{T}(G, f)}\right) \geq 1-\mathrm{BP}(\operatorname{SearchVertex}(G, f))$.
- We are going to prove that
$1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \leq 1-\mathrm{BP}(\text { SearchVertex }(G, f))^{O(\log |V|)}$

SearchVertex

- Search $_{\phi}$: Let ϕ be an unsatisfiable CNF. Given an assignment σ, find a clause of ϕ falsified by σ.
- Theorem (folklore). ϕ has a regular resolution refutation of size S iff there exists a 1-BP of size S computing Search $_{\phi}$.
\rightarrow For an unsatisfiable formula $T(G, f)$
- Search $_{T(G, f)}$: given an assignment, find a falsified clause of - SearchVertex (G, f): given an assignment, find a vertex of C with violated parity condition.
- Simple observation
$1-\mathrm{BP}\left(\operatorname{Search}_{T(G, f)}\right) \geq 1-\mathrm{BP}($ Search Vertex $(G, f))$.
\Rightarrow We are going to prove that
$1-\mathrm{BP}\left(\mathrm{T}\left(G, f^{\prime}\right)\right) \leq 1-\mathrm{BP}(\text { SearchVertex }(G, f))^{\mathcal{O}(\log |V|)}$

SearchVertex

- Search $_{\phi}$: Let ϕ be an unsatisfiable CNF. Given an assignment σ, find a clause of ϕ falsified by σ.
- Theorem (folklore). ϕ has a regular resolution refutation of size S iff there exists a 1-BP of size S computing Search $_{\phi}$.
- For an unsatisfiable formula $\mathrm{T}(G, f)$:
- Search ${ }_{T(G, f)}$: given an assignment, find a falsified clause of $T(G, f)$.
- SearchVertex (G, f) : given an assignment, find a vertex of G with violated parity condition.
- Simple observation

1-BP($\left.\operatorname{Search}_{T(G, f)}\right) \geq 1-\mathrm{BP}(\operatorname{SearchVertex}(G, f))$.

- We are going to prove that
$1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \leq 1-\mathrm{BP}(\text { SearchVertex }(G, f))^{O(\log |V|)}$

SearchVertex

- Search $_{\phi}$: Let ϕ be an unsatisfiable CNF. Given an assignment σ, find a clause of ϕ falsified by σ.
- Theorem (folklore). ϕ has a regular resolution refutation of size S iff there exists a 1-BP of size S computing Search $_{\phi}$.
- For an unsatisfiable formula $\mathrm{T}(G, f)$:
- Search $_{T(G, f)}$: given an assignment, find a falsified clause of $T(G, f)$.
- SearchVertex (G, f) : given an assignment, find a vertex of G with violated parity condition.
- Simple observation
$1-\mathrm{BP}\left(\operatorname{Search}_{\mathrm{T}(G, f)}\right) \geq 1-\mathrm{BP}(\operatorname{SearchVertex}(G, f))$.
- We are going to prove that $1-\mathrm{BP}\left(\mathrm{T}\left(G, f^{\prime}\right)\right) \leq 1-\mathrm{BP}(\text { SearchVertex }(G, f))^{\mathcal{O}(\log |V|)}$

SearchVertex

- Search $_{\phi}$: Let ϕ be an unsatisfiable CNF. Given an assignment σ, find a clause of ϕ falsified by σ.
- Theorem (folklore). ϕ has a regular resolution refutation of size S iff there exists a 1-BP of size S computing Search $_{\phi}$.
- For an unsatisfiable formula $\mathrm{T}(G, f)$:
- Search $_{T(G, f)}$: given an assignment, find a falsified clause of $T(G, f)$.
- SearchVertex (G, f) : given an assignment, find a vertex of G with violated parity condition.
- Simple observation
$1-\mathrm{BP}\left(\operatorname{Search}_{\mathrm{T}(G, f)}\right) \geq 1-\mathrm{BP}(\operatorname{SearchVertex}(G, f))$.
- We are going to prove that $1-\mathrm{BP}\left(\mathrm{T}\left(G, f^{\prime}\right)\right) \leq 1-\mathrm{BP}(\operatorname{SearchVertex}(G, f))^{\mathcal{O}(\log |V|)}$.

$\operatorname{SearchVertex}(G, f)$ vs $\operatorname{Search}_{T(G, f)}$

- SearchVertex (G, f) and $\operatorname{Search}_{T(G, f)}$ are equivalent for decision trees.

$\operatorname{SearchVertex}(G, f)$ vs $\operatorname{Search}_{T(G, f)}$

- SearchVertex (G, f) and $\operatorname{Search}_{T(G, f)}$ are equivalent for decision trees.
- For 1-BP:

Unrestricted degrees.

1. 1-BP $\left(\operatorname{SearchVertex}\left(G_{n}, f\right)\right)=O(n)$, while Search ${ }_{T\left(G_{n}, f\right)}=2^{\Omega(n)}$.

2. Logarithmic degrees. $K_{\log n}$:
$1-\mathrm{BP}\left(\operatorname{SearchVertex}\left(K_{\log n}, f\right)\right)=O(n)$, while
1-BP(Search $\left.{ }_{T\left(K_{\text {os.f.f }}\right)}\right)=2^{\Omega\left(\log ^{2} n\right)}$ by size-width relation.
3. Constant degrees. We conjecture that for $O(1)$-degree graphs two problems are polynomially equivalent. But this conjecture implies stronger inequality
St

$\operatorname{SearchVertex}(G, f)$ vs $\operatorname{Search}_{T(G, f)}$

- SearchVertex (G, f) and $\operatorname{Search}_{T(G, f)}$ are equivalent for decision trees.
- For 1-BP:

Unrestricted degrees.

1. 1-BP(SearchVertex $\left.\left(G_{n}, f\right)\right)=O(n)$, while Search ${ }_{T\left(G_{n}, f\right)}=2^{\Omega(n)}$.

2. Logarithmic degrees. $K_{\log n}$:
$1-\mathrm{BP}\left(\operatorname{SearchVertex}\left(K_{\log n}, f\right)\right)=O(n)$, while $1-\mathrm{BP}\left(\operatorname{Search}_{\mathrm{T}\left(K_{\log n}, f\right)}\right)=2^{\Omega\left(\log ^{2} n\right)}$ by size-width relation.

$\operatorname{SearchVertex}(G, f)$ vs $\operatorname{Search}_{T(G, f)}$

- SearchVertex (G, f) and $\operatorname{Search}_{T(G, f)}$ are equivalent for decision trees.
- For 1-BP:

Unrestricted degrees.

1. 1-BP(SearchVertex $\left.\left(G_{n}, f\right)\right)=O(n)$, while Search ${ }_{T\left(G_{n}, f\right)}=2^{\Omega(n)}$.

2. Logarithmic degrees. $K_{\log n}$:
$1-\mathrm{BP}\left(\operatorname{SearchVertex}\left(K_{\log n}, f\right)\right)=O(n)$, while $1-\mathrm{BP}\left(\operatorname{Search}_{\mathrm{T}\left(K_{\log n} n\right)}\right)=2^{\Omega\left(\log ^{2} n\right)}$ by size-width relation.
3. Constant degrees. We conjecture that for $O(1)$-degree graphs two problems are polynomially equivalent. But this conjecture implies stronger inequality
$S_{\text {reg }}(\mathrm{T}(G, f)) \geq 2^{\Omega(\mathrm{tw}(G))}$.

- For Tseitin formulas xorification $=$ doubling of edges.
\rightarrow It improves bound on Search ${\operatorname{TG}\left(G_{-f}\right) \oplus}$ but 1-BP for

$\operatorname{SearchVertex}(G, f)$ vs $\operatorname{Search}_{T(G, f)}$

- SearchVertex (G, f) and $\operatorname{Search}_{T(G, f)}$ are equivalent for decision trees.
- For 1-BP:

Unrestricted degrees.

1. 1-BP(SearchVertex $\left.\left(G_{n}, f\right)\right)=O(n)$, while $\operatorname{Search}_{\mathrm{T}\left(G_{n}, f\right)}=2^{\Omega(n)}$.

2. Logarithmic degrees. $K_{\log n}$:
$1-\mathrm{BP}\left(\operatorname{SearchVertex}\left(K_{\log n}, f\right)\right)=O(n)$, while $1-\mathrm{BP}\left(\operatorname{Search}_{\mathrm{T}\left(K_{\log n} n\right)}\right)=2^{\Omega\left(\log ^{2} n\right)}$ by size-width relation.
3. Constant degrees. We conjecture that for $O(1)$-degree graphs two problems are polynomially equivalent. But this conjecture implies stronger inequality
$S_{\text {reg }}(\mathrm{T}(G, f)) \geq 2^{\Omega(\mathrm{tw}(G))}$.

- Xorification: $S\left(\phi^{\oplus}\right) \geq 2^{\Omega(w(\phi))}$.
- For Tseitin formulas xorification $=$ doubling of edges.
- It improves bound on Search ${ }_{T\left(G_{n}, f\right) \oplus}$ but 1-BP for SearchVertex increases in at most a constant.

Structure of a 1-BP computing a satisfiable $\mathrm{T}(G, f)$

Structure of a 1-BP computing SearchVertex

- Let D be a minimum-size 1-BP computing SearchVertex (G, f). Let s be a node of D computing SearchVertex (H, g) labeled by X_{e}. Then the children of s compute SearchVertex $\left(H-e, g_{0}\right)$ and SearchVertex $\left(H-e, g_{1}\right)$.
$H-e=C_{1} \sqcup C_{2}$ for two connected
components C_{1} and C_{2}, then the children of s compute SearchVertex $\left(C_{1}, g_{0}\right)$ and

Structure of a 1-BP computing SearchVertex

- Let D be a minimum-size 1 -BP computing SearchVertex (G, f). Let s be a node of D computing SearchVertex (H, g) labeled by X_{e}. Then the children of s compute SearchVertex $\left(H-e, g_{0}\right)$ and SearchVertex $\left(H-e, g_{1}\right)$.
- Structural lemma. If e is a bridge of H and $H-e=C_{1} \sqcup C_{2}$ for two connected
components C_{1} and C_{2}, then the children of s compute $\operatorname{SearchVertex}\left(C_{1}, g_{0}\right)$ and $x_{e}=1 \quad \operatorname{SearchVertex}\left(C_{2}, g_{1}\right)$.

Transformation

SearchVertex (G, f)
$\mathrm{T}\left(G, f^{\prime}\right)$

$$
(V, E) \frac{u v}{e}
$$

$$
x_{e}=0 \quad x_{e}=1
$$

$(V, E \backslash e) \quad(V, E \backslash e)$

Let D be a 1-BP computing SearchVertex (G, f). By induction (from sinks) for every node $s \in D$ computing $\operatorname{SearchVertex}(H, c)$ and every $w \in V(H)$, we construct a node s computing $\mathrm{T}\left(H, c+\mathbf{1}_{\mathrm{w}}\right)$.

Transformation

SearchVertex (G, f)

$T\left(G, f^{\prime}\right)$

Let D be a 1-BP computing SearchVertex (G, f). By induction (from sinks) for every node $s \in D$ computing $\operatorname{SearchVertex}(H, c)$ and every $w \in V(H)$, we construct a node s computing $\mathrm{T}\left(H, c+\mathbf{1}_{\mathbf{w}}\right)$.

Transformation

Our results

Main theorem. $S_{\text {reg }}\left(T(G, f) \geq 2^{\Omega(t w(G) / \log |V|)}\right.$.
Plan of the proof

1. If $S_{\text {reg }}(T(G, f))=S$, then there exists a 1-BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size $S^{O(\log |V|)}$.
2. $1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \geq 2^{\Omega(\operatorname{tw}(G))}$

- Minimal 1-BP for $(T(G, f))$ is OBDD (in every path variables
- $\operatorname{OBDD}(\mathrm{T}(G, f)) \geq 2^{\Omega(\mathrm{tw}(G))}$

Our results

Main theorem. $S_{r e g}\left(T(G, f) \geq 2^{\Omega(\mathrm{tw}(G) / \log |V|)}\right.$.
Plan of the proof

1. If $S_{\text {reg }}(T(G, f))=S$, then there exists a 1 - BP computing satisfiable Tseitin formula $T\left(G, f^{\prime}\right)$ of size $S^{O(\log |V|)}$.
2. $1-\mathrm{BP}\left(T\left(G, f^{\prime}\right)\right) \geq 2^{\Omega(\operatorname{tw}(G))}$

- Minimal 1-BP for $(T(G, f))$ is OBDD (in every path variables appear in the same order).
- $\operatorname{OBDD}(\mathrm{T}(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$.

Number of acc. paths passing a node of 1-BP

- Let s computes $\mathrm{T}\left(G_{2}, c_{2}\right)$, where $G_{2}=\left(V, E_{2}\right)$. Hence, there are exactly $\sharp \mathrm{T}\left(G_{2}, c_{2}\right)$ paths from s to 1-sink.

Every path from the source to s is a sat. assignment of $T\left(G_{1}, c_{1}\right)$, where $G_{1}=\left(V, E_{1}\right)$. Hence, there are at most \#T $\left(G_{1}, c_{1}\right)$ paths from the source to s. In minimal OBDD all paths starts with E_{1}, hence all sat. assignments of $T\left(G_{1}, c_{1}\right)$ can be realized. Hence there are exactly $\sharp T\left(G_{1}, c_{1}\right)$ paths from the source to s.
$>$ In 1-BP: at most $\sharp T\left(G_{1}, c_{1}\right) \times \sharp T\left(G_{2}, c_{2}\right)$ accepting passing s - In minimal OBDD: exactly $\sharp \mathrm{T}\left(G_{1}, c_{1}\right) \times \sharp \mathrm{T}\left(G_{2}, c_{2}\right)$ accepting paths passing s.

Number of acc. paths passing a node of 1-BP

- Let s computes $\mathrm{T}\left(G_{2}, c_{2}\right)$, where $G_{2}=\left(V, E_{2}\right)$. Hence, there are exactly $\sharp \mathrm{T}\left(G_{2}, c_{2}\right)$ paths from s to 1-sink.

	$G_{1}=\left(V, E_{1}\right)$
E_{1}	
E_{2}	$G_{2}=\left(V, E_{2}\right)$
	${ }_{0}$

- Every path from the source to s is a sat. assignment of $\mathrm{T}\left(G_{1}, c_{1}\right)$, where $G_{1}=\left(V, E_{1}\right)$. Hence, there are at most $\sharp \mathrm{T}\left(G_{1}, c_{1}\right)$ paths from the source to s. n minimal OBDD all paths starts with E_{1}, hence all sat. assignments of $T\left(G_{1}, c_{1}\right)$ can be realized. Hence there are exactly $\sharp T\left(G_{1}, c_{1}\right)$ paths from the source to s.
\Rightarrow In 1-BP: at most $\sharp \mathrm{T}\left(G_{1}, c_{1}\right) \times \sharp T\left(G_{2}, c_{2}\right)$ accepting passing s. $>$ In minimal OBDD: exactly $\sharp T\left(G_{1}, c_{1}\right) \times \sharp T\left(G_{2}, c_{2}\right)$ accepting paths passing s.

Number of acc. paths passing a node of 1-BP

- Let s computes $\mathrm{T}\left(G_{2}, c_{2}\right)$, where $G_{2}=\left(V, E_{2}\right)$. Hence, there are exactly $\sharp \mathrm{T}\left(G_{2}, c_{2}\right)$ paths from s to 1 -sink.
- Every path from the source to s is a sat. assignment of $\mathrm{T}\left(G_{1}, c_{1}\right)$, where $G_{1}=\left(V, E_{1}\right)$. Hence, there are at most $\sharp \mathrm{T}\left(G_{1}, c_{1}\right)$ paths from the source to s.
- In minimal OBDD all paths starts with E_{1}, hence all sat. assignments of $T\left(G_{1}, c_{1}\right)$ can be realized. Hence there are exactly $\sharp \mathrm{T}\left(G_{1}, c_{1}\right)$ paths from the source to s.

Number of acc. paths passing a node of 1-BP

- Let s computes $\mathrm{T}\left(G_{2}, c_{2}\right)$, where $G_{2}=\left(V, E_{2}\right)$. Hence, there are exactly $\sharp \mathrm{T}\left(G_{2}, c_{2}\right)$ paths from s to 1-sink.
- Every path from the source to s is a sat. assignment of $T\left(G_{1}, c_{1}\right)$, where $G_{1}=\left(V, E_{1}\right)$. Hence, there are at most $\sharp \mathrm{T}\left(G_{1}, c_{1}\right)$ paths from the source to s.
- In minimal OBDD all paths starts with E_{1}, hence all sat. assignments of $T\left(G_{1}, c_{1}\right)$ can be realized. Hence there are exactly $\sharp \mathrm{T}\left(G_{1}, c_{1}\right)$ paths from the source to s.
- In 1-BP: at most $\sharp \mathrm{T}\left(G_{1}, c_{1}\right) \times \sharp \mathrm{T}\left(G_{2}, c_{2}\right)$ accepting passing s. paths passing s.

Number of acc. paths passing a node of 1-BP

- Let s computes $\mathrm{T}\left(G_{2}, c_{2}\right)$, where $G_{2}=\left(V, E_{2}\right)$. Hence, there are exactly $\sharp \mathrm{T}\left(G_{2}, c_{2}\right)$ paths from s to 1-sink.
- Every path from the source to s is a sat. assignment of $T\left(G_{1}, c_{1}\right)$, where $G_{1}=\left(V, E_{1}\right)$. Hence, there are at most $\sharp \mathrm{T}\left(G_{1}, c_{1}\right)$ paths from the source to s.
- In minimal OBDD all paths starts with E_{1}, hence all sat. assignments of $T\left(G_{1}, c_{1}\right)$ can be realized. Hence there are exactly $\sharp \mathrm{T}\left(G_{1}, c_{1}\right)$ paths from the source to s.
- In 1-BP: at most $\sharp \mathrm{T}\left(G_{1}, c_{1}\right) \times \sharp \mathrm{T}\left(G_{2}, c_{2}\right)$ accepting passing s.
- In minimal OBDD: exactly $\sharp \mathrm{T}\left(G_{1}, c_{1}\right) \times \sharp \mathrm{T}\left(G_{2}, c_{2}\right)$ accepting paths passing s.

Optimal 1-BP computing a Tseitin formula is OBDD

Theorem. 1- $\operatorname{BP}(\mathrm{T}(G, c)) \geq \operatorname{OBDD}(\mathrm{T}(G, c))$.

- Let D be a minimal 1-BP computing $\mathrm{T}(G, c)$.
- Let a_{s} be the number of accepting paths passing s.
- For an accepting path p we denote by $\gamma(p)=\sum_{s \in p} \frac{1}{a_{s}}$.

- Let D^{\prime} be a minimal OBDD for $\mathrm{T}(G, c)$ in order corresponding p^{*}
- For D^{\prime} we define a_{s}^{\prime} and $\gamma^{\prime}(p)$. a_{s}^{\prime} depends only on the distance from the source. Hence, $\gamma^{\prime}(p)$ does not depend on accepting path. We know that $\gamma\left(p^{*}\right) \geq \gamma^{\prime}\left(p^{*}\right)$

Optimal 1-BP computing a Tseitin formula is OBDD

Theorem. 1- $\operatorname{BP}(\mathrm{T}(G, c)) \geq \operatorname{OBDD}(\mathrm{T}(G, c))$.

- Let D be a minimal 1-BP computing $\mathrm{T}(G, c)$.
- Let a_{s} be the number of accepting paths passing s.
- For an accepting path p we denote by $\gamma(p)=\sum_{s \in p} \frac{1}{a_{s}}$.
- Let \mathcal{P} be the set of accepting paths in $D ;|\mathcal{P}|=\sharp T(G, c)$.

Let D^{\prime} be a minimal OBDD for $\mathrm{T}(G, c)$ in order corresponding p^{*}

- For D^{\prime} we define a_{s}^{\prime} and $\gamma^{\prime}(p)$. a_{s}^{\prime} depends only on the distance from the source. Hence, $\gamma^{\prime}(p)$ does not depend on accepting path. We know that $\gamma\left(p^{*}\right) \geq \gamma^{\prime}\left(p^{*}\right)$

Optimal 1-BP computing a Tseitin formula is OBDD

Theorem. 1- $\mathrm{BP}(\mathrm{T}(G, c)) \geq \operatorname{OBDD}(\mathrm{T}(G, c))$.

- Let D be a minimal 1-BP computing $\mathrm{T}(G, c)$.
- Let a_{s} be the number of accepting paths passing s.
- For an accepting path p we denote by $\gamma(p)=\sum_{s \in p} \frac{1}{a_{s}}$.
- Let \mathcal{P} be the set of accepting paths in $D ;|\mathcal{P}|=\sharp T(G, c)$.
- $|D|-1=\sum_{p \in \mathcal{P}} \gamma(p) \geq|\mathcal{P}| \min _{p \in \mathcal{P}} \gamma(p)=|\mathcal{P}| \gamma\left(p^{*}\right)$.

corresponding p^{*}

- For D^{\prime} we define a_{s}^{\prime} and $\gamma^{\prime}(p)$. a_{s}^{\prime} depends only on the distance from the source. Hence, $\gamma^{\prime}(p)$ does not depend on accepting path. We know that $\gamma\left(p^{*}\right) \geq \gamma^{\prime}\left(p^{*}\right)$.

Optimal 1-BP computing a Tseitin formula is OBDD

Theorem. 1- $\mathrm{BP}(\mathrm{T}(G, c)) \geq \operatorname{OBDD}(\mathrm{T}(G, c))$.

- Let D be a minimal 1-BP computing $\mathrm{T}(G, c)$.
- Let a_{s} be the number of accepting paths passing s.
- For an accepting path p we denote by $\gamma(p)=\sum_{s \in p} \frac{1}{a_{s}}$.
- Let \mathcal{P} be the set of accepting paths in $D ;|\mathcal{P}|=\sharp T(G, c)$.
- $|D|-1=\sum_{p \in \mathcal{P}} \gamma(p) \geq|\mathcal{P}| \min _{p \in \mathcal{P}} \gamma(p)=|\mathcal{P}| \gamma\left(p^{*}\right)$.
- Let D^{\prime} be a minimal OBDD for $\mathrm{T}(G, c)$ in order corresponding p^{*}.
- For D^{\prime} we define a_{s}^{\prime} and $\gamma^{\prime}(p)$. a_{s}^{\prime} depends only on the distance from the source. Hence, $\gamma^{\prime}(p)$ does not depend on accepting path. We know that $\gamma\left(p^{*}\right) \geq \gamma^{\prime}\left(p^{*}\right)$.

Optimal 1-BP computing a Tseitin formula is OBDD

Theorem. 1- $\mathrm{BP}(\mathrm{T}(G, c)) \geq \operatorname{OBDD}(\mathrm{T}(G, c))$.

- Let D be a minimal 1-BP computing $\mathrm{T}(G, c)$.
- Let a_{s} be the number of accepting paths passing s.
- For an accepting path p we denote by $\gamma(p)=\sum_{s \in p} \frac{1}{a_{s}}$.
- Let \mathcal{P} be the set of accepting paths in $D ;|\mathcal{P}|=\sharp T(G, c)$.
- $|D|-1=\sum_{p \in \mathcal{P}} \gamma(p) \geq|\mathcal{P}| \min _{p \in \mathcal{P}} \gamma(p)=|\mathcal{P}| \gamma\left(p^{*}\right)$.
- Let D^{\prime} be a minimal OBDD for $\mathrm{T}(G, c)$ in order corresponding p^{*}.
- For D^{\prime} we define a_{s}^{\prime} and $\gamma^{\prime}(p)$. a_{s}^{\prime} depends only on the distance from the source. Hence, $\gamma^{\prime}(p)$ does not depend on accepting path. We know that $\gamma\left(p^{*}\right) \geq \gamma^{\prime}\left(p^{*}\right)$.
- $|D|-1 \geq|\mathcal{P}| \gamma\left(p^{*}\right)=\sharp \mathrm{T}(G, c) \gamma\left(p^{*}\right) \geq \sharp \mathrm{T}(G, c) \gamma^{\prime}\left(p^{*}\right)=$ $\left|D^{\prime}\right|-1$.

OBDD and component width

- The number of satisfying assignments of a satisfiable $\mathrm{T}(G, f)$ is $2^{|E|-|V|+\operatorname{cc}(G)}$.
- Fix a spanning forest, take arbitrary values to all edges out of it. The value of edges from the spanning forest will be uniquely determined.

OBDD and component width

- The number of satisfying assignments of a satisfiable $\mathrm{T}(G, f)$ is $2^{|E|-|V|+\operatorname{cc}(G)}$.
- Consider a node s of a minimal OBDD D computing $\mathrm{T}(G, f)$. The number of nodes on level ℓ equals $\frac{\sharp T(G, f)}{\sharp T\left(G_{1}, f_{1}\right) \sharp T\left(G_{2}, f_{2}\right)}=2^{|V|+\operatorname{cc}(G)-\operatorname{cc}\left(G_{1}\right)-c c\left(G_{2}\right)}$.

OBDD and component width

- The number of satisfying assignments of a satisfiable $\mathrm{T}(G, f)$ is $2^{|E|-|V|+\operatorname{cc}(G)}$.
- Consider a node s of a minimal OBDD D computing $\mathrm{T}(G, f)$. The number of nodes on level ℓ equals $\frac{\sharp \mathrm{T}(G, f)}{\sharp T\left(G_{1}, f_{1}\right) \sharp T\left(G_{2}, f_{2}\right)}=2^{|V|+\mathrm{cc}(G)-\mathrm{cc}\left(G_{1}\right)-\mathrm{cc}\left(G_{2}\right)}$.
- Bob plays the following game: $G_{1}=G, G_{2}$ is the empty graph on V. Every his move, Bob remove one edge from G_{1} and add it to G_{2}. Bob calculates a value $\alpha=\operatorname{cc}\left(G_{1}\right)+\operatorname{cc}\left(G_{2}\right)$. Initially $\alpha_{0}=|V|+\operatorname{cc}(G)$. Bob pays the maximal value of $\alpha_{0}-\alpha$. The component width of $G(\operatorname{compw}(G))$ is the minimum possible Bob's payout.

OBDD and component width

- The number of satisfying assignments of a satisfiable $\mathrm{T}(G, f)$ is $2^{|E|-|V|+\operatorname{cc}(G)}$.
- Consider a node s of a minimal OBDD D computing $\mathrm{T}(G, f)$. The number of nodes on level ℓ equals $\frac{\sharp T(G, f)}{\sharp T\left(G_{1}, f_{1}\right) \sharp T\left(G_{2}, f_{2}\right)}=2^{|V|+c c(G)-\operatorname{cc}\left(G_{1}\right)-c c\left(G_{2}\right)}$.
- Bob plays the following game: $G_{1}=G, G_{2}$ is the empty graph on V. Every his move, Bob remove one edge from G_{1} and add it to G_{2}. Bob calculates a value $\alpha=\operatorname{cc}\left(G_{1}\right)+\operatorname{cc}\left(G_{2}\right)$. Initially $\alpha_{0}=|V|+\operatorname{cc}(G)$. Bob pays the maximal value of $\alpha_{0}-\alpha$. The component width of $G(\operatorname{compw}(G))$ is the minimum possible Bob's payout.

$$
\alpha_{0}=6 \quad \alpha_{\min }=6
$$

OBDD and component width

- The number of satisfying assignments of a satisfiable $\mathrm{T}(G, f)$ is $2^{|E|-|V|+\operatorname{cc}(G)}$.
- Consider a node s of a minimal OBDD D computing $\mathrm{T}(G, f)$. The number of nodes on level ℓ equals $\frac{\sharp T(G, f)}{\sharp T\left(G_{1}, f_{1}\right) \sharp T\left(G_{2}, f_{2}\right)}=2^{|V|+c c(G)-\operatorname{cc}\left(G_{1}\right)-c c\left(G_{2}\right)}$.
- Bob plays the following game: $G_{1}=G, G_{2}$ is the empty graph on V. Every his move, Bob remove one edge from G_{1} and add it to G_{2}. Bob calculates a value $\alpha=\operatorname{cc}\left(G_{1}\right)+\operatorname{cc}\left(G_{2}\right)$. Initially $\alpha_{0}=|V|+\operatorname{cc}(G)$. Bob pays the maximal value of $\alpha_{0}-\alpha$. The component width of $G(\operatorname{compw}(G))$ is the minimum possible Bob's payout.

$$
\alpha_{0}=6 \quad \alpha_{\min }=5
$$

OBDD and component width

- The number of satisfying assignments of a satisfiable $\mathrm{T}(G, f)$ is $2^{|E|-|V|+\operatorname{cc}(G)}$.
- Consider a node s of a minimal OBDD D computing $\mathrm{T}(G, f)$. The number of nodes on level ℓ equals $\frac{\sharp T(G, f)}{\sharp T\left(G_{1}, f_{1}\right) \sharp T\left(G_{2}, f_{2}\right)}=2^{|V|+c c(G)-\operatorname{cc}\left(G_{1}\right)-c c\left(G_{2}\right)}$.
- Bob plays the following game: $G_{1}=G, G_{2}$ is the empty graph on V. Every his move, Bob remove one edge from G_{1} and add it to G_{2}. Bob calculates a value $\alpha=\operatorname{cc}\left(G_{1}\right)+\operatorname{cc}\left(G_{2}\right)$. Initially $\alpha_{0}=|V|+\operatorname{cc}(G)$. Bob pays the maximal value of $\alpha_{0}-\alpha$. The component width of $G(\operatorname{compw}(G))$ is the minimum possible Bob's payout.

$$
\alpha_{0}=6 \quad \alpha_{\min }=4
$$

OBDD and component width

- The number of satisfying assignments of a satisfiable $\mathrm{T}(G, f)$ is $2^{|E|-|V|+\operatorname{cc}(G)}$.
- Consider a node s of a minimal OBDD D computing $\mathrm{T}(G, f)$. The number of nodes on level ℓ equals $\frac{\sharp T(G, f)}{\sharp T\left(G_{1}, f_{1}\right) \sharp T\left(G_{2}, f_{2}\right)}=2^{|V|+c c(G)-\operatorname{cc}\left(G_{1}\right)-c c\left(G_{2}\right)}$.
- Bob plays the following game: $G_{1}=G, G_{2}$ is the empty graph on V. Every his move, Bob remove one edge from G_{1} and add it to G_{2}. Bob calculates a value $\alpha=\operatorname{cc}\left(G_{1}\right)+\operatorname{cc}\left(G_{2}\right)$. Initially $\alpha_{0}=|V|+\operatorname{cc}(G)$. Bob pays the maximal value of $\alpha_{0}-\alpha$. The component width of $G(\operatorname{compw}(G))$ is the minimum possible Bob's payout.

$$
\alpha_{0}=6 \quad \alpha_{\min }=4
$$

OBDD and component width

- The number of satisfying assignments of a satisfiable $\mathrm{T}(G, f)$ is $2^{|E|-|V|+\operatorname{cc}(G)}$.
- Consider a node s of a minimal OBDD D computing $\mathrm{T}(G, f)$. The number of nodes on level ℓ equals $\frac{\sharp T(G, f)}{\sharp T\left(G_{1}, f_{1}\right) \sharp T\left(G_{2}, f_{2}\right)}=2^{|V|+c c(G)-\operatorname{cc}\left(G_{1}\right)-c c\left(G_{2}\right)}$.
- Bob plays the following game: $G_{1}=G, G_{2}$ is the empty graph on V. Every his move, Bob remove one edge from G_{1} and add it to G_{2}. Bob calculates a value $\alpha=\operatorname{cc}\left(G_{1}\right)+\operatorname{cc}\left(G_{2}\right)$. Initially $\alpha_{0}=|V|+\operatorname{cc}(G)$. Bob pays the maximal value of $\alpha_{0}-\alpha$. The component width of $G(\operatorname{compw}(G))$ is the minimum possible Bob's payout.

$$
\alpha_{0}=6 \quad \alpha_{\min }=3
$$

OBDD and component width

- The number of satisfying assignments of a satisfiable $\mathrm{T}(G, f)$ is $2^{|E|-|V|+\operatorname{cc}(G)}$.
- Consider a node s of a minimal OBDD D computing $\mathrm{T}(G, f)$. The number of nodes on level ℓ equals $\frac{\sharp T(G, f)}{\sharp T\left(G_{1}, f_{1}\right) \sharp T\left(G_{2}, f_{2}\right)}=2^{|V|+c c(G)-\operatorname{cc}\left(G_{1}\right)-c c\left(G_{2}\right)}$.
- Bob plays the following game: $G_{1}=G, G_{2}$ is the empty graph on V. Every his move, Bob remove one edge from G_{1} and add it to G_{2}. Bob calculates a value $\alpha=\operatorname{cc}\left(G_{1}\right)+\operatorname{cc}\left(G_{2}\right)$. Initially $\alpha_{0}=|V|+\operatorname{cc}(G)$. Bob pays the maximal value of $\alpha_{0}-\alpha$. The component width of $G(\operatorname{compw}(G))$ is the minimum possible Bob's payout.

$$
\alpha_{0}=6 \quad \alpha_{\min }=3
$$

OBDD and component width

- The number of satisfying assignments of a satisfiable $\mathrm{T}(G, f)$ is $2^{|E|-|V|+\operatorname{cc}(G)}$.
- Consider a node s of a minimal OBDD D computing $\mathrm{T}(G, f)$. The number of nodes on level ℓ equals $\frac{\sharp T(G, f)}{\sharp T\left(G_{1}, f_{1}\right) \sharp T\left(G_{2}, f_{2}\right)}=2^{|V|+c c(G)-\operatorname{cc}\left(G_{1}\right)-c c\left(G_{2}\right)}$.
- Bob plays the following game: $G_{1}=G, G_{2}$ is the empty graph on V. Every his move, Bob remove one edge from G_{1} and add it to G_{2}. Bob calculates a value $\alpha=\operatorname{cc}\left(G_{1}\right)+\operatorname{cc}\left(G_{2}\right)$. Initially $\alpha_{0}=|V|+\operatorname{cc}(G)$. Bob pays the maximal value of $\alpha_{0}-\alpha$. The component width of $G(\operatorname{compw}(G))$ is the minimum possible Bob's payout.

$$
\alpha_{0}=6 \quad \alpha_{\min }=3
$$

- - -

OBDD and component width

- The number of satisfying assignments of a satisfiable $\mathrm{T}(G, f)$ is $2^{|E|-|V|+\operatorname{cc}(G)}$.
- Consider a node s of a minimal OBDD D computing $\mathrm{T}(G, f)$. The number of nodes on level ℓ equals $\frac{\sharp T(G, f)}{\sharp T\left(G_{1}, f_{1}\right) \sharp T\left(G_{2}, f_{2}\right)}=2^{|V|+c c(G)-\operatorname{cc}\left(G_{1}\right)-c c\left(G_{2}\right)}$.
- Bob plays the following game: $G_{1}=G, G_{2}$ is the empty graph on V. Every his move, Bob remove one edge from G_{1} and add it to G_{2}. Bob calculates a value $\alpha=\operatorname{cc}\left(G_{1}\right)+\operatorname{cc}\left(G_{2}\right)$. Initially $\alpha_{0}=|V|+\operatorname{cc}(G)$. Bob pays the maximal value of $\alpha_{0}-\alpha$. The component width of $G(\operatorname{compw}(G))$ is the minimum possible Bob's payout.

$$
\alpha_{0}=6 \quad \alpha_{\min }=3 \quad \text { payout }=3
$$

OBDD and component width

- The number of satisfying assignments of a satisfiable $\mathrm{T}(G, f)$ is $2^{|E|-|V|+\operatorname{cc}(G)}$.
- Consider a node s of a minimal OBDD D computing $\mathrm{T}(G, f)$. The number of nodes on level ℓ equals $\frac{\sharp T(G, f)}{\sharp T\left(G_{1}, f_{1}\right) \sharp T\left(G_{2}, f_{2}\right)}=2^{|V|+c c(G)-c c\left(G_{1}\right)-c c\left(G_{2}\right)}$.
- Bob plays the following game: $G_{1}=G, G_{2}$ is the empty graph on V. Every his move, Bob remove one edge from G_{1} and add it to G_{2}. Bob calculates a value $\alpha=\operatorname{cc}\left(G_{1}\right)+\operatorname{cc}\left(G_{2}\right)$. Initially $\alpha_{0}=|V|+\operatorname{cc}(G)$. Bob pays the maximal value of $\alpha_{0}-\alpha$. The component width of $G(\operatorname{compw}(G))$ is the minimum possible Bob's payout.

Open problems

- Is it possible to prove that $S_{R}(\mathrm{~T}(G, c)) \geq 2^{\Omega(\operatorname{tw}(G))}$?
- Is it possible to prove a similar lower bound for unrestricted resolution?
- Is it possible to separate Search $_{T(G, c)}$ and SearchVertex ${ }_{G, c}$ for constant degree graphs?

