Almost tight lower bounds on regular resolution refutations of Tseitin Formulas for all constant-degree graphs

Dmitry Itsykson¹ Artur Riazanov¹ Danil Sagunov¹ Petr Smirnov²

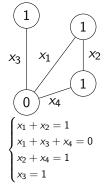
> ¹Steklov institute of Mathematics at St. Petersburg ² St. Petersburg State University

Proof Complexity Workshop Banff International Research Station January 23, 2020

Tseitin formulas

• Let G(V, E) be an undirected graph.

- $f: V \to \{0, 1\}$ is a charging function.
- Edge $e \in E \mapsto$ variable x_e .

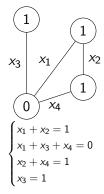


▶ [Urquhart, 1987] T(G, f) is satisfiable \iff for every connected component $U \subseteq V$, $\sum_{v \in U} f(v) = 0$.

Tseitin formulas

• Let G(V, E) be an undirected graph.

- $f: V \to \{0, 1\}$ is a charging function.
- Edge $e \in E \mapsto$ variable x_e .



▶ [Urquhart, 1987] T(G, f) is satisfiable \iff for every connected component $U \subseteq V$, $\sum_{v \in U} f(v) = 0$.

Resolution and its subsystems

 \blacktriangleright Resolution refutation of a CNF formula ϕ

- **Resolution rule** $\frac{C \lor x, D \lor \neg x}{C \lor D}$,
- A refutation of ϕ is a sequence of clauses C_1, C_2, \ldots, C_s such that
 - for every *i*, C_i is either a clause of φ or is obtained by the resolution rule from previous.
 - ► C_s is an empty clause.
- Regular resolution: for any path in the proof-graph no variable is used twice in a resolution rule.
- **Tree-like resolution**: the proof-graph is a tree.

$$S(\phi) \leq S_{reg}(\phi) \leq S_T(\phi)$$

Resolution width The width of a clause is the number of literals in it. The width of a refutation is the maximal width of a clause in it. w(\phi) is the minimal posible width of resolution refutation of \phi.

Lower bounds for particular graphs

- $S_{reg}(T(\boxplus_n, f)) = n^{\omega(1)}$ where \boxplus_n is $n \times n$ grid (Tseitin, 1968).
- $S(T(\boxplus_n, f)) = 2^{\Omega(n)}$ (Dantchev, Riis, 2001)
- $S(T(G, f)) = 2^{\Omega(n)}$ for an expander G with n vertices (Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
- Upper bound (Alekhnovich, Razborov, 2011)
 - ► $S_{reg}(T(G, f) = 2^{O(w(T(G, f)))} \operatorname{poly}(|V|)$, where $w(\phi)$ is a
- **Urguhart's conjecture.** Regular resolution polynomially
- **Stronger conjecture.** $S(T(G, f)) = 2^{\Omega(w(T(G, f)))}$

Lower bounds for particular graphs

- ► $S_{reg}(T(\boxplus_n, f)) = n^{\omega(1)}$ where \boxplus_n is $n \times n$ grid (Tseitin, 1968).
- $S(T(\boxplus_n, f)) = 2^{\Omega(n)}$ (Dantchev, Riis, 2001)
- $S(T(G, f)) = 2^{\Omega(n)}$ for an expander G with n vertices (Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
- Upper bound (Alekhnovich, Razborov, 2011)
 - $S_{reg}(T(G, f) = 2^{O(w(T(G, f)))} \operatorname{poly}(|V|)$, where $w(\phi)$ is a resolution width of ϕ .
- **Urguhart's conjecture.** Regular resolution polynomially

Stronger conjecture. $S(T(G, f)) = 2^{\Omega(w(T(G, f)))}$

• It is false for star graph S_n , $S(T(S_n, f) = O(n)$, while $w(T(S_n, f)) = n$. • Perhaps, the conjecture is true for constant-degree graphs.

Lower bounds for particular graphs

- ► $S_{reg}(T(\boxplus_n, f)) = n^{\omega(1)}$ where \boxplus_n is $n \times n$ grid (Tseitin, 1968).
- $S(T(\boxplus_n, f)) = 2^{\Omega(n)}$ (Dantchev, Riis, 2001)
- $S(T(G, f)) = 2^{\Omega(n)}$ for an expander G with n vertices (Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
- Upper bound (Alekhnovich, Razborov, 2011)
 - $S_{reg}(T(G, f) = 2^{O(w(T(G, f)))} \operatorname{poly}(|V|)$, where $w(\phi)$ is a resolution width of ϕ .
- Urguhart's conjecture. Regular resolution polynomially simulates general resolution on Tseitin formulas.

Stronger conjecture. $S(T(G, f)) = 2^{\Omega(w(T(G, f)))}$

Lower bounds for particular graphs

- ► $S_{reg}(T(\boxplus_n, f)) = n^{\omega(1)}$ where \boxplus_n is $n \times n$ grid (Tseitin, 1968).
- $S(T(\boxplus_n, f)) = 2^{\Omega(n)}$ (Dantchev, Riis, 2001)
- $S(T(G, f)) = 2^{\Omega(n)}$ for an expander G with n vertices (Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
- Upper bound (Alekhnovich, Razborov, 2011)
 - $S_{reg}(T(G, f) = 2^{O(w(T(G, f)))} \operatorname{poly}(|V|)$, where $w(\phi)$ is a resolution width of ϕ .
- Urguhart's conjecture. Regular resolution polynomially simulates general resolution on Tseitin formulas.
- Stronger conjecture. $S(T(G, f)) = 2^{\Omega(w(T(G, f)))}$

Lower bounds for particular graphs

- ► $S_{reg}(T(\boxplus_n, f)) = n^{\omega(1)}$ where \boxplus_n is $n \times n$ grid (Tseitin, 1968).
- $S(T(\boxplus_n, f)) = 2^{\Omega(n)}$ (Dantchev, Riis, 2001)
- $S(T(G, f)) = 2^{\Omega(n)}$ for an expander G with n vertices (Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
- Upper bound (Alekhnovich, Razborov, 2011)
 - $S_{reg}(T(G, f) = 2^{O(w(T(G, f)))} \operatorname{poly}(|V|)$, where $w(\phi)$ is a resolution width of ϕ .
- Urquhart's conjecture. Regular resolution polynomially simulates general resolution on Tseitin formulas.
- Stronger conjecture. $S(T(G, f)) = 2^{\Omega(w(T(G, f)))}$

 It is false for star graph S_n, S(T(S_n, f) = O(n), while w(T(S_n, f)) = n.
 Perhaps, the conjecture is true for constant-degree graphs.

Lower bounds for particular graphs

- ► $S_{reg}(T(\boxplus_n, f)) = n^{\omega(1)}$ where \boxplus_n is $n \times n$ grid (Tseitin, 1968).
- $S(T(\boxplus_n, f)) = 2^{\Omega(n)}$ (Dantchev, Riis, 2001)
- $S(T(G, f)) = 2^{\Omega(n)}$ for an expander G with n vertices (Urquhart, 1987, Ben-Sasson, Wigderson, 2001).
- Upper bound (Alekhnovich, Razborov, 2011)
 - $S_{reg}(T(G, f) = 2^{O(w(T(G, f)))} \operatorname{poly}(|V|)$, where $w(\phi)$ is a resolution width of ϕ .
- Urquhart's conjecture. Regular resolution polynomially simulates general resolution on Tseitin formulas.
- Stronger conjecture. $S(T(G, f)) = 2^{\Omega(w(T(G, f)))}$

 It is false for star graph S_n, S(T(S_n, f) = O(n), while w(T(S_n, f)) = n.
 Perhaps, the conjecture is true for constant-degree graphs.

- (Galesi et al. 2018) $w(T(G, f)) = \Theta(tw(G))$ for O(1)-degree graphs.
- The inequality $S(T(G, f)) \ge 2^{\Omega(tw(G))}$ is known for following O(1)-degree graphs:

Size-width relation): graphs with large treewidth:

 $\mathrm{tw}(G) = \Omega(n)$

Alekhnovich, Razborov, 2011): graphs with bounded cyclicity

(xorification): graphs with doubled edges

Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size t × t, where t = Ω (tw(G)^δ).

• Known for $\delta = 1/10$. Necessary: $\delta \leq \frac{1}{2}$.

▶ (Håstad, 2017) Let *S* be the size of the shortest *d*-depth Frege proof of $T(\boxplus_n, f)$. Then $S \ge 2^{n^{\Omega(1/d)}}$ for $d \le \frac{C \log n}{\log \log n}$

For resolution this method gives $S(T(G, f)) \ge 2^{\operatorname{tw}(G)^{\delta}}$.

Tree-like resolution

• $S_T(T(G, f)) \ge 2^{\Omega(\operatorname{tw}(G))}$ (size-width relation)

► $S_T(T(G, f)) \leq 2^{\Omega(\operatorname{tw}(G) \log |V|)}$ (Beame, Beck, Impagliazzo, 2013, I., Oparin, 2013)

- (Galesi et al. 2018) $w(T(G, f)) = \Theta(tw(G))$ for O(1)-degree graphs.
- The inequality $S(T(G, f)) \ge 2^{\Omega(tw(G))}$ is known for following O(1)-degree graphs:

Size-width relation): graphs with large treewidth:

 $\mathrm{tw}(G) = \Omega(n)$

Alekhnovich, Razborov, 2011): graphs with bounded cyclicity

(xorification): graphs with doubled edges

Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size t × t, where t = Ω (tw(G)^δ).

• Known for $\delta = 1/10$. Necessary: $\delta \leq \frac{1}{2}$.

▶ (Håstad, 2017) Let *S* be the size of the shortest *d*-depth Frege proof of $T(\boxplus_n, f)$. Then $S \ge 2^{n^{\Omega(1/d)}}$ for $d \le \frac{C \log n}{\log \log n}$

For resolution this method gives $S(T(G, f)) \ge 2^{\operatorname{tw}(G)^{\delta}}$.

Tree-like resolution

• $S_T(T(G, f)) \ge 2^{\Omega(\operatorname{tw}(G))}$ (size-width relation)

► $S_T(T(G, f)) \leq 2^{\Omega(\operatorname{tw}(G) \log |V|)}$ (Beame, Beck, Impagliazzo, 2013, I., Oparin, 2013)

- (Galesi et al. 2018) $w(T(G, f)) = \Theta(tw(G))$ for O(1)-degree graphs.
- The inequality $S(T(G, f)) \ge 2^{\Omega(tw(G))}$ is known for following O(1)-degree graphs:
 - (Size-width relation): graphs with large treewidth:
 tw(G) = Ω(n)
 - (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
 (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size $t \times t$, where $t = \Omega(\operatorname{tw}(G)^{\delta})$.
 - Known for $\delta = 1/10$. Necessary: $\delta \leq \frac{1}{2}$.
 - ▶ (Håstad, 2017) Let *S* be the size of the shortest *d*-depth Frege proof of $T(\boxplus_n, f)$. Then $S \ge 2^{n^{\Omega(1/d)}}$ for $d \le \frac{C \log n}{\log \log n}$
 - For resolution this method gives $S(T(G, f)) \ge 2^{\operatorname{tw}(G)^{\delta}}$.
- Tree-like resolution
 - $S_T(T(G, f)) \ge 2^{\Omega(\operatorname{tw}(G))}$ (size-width relation)
 - ► $S_T(T(G, f)) \leq 2^{\Omega(\operatorname{tw}(G) \log |V|)}$ (Beame, Beck, Impagliazzo, 2013, I., Oparin, 2013)

- (Galesi et al. 2018) $w(T(G, f)) = \Theta(tw(G))$ for O(1)-degree graphs.
- The inequality $S(T(G, f)) \ge 2^{\Omega(tw(G))}$ is known for following O(1)-degree graphs:
 - Size-width relation): graphs with large treewidth:

 $\operatorname{tw}(G) = \Omega(n)$

(Alekhnovich, Razborov, 2011): graphs with bounded cyclicity

(xorification): graphs with doubled edges

Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size t × t, where t = Ω(tw(G)^δ).

• Known for $\delta = 1/10$. Necessary: $\delta \leq \frac{1}{2}$.

▶ (Håstad, 2017) Let *S* be the size of the shortest *d*-depth Frege proof of $T(\boxplus_n, f)$. Then $S \ge 2^{n^{\Omega(1/d)}}$ for $d \le \frac{C \log n}{\log \log n}$

For resolution this method gives $S(T(G, f)) \ge 2^{\operatorname{tw}(G)^{\delta}}$.

Tree-like resolution

- $S_T(T(G, f)) \ge 2^{\Omega(\operatorname{tw}(G))}$ (size-width relation)
- ► $S_T(T(G, f)) \leq 2^{\Omega(\operatorname{tw}(G) \log |V|)}$ (Beame, Beck, Impagliazzo, 2013, I., Oparin, 2013)

- (Galesi et al. 2018) $w(T(G, f)) = \Theta(tw(G))$ for O(1)-degree graphs.
- The inequality $S(T(G, f)) \ge 2^{\Omega(tw(G))}$ is known for following O(1)-degree graphs:
 - Size-width relation): graphs with large treewidth:

 $\operatorname{tw}(G) = \Omega(n)$

- (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
- (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size $t \times t$, where $t = \Omega(\operatorname{tw}(G)^{\delta})$.

• Known for $\delta = 1/10$. Necessary: $\delta \leq \frac{1}{2}$.

▶ (Håstad, 2017) Let *S* be the size of the shortest *d*-depth Frege proof of $T(\boxplus_n, f)$. Then $S \ge 2^{n^{\Omega(1/d)}}$ for $d \le \frac{C \log n}{\log \log n}$

For resolution this method gives $S(T(G, f)) \ge 2^{\operatorname{tw}(G)^{\delta}}$.

Tree-like resolution

- $S_T(T(G, f)) \ge 2^{\Omega(\operatorname{tw}(G))}$ (size-width relation)
- ► $S_T(T(G, f)) \leq 2^{\Omega(\operatorname{tw}(G) \log |V|)}$ (Beame, Beck, Impagliazzo, 2013, I., Oparin, 2013)

- (Galesi et al. 2018) $w(T(G, f)) = \Theta(tw(G))$ for O(1)-degree graphs.
- The inequality $S(T(G, f)) \ge 2^{\Omega(tw(G))}$ is known for following O(1)-degree graphs:
 - (Size-width relation): graphs with large treewidth:
 tw(G) = Ω(n)
 - ► (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
 - (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size t × t, where t = Ω(tw(G)^δ).
 - Known for $\delta = 1/10$. Necessary: $\delta \leq \frac{1}{2}$.
 - ▶ (Håstad, 2017) Let *S* be the size of the shortest *d*-depth Frege proof of $T(\boxplus_n, f)$. Then $S \ge 2^{n^{\Omega(1/d)}}$ for $d \le \frac{C \log n}{\log \log n}$
 - For resolution this method gives $S(T(G, f)) \ge 2^{\operatorname{tw}(G)^{\delta}}$.
- Tree-like resolution
 - $S_T(T(G, f)) \ge 2^{\Omega(\operatorname{tw}(G))}$ (size-width relation)
 - ► $S_T(T(G, f)) \leq 2^{\Omega(\operatorname{tw}(G) \log |V|)}$ (Beame, Beck, Impagliazzo, 2013, I., Oparin, 2013)

- (Galesi et al. 2018) $w(T(G, f)) = \Theta(tw(G))$ for O(1)-degree graphs.
- The inequality $S(T(G, f)) \ge 2^{\Omega(tw(G))}$ is known for following O(1)-degree graphs:
 - (Size-width relation): graphs with large treewidth:
 tw(G) = Ω(n)
 - Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
 - (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size t × t, where t = Ω(tw(G)^δ).
 - Known for $\delta = 1/10$. Necessary: $\delta \leq \frac{1}{2}$.
 - ► (Håstad, 2017) Let *S* be the size of the shortest *d*-depth Frege proof of $T(\boxplus_n, f)$. Then $S \ge 2^{n^{\Omega(1/d)}}$ for $d \le \frac{C \log n}{\log \log n}$

For resolution this method gives $S(T(G, f)) \ge 2^{\operatorname{tw}(G)^{\circ}}$.

Tree-like resolution

- $S_T(T(G, f)) \ge 2^{\Omega(\operatorname{tw}(G))}$ (size-width relation)
- ► $S_T(T(G, f)) \leq 2^{\Omega(\operatorname{tw}(G) \log |V|)}$ (Beame, Beck, Impagliazzo, 2013, I., Oparin, 2013)

- (Galesi et al. 2018) $w(T(G, f)) = \Theta(tw(G))$ for O(1)-degree graphs.
- The inequality $S(T(G, f)) \ge 2^{\Omega(tw(G))}$ is known for following O(1)-degree graphs:
 - (Size-width relation): graphs with large treewidth: tw(G) = O(n)

$$\operatorname{tw}(G) = \Omega(n)$$

- Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
- (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size t × t, where t = Ω(tw(G)^δ).
 - Known for $\delta = 1/10$. Necessary: $\delta \leq \frac{1}{2}$.
 - ► (Galesi et. al., 2019) Let S be the size of the shortest d-depth Frege proof of T(G, f). Then $S \ge 2^{\text{tw}(G)^{\Omega(1/d)}}$ for $d \le \frac{C \log n}{\log \log n}$.

For resolution this method gives $S(T(G, f)) \ge 2^{\operatorname{tw}(G)^{\delta}}$

Tree-like resolution

- $S_T(T(G, f)) \ge 2^{\Omega(\operatorname{tw}(G))}$ (size-width relation)
- ► $S_T(T(G, f)) \leq 2^{\Omega(tw(G)\log|V|)}$ (Beame, Beck, Impagliazzo, 2013, I., Oparin, 2013)

- (Galesi et al. 2018) $w(T(G, f)) = \Theta(tw(G))$ for O(1)-degree graphs.
- The inequality $S(T(G, f)) \ge 2^{\Omega(tw(G))}$ is known for following O(1)-degree graphs:
 - (Size-width relation): graphs with large treewidth:
 tw(G) = Ω(n)
 - (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
 - (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size $t \times t$, where $t = \Omega(\operatorname{tw}(G)^{\delta})$.
 - Known for $\delta = 1/10$. Necessary: $\delta \leq \frac{1}{2}$.
 - ► (Galesi et. al., 2019) Let *S* be the size of the shortest *d*-depth Frege proof of T(G, f). Then $S \ge 2^{\operatorname{tw}(G)^{\Omega(1/d)}}$ for $d \le \frac{C \log n}{\log \log n}$.
 - For resolution this method gives $S(T(G, f)) \ge 2^{\operatorname{tw}(G)^{\delta}}$
- Tree-like resolution
 - $S_T(T(G, f)) \ge 2^{\Omega(\operatorname{tw}(G))}$ (size-width relation)
 - ► $S_T(T(G, f)) \leq 2^{\Omega(\operatorname{tw}(G) \log |V|)}$ (Beame, Beck, Impagliazzo, 2013, I., Oparin, 2013)

- (Galesi et al. 2018) $w(T(G, f)) = \Theta(tw(G))$ for O(1)-degree graphs.
- The inequality $S(T(G, f)) \ge 2^{\Omega(tw(G))}$ is known for following O(1)-degree graphs:
 - (Size-width relation): graphs with large treewidth:
 tw(G) = Ω(n)
 - ▶ (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
 - (xorification): graphs with doubled edges
- Grid Minor Theorem (Robertson, Seymour 1986), (Chuzhoy 2015): Every graph G has a grid minor of size $t \times t$, where $t = \Omega(\operatorname{tw}(G)^{\delta})$.
 - Known for $\delta = 1/10$. Necessary: $\delta \leq \frac{1}{2}$.
 - ► (Galesi et. al., 2019) Let *S* be the size of the shortest *d*-depth Frege proof of T(G, f). Then $S \ge 2^{\text{tw}(G)^{\Omega(1/d)}}$ for $d \le \frac{C \log n}{\log \log n}$.

• For resolution this method gives $S(T(G, f)) \ge 2^{\operatorname{tw}(G)^{\delta}}$

- Tree-like resolution
 - $S_T(T(G, f)) \ge 2^{\Omega(\operatorname{tw}(G))}$ (size-width relation)
 - ► $S_T(T(G, f)) \le 2^{\Omega(\operatorname{tw}(G) \log |V|)}$ (Beame, Beck, Impagliazzo, 2013, I., Oparin, 2013)

Main theorem. $S_{reg}(T(G, f) \ge 2^{\Omega(\operatorname{tw}(G)/\log |V|)}.$

Plan of the proof

1. If $S_{reg}(T(G, f)) = S$, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size $S^{O(\log |V|)}$.

2. 1-BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G))}$

 $\label{eq:constant_form} \begin{array}{l} & \mbox{Previouse result: (Glinskih, 1., 2019)} \\ & \mbox{20tm}(G) \mbox{lm}(M) \geq 1 \mbox{-} \mbox{PP}(\mathcal{T}(G, G')) \geq 2^{O(tm}(G')), \mbox{where δ is a constant from $Grid Minor Theorem}. \end{array}$

Example. There exist O(1)-degree graphs $G_n(V_n, E_n)$ such that 1-BP $(T(G_n, c)) \ge 2^{\Omega(\operatorname{tw}(G_n) \log |V_n|)}$ and $\operatorname{tw}(G_n) = n^{\Omega(1)}$.

 $\triangleright \ S_{\mathcal{T}}(\mathrm{T}(G_n,c)) \geq 2^{\Omega(\mathrm{tw}(G_n)\log|V_n|)}, \ S_{reg}(\mathrm{T}(G_n,c)) = 2^{\Theta(\mathrm{tw}(G_n))}.$

Main theorem. $S_{reg}(T(G, f) \ge 2^{\Omega(tw(G)/\log |V|)}$. Plan of the proof

1. If $S_{reg}(T(G, f)) = S$, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size $S^{O(\log |V|)}$.

If S_T(T(G, f)) = S, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size S.

* Remark: it is not true for decision trees. Let P_n be a path with doubled edges. Then $S_T(T(P_n, f)) = O(n^2)$ but any decision tree computing satisfiable $T(P_n, f)$ has size at least 2^n .

2. 1-BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G))}$

Previouse result: (Glinskih, I., 2019) $2^{O(\operatorname{tw}(G) \log |V|)} \ge 1$ -BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G)^{\delta})}$, where δ is a constant from Grid Minor Theorem.

Example. There exist O(1)-degree graphs $G_n(V_n, E_n)$ such that 1-BP $(T(G_n, c)) \ge 2^{\Omega(\operatorname{tw}(G_n) \log |V_n|)}$ and $\operatorname{tw}(G_n) = n^{\Omega(1)}$.

 $\triangleright \ S_T(\mathbf{T}(G_n, c)) \geq 2^{\Omega(\operatorname{tw}(G_n) \log |V_n|)}, \ S_{\operatorname{reg}}(\mathbf{T}(G_n, c)) = 2^{\Theta(\operatorname{tw}(G_n))}.$

Main theorem. $S_{reg}(T(G, f) \ge 2^{\Omega(tw(G)/\log |V|)})$. Plan of the proof

- 1. If $S_{reg}(T(G, f)) = S$, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size $S^{O(\log |V|)}$.
 - If S_T(T(G, f)) = S, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size S.
 - Remark: it is not true for decision trees. Let P_n be a path with doubled edges. Then S_T(T(P_n, f)) = O(n²) but any decision tree computing satisfiable T(P_n, f) has size at least 2ⁿ.

2. 1-BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G))}$

Previouse result: (Glinskih, I., 2019) $2^{O(\operatorname{tw}(G) \log |V|)} \ge 1$ -BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G)^{\delta})}$, where δ is a constant from Grid Minor Theorem.

Example. There exist O(1)-degree graphs $G_n(V_n, E_n)$ such that 1-BP $(T(G_n, c)) \ge 2^{\Omega(\operatorname{tw}(G_n) \log |V_n|)}$ and $\operatorname{tw}(G_n) = n^{\Omega(1)}$.

 $\triangleright \ S_T(\mathrm{T}(G_n,c)) \geq 2^{\Omega(\mathrm{tw}(G_n)\log|V_n|)}, \ S_{reg}(\mathrm{T}(G_n,c)) = 2^{\Theta(\mathrm{tw}(G_n))}.$

Main theorem. $S_{reg}(T(G, f) \ge 2^{\Omega(tw(G)/\log |V|)}$. Plan of the proof

- 1. If $S_{reg}(T(G, f)) = S$, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size $S^{O(\log |V|)}$.
 - If S_T(T(G, f)) = S, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size S.
 - Remark: it is not true for decision trees. Let P_n be a path with doubled edges. Then S_T(T(P_n, f)) = O(n²) but any decision tree computing satisfiable T(P_n, f) has size at least 2ⁿ.

2. 1-BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G))}$

Previouse result: (Glinskih, I., 2019) $2^{O(\operatorname{tw}(G) \log |V|)} \ge 1$ -BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G)^{\delta})}$, where δ is a constant from Grid Minor Theorem.

Example. There exist O(1)-degree graphs $G_n(V_n, E_n)$ such that 1-BP $(T(G_n, c)) \ge 2^{\Omega(\operatorname{tw}(G_n) \log |V_n|)}$ and $\operatorname{tw}(G_n) = n^{\Omega(1)}$.

 $\triangleright \ S_T(\mathbf{T}(G_n, c)) \geq 2^{\Omega(\operatorname{tw}(G_n) \log |V_n|)}, \ S_{\operatorname{reg}}(\mathbf{T}(G_n, c)) = 2^{\Theta(\operatorname{tw}(G_n))}.$

Main theorem. $S_{reg}(T(G, f) \ge 2^{\Omega(tw(G)/\log |V|)})$. Plan of the proof

- 1. If $S_{reg}(T(G, f)) = S$, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size $S^{O(\log |V|)}$.
 - If S_T(T(G, f)) = S, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size S.
 - Remark: it is not true for decision trees. Let P_n be a path with doubled edges. Then S_T(T(P_n, f)) = O(n²) but any decision tree computing satisfiable T(P_n, f) has size at least 2ⁿ.
- 2. 1-BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G))}$
 - Previouse result: (Glinskih, I., 2019) $2^{O(\operatorname{tw}(G) \log |V|)} \ge 1$ -BP $(\mathcal{T}(G, f')) \ge 2^{\Omega(\operatorname{tw}(G)^{\delta})}$, where δ is a constant from Grid Minor Theorem.

Example. There exist O(1)-degree graphs $G_n(V_n, E_n)$ such that 1-BP $(T(G_n, c)) \ge 2^{\Omega(\operatorname{tw}(G_n) \log |V_n|)}$ and $\operatorname{tw}(G_n) = n^{\Omega(1)}$.

 $\triangleright \ S_T(\mathbf{T}(G_n,c)) \geq 2^{\Omega(\operatorname{tw}(G_n)\log|V_n|)}, \ S_{\operatorname{reg}}(\mathbf{T}(G_n,c)) = 2^{\Theta(\operatorname{tw}(G_n))}.$

Main theorem. $S_{reg}(T(G, f) \ge 2^{\Omega(tw(G)/\log |V|)})$. Plan of the proof

- 1. If $S_{reg}(T(G, f)) = S$, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size $S^{O(\log |V|)}$.
 - If S_T(T(G, f)) = S, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size S.
 - Remark: it is not true for decision trees. Let P_n be a path with doubled edges. Then S_T(T(P_n, f)) = O(n²) but any decision tree computing satisfiable T(P_n, f) has size at least 2ⁿ.

2. 1-BP
$$(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G))}$$

Previouse result: (Glinskih, I., 2019) $2^{O(\operatorname{tw}(G) \log |V|)} \ge 1$ -BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G)^{\delta})}$, where δ is a constant from Grid Minor Theorem.

Example. There exist O(1)-degree graphs $G_n(V_n, E_n)$ such that 1-BP $(T(G_n, c)) \ge 2^{\Omega(\operatorname{tw}(G_n) \log |V_n|)}$ and $\operatorname{tw}(G_n) = n^{\Omega(1)}$.

 $\triangleright \ S_T(\mathbf{T}(G_n, c)) \geq 2^{\Omega(\operatorname{tw}(G_n) \log |V_n|)}, \ S_{\operatorname{reg}}(\mathbf{T}(G_n, c)) = 2^{\Theta(\operatorname{tw}(G_n))}.$

Main theorem. $S_{reg}(T(G, f) \ge 2^{\Omega(tw(G)/\log |V|)})$. Plan of the proof

- 1. If $S_{reg}(T(G, f)) = S$, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size $S^{O(\log |V|)}$.
 - If S_T(T(G, f)) = S, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size S.
 - Remark: it is not true for decision trees. Let P_n be a path with doubled edges. Then S_T(T(P_n, f)) = O(n²) but any decision tree computing satisfiable T(P_n, f) has size at least 2ⁿ.

2. 1-BP
$$(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G))}$$

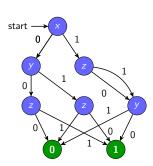
Previouse result: (Glinskih, I., 2019) $2^{O(\operatorname{tw}(G) \log |V|)} \ge 1$ -BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G)^{\delta})}$, where δ is a constant from Grid Minor Theorem.

Example. There exist O(1)-degree graphs $G_n(V_n, E_n)$ such that 1-BP $(T(G_n, c)) \ge 2^{\Omega(\operatorname{tw}(G_n) \log |V_n|)}$ and $\operatorname{tw}(G_n) = n^{\Omega(1)}$.

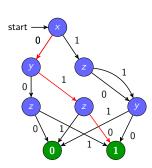
► $S_T(T(G_n, c)) \ge 2^{\Omega(\operatorname{tw}(G_n) \log |V_n|)}$, $S_{reg}(T(G_n, c)) = 2^{\Theta(\operatorname{tw}(G_n))}$.

Main theorem. $S_{reg}(T(G, f) \ge 2^{\Omega(tw(G)/\log |V|)})$. Plan of the proof

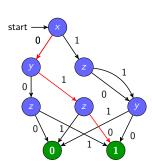
- 1. If $S_{reg}(T(G, f)) = S$, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size $S^{O(\log |V|)}$.
- 2. 1-BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G))}$



- *f*: {0,1}ⁿ → X is represented by a DAG with the unique source.
- Sinks are labeled with distinct elements of X. Each non-sink node is labeled with a variable and has two outgoing edges: 0-edge and 1-edge.
- Given an assignment ξ a branching program returns the label of the sink at the end of the path corresponding to ξ.
- Read-once branching program (1-BP): in every path every variable appears at most once.
- ▶ In 1-BP: $u \xrightarrow{a} v$, and u is labeled with x. If u computes f_u and v computes f_v , then $f_v = f_u|_{x=a}$.

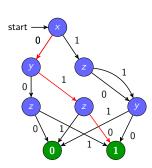


- *f*: {0,1}ⁿ → X is represented by a DAG with the unique source.
- Sinks are labeled with distinct elements of X. Each non-sink node is labeled with a variable and has two outgoing edges: 0-edge and 1-edge.
- Given an assignment ξ a branching program returns the label of the sink at the end of the path corresponding to ξ.
- Read-once branching program (1-BP): in every path every variable appears at most once.
- ▶ In 1-BP: $u \xrightarrow{a} v$, and u is labeled with x. If u computes f_u and v computes f_v , then $f_v = f_u|_{x=a}$.



- *f*: {0,1}ⁿ → X is represented by a DAG with the unique source.
- Sinks are labeled with distinct elements of X. Each non-sink node is labeled with a variable and has two outgoing edges: 0-edge and 1-edge.
- Given an assignment ξ a branching program returns the label of the sink at the end of the path corresponding to ξ.
- Read-once branching program (1-BP): in every path every variable appears at most once.

▶ In 1-BP: $u \xrightarrow{a} v$, and u is labeled with x. If u computes f_u and v computes f_v , then $f_v = f_u|_{x=a}$.



- *f*: {0,1}ⁿ → X is represented by a DAG with the unique source.
- Sinks are labeled with distinct elements of X. Each non-sink node is labeled with a variable and has two outgoing edges: 0-edge and 1-edge.
- Given an assignment ξ a branching program returns the label of the sink at the end of the path corresponding to ξ.
- Read-once branching program (1-BP): in every path every variable appears at most once.
- ▶ In 1-BP: $u \xrightarrow{a} v$, and u is labeled with x. If u computes f_u and v computes f_v , then $f_v = f_u|_{x=a}$.

- Search_φ: Let φ be an unsatisfiable CNF. Given an assignment σ, find a clause of φ falsified by σ.
- Theorem (folklore). φ has a regular resolution refutation of size S iff there exists a 1-BP of size S computing Search_φ.
- For an **unsatisfiable** formula T(G, f):
 - Search_{T(G,f)}: given an assignment, find a falsified clause of T(G, f).
 - SearchVertex(G, f): given an assignment, find a vertex of G with violated parity condition.
- Simple observation
 1 DD(Secure 1) > 1

1-BP(Search_{T(G,f)}) ≥ 1 -BP(SearchVertex(G, f)).

- Search_φ: Let φ be an unsatisfiable CNF. Given an assignment σ, find a clause of φ falsified by σ.
- Theorem (folklore). φ has a regular resolution refutation of size S iff there exists a 1-BP of size S computing Search_φ.
- For an **unsatisfiable** formula T(G, f):
 - Search_{T(G,f)}: given an assignment, find a falsified clause of T(G, f).
 - SearchVertex(G, f): given an assignment, find a vertex of G with violated parity condition.

► Simple observation 1-BP(Search_T(C, c)) > 1-BP(S

- Search_φ: Let φ be an unsatisfiable CNF. Given an assignment σ, find a clause of φ falsified by σ.
- Theorem (folklore). φ has a regular resolution refutation of size S iff there exists a 1-BP of size S computing Search_φ.
- ► For an **unsatisfiable** formula T(G, f):
 - Search_{T(G,f)}: given an assignment, find a falsified clause of T(G, f).
 - SearchVertex(G, f): given an assignment, find a vertex of G with violated parity condition.

Simple observation 1-BP(Search_{T(G,f)}) \geq 1-BP(SearchVertex(G, f)).

- Search_φ: Let φ be an unsatisfiable CNF. Given an assignment σ, find a clause of φ falsified by σ.
- Theorem (folklore). φ has a regular resolution refutation of size S iff there exists a 1-BP of size S computing Search_φ.
- ▶ For an **unsatisfiable** formula T(G, f):
 - Search_{T(G,f)}: given an assignment, find a falsified clause of T(G, f).
 - SearchVertex(G, f): given an assignment, find a vertex of G with violated parity condition.

Simple observation

1-BP(Search_{T(G,f)}) ≥ 1 -BP(SearchVertex(G, f)).

SearchVertex

- Search_φ: Let φ be an unsatisfiable CNF. Given an assignment σ, find a clause of φ falsified by σ.
- Theorem (folklore). φ has a regular resolution refutation of size S iff there exists a 1-BP of size S computing Search_φ.
- ▶ For an **unsatisfiable** formula T(G, f):
 - Search_{T(G,f)}: given an assignment, find a falsified clause of T(G, f).
 - SearchVertex(G, f): given an assignment, find a vertex of G with violated parity condition.

Simple observation

1-BP(Search_{T(G,f)}) ≥ 1 -BP(SearchVertex(G, f)).

We are going to prove that 1-BP(T(G, f')) ≤ 1-BP(SearchVertex(G, f))^{O(log |V|)}.

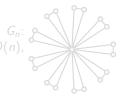
$\operatorname{SearchVertex}(G, f)$ vs $\operatorname{Search}_{\operatorname{T}(G, f)}$

SearchVertex(G, f) and Search_{T(G,f)} are equivalent for decision trees.

► For 1-BP:

Unrestricted degrees.

1. 1-BP(SearchVertex(G_n, f)) = 0 while Search_{T(G_n, f)} = 2^{$\Omega(n)$}.

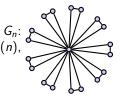


- Logarithmic degrees. K_{log n}: 1-BP(SearchVertex(K_{log n}, f)) = O(n), while 1-BP(Search_{T(K_{log n}, f)}) = 2^{Ω(log² n)} by size-width relation
- 3. **Constant degrees.** We conjecture that for O(1)-degree graphs two problems are polynomially equivalent. But this conjecture implies stronger inequality $S_{reg}(T(G, f)) \ge 2^{\Omega(tw(G))}$.
 - Sorification: $S(\phi^{\oplus}) \ge 2^{\Omega(w(\phi))}$.
 - For Tseitin formulas xorification = doubling of edges.
 - It improves bound on Search_{T(G_n,f)⊕} but 1-BP for SearchVertex increases in at most a constant.

SearchVertex(G, f) vs Search_{T(G, f)}

- SearchVertex(G, f) and Search_{T(G, f)} are equivalent for decision trees.
- For 1-BP:

Unrestricted degrees. 1. 1-BP(SearchVertex(G_n, f)) = O(n), while Search_{T(G_n, f)} = $2^{\Omega(n)}$.

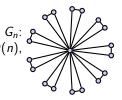


- - Xorification: $S(\phi^{\oplus}) > 2^{\Omega(w(\phi))}$.
 - For Tseitin formulas xorification = doubling of edges.
 - ▶ It improves bound on $\operatorname{Search}_{T(G_n,f)\oplus}$ but 1-BP for

$\operatorname{SearchVertex}(G, f)$ vs $\operatorname{Search}_{\operatorname{T}(G, f)}$

- SearchVertex(G, f) and Search_{T(G, f)} are equivalent for decision trees.
- For 1-BP:

1. 1-BP(SearchVertex(G_n, f)) = O(n), while Search_{T(G_n, f)} = $2^{\Omega(n)}$.

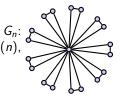


- 2. Logarithmic degrees. $K_{\log n}$: 1-BP(SearchVertex($K_{\log n}, f$)) = O(n), while 1-BP(Search_{T($K_{\log n}, f$)}) = $2^{\Omega(\log^2 n)}$ by size-width relation.
- - Xorification: $S(\phi^{\oplus}) > 2^{\Omega(w(\phi))}$
 - For Tseitin formulas xorification = doubling of edges.
 - ▶ It improves bound on $\operatorname{Search}_{T(G_n,f)\oplus}$ but 1-BP for

$\operatorname{SearchVertex}(G, f)$ vs $\operatorname{Search}_{\operatorname{T}(G, f)}$

- SearchVertex(G, f) and Search_{T(G, f}) are equivalent for decision trees.
- ▶ For 1-BP:

1. 1-BP(SearchVertex(G_n, f)) = O(n), while Search_{T(G_n, f)} = $2^{\Omega(n)}$.

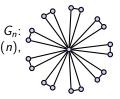


- 2. Logarithmic degrees. $K_{\log n}$: 1-BP(SearchVertex($K_{\log n}, f$)) = O(n), while 1-BP(Search_{T($\kappa_{\log n}, f$)}) = $2^{\Omega(\log^2 n)}$ by size-width relation.
- 3. Constant degrees. We conjecture that for O(1)-degree graphs two problems are polynomially equivalent. But this conjecture implies stronger inequality $S_{reg}(\mathrm{T}(G,f)) \geq 2^{\Omega(\mathrm{tw}(G))}.$
 - Xorification: $S(\phi^{\oplus}) > 2^{\Omega(w(\phi))}$
 - For Tseitin formulas xorification = doubling of edges.
 - ▶ It improves bound on $\operatorname{Search}_{T(G_n,f)\oplus}$ but 1-BP for

$\operatorname{SearchVertex}(G, f)$ vs $\operatorname{Search}_{T(G, f)}$

- SearchVertex(G, f) and Search_{T(G, f)} are equivalent for decision trees.
- For 1-BP:

Unrestricted degrees. G_n : 1. 1-BP(SearchVertex(G_n, f)) = O(n), while Search_{T(G_n, f)} = $2^{\Omega(n)}$.



- 2. Logarithmic degrees. $K_{\log n}$: 1-BP(SearchVertex($K_{\log n}, f$)) = O(n), while 1-BP(Search_{T($K_{log n}, f$)}) = $2^{\Omega(log^2 n)}$ by size-width relation.
- 3. Constant degrees. We conjecture that for O(1)-degree graphs two problems are polynomially equivalent. But this conjecture implies stronger inequality $S_{reg}(\mathrm{T}(G,f)) \geq 2^{\Omega(\mathrm{tw}(G))}.$
 - Xorification: $S(\phi^{\oplus}) \geq 2^{\Omega(w(\phi))}$.
 - For Tseitin formulas xorification = doubling of edges.
 - ▶ It improves bound on $\operatorname{Search}_{T(G_n,f)\oplus}$ but 1-BP for SearchVertex increases in at most a constant.

Structure of a 1-BP computing a satisfiable T(G, f)

$$(V, E) \quad \underbrace{\frac{u - v}{e}}_{x_e = 0}$$

$$x_e = 0$$

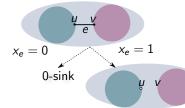
$$x_e = 1$$

$$\underbrace{\frac{u - v}{v}}_{v + v}$$

$$(V, E \setminus e)$$

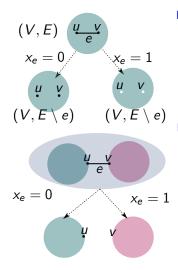
$$(V, E \setminus e)$$

$$T(H, f)|_{x_e=a} = T(H - e, f + a(\mathbf{1}_u + \mathbf{1}_v)), \text{ where } e = (u, v).$$



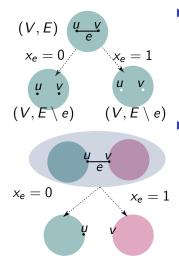
If e is a bridge, then for some $a \in \{0, 1\}$, $T(H, f)|_{x_e=a}$ is unsatisfiable.

Structure of a 1-BP computing SearchVertex



- ► Let D be a minimum-size 1-BP computing SearchVertex(G, f). Let s be a node of D computing SearchVertex(H, g) labeled by X_e. Then the children of s compute SearchVertex(H - e, g₀) and SearchVertex(H - e, g₁).
 - **Structural lemma.** If *e* is a bridge of *H* and $H e = C_1 \sqcup C_2$ for two connected components C_1 and C_2 , then the children of *s* compute SearchVertex(C_1, g_0) and SearchVertex(C_2, g_1).

Structure of a 1-BP computing SearchVertex



- ► Let D be a minimum-size 1-BP computing SearchVertex(G, f). Let s be a node of D computing SearchVertex(H, g) labeled by X_e. Then the children of s compute SearchVertex(H - e, g₀) and SearchVertex(H - e, g₁).
- Structural lemma. If e is a bridge of H and H − e = C₁ ⊔ C₂ for two connected components C₁ and C₂, then the children of s compute SearchVertex(C₁, g₀) and SearchVertex(C₂, g₁).

Transformation

SearchVertex(G, f) T(G, f')(V, E)(V, E) $x_{e} = 0$ $x_{e} = 1$ $x_e = 0$ $x_e = 1$ и $(V, E \setminus e)$ $(V, E \setminus e)$ $(V, E \setminus e)$ $(V, E \setminus e)$ v $x_e = 0$ $x_e = 1$ $x_{e} = 0$ $x_e = 1$ 0-sink

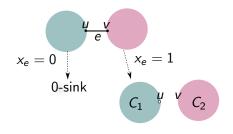
Let *D* be a 1-BP computing SearchVertex(*G*, *f*). By induction (from sinks) for every node $s \in D$ computing SearchVertex(*H*, *c*) and every $w \in V(H)$, we construct a node *s* computing $T(H, c + \mathbf{1}_w)$.

Transformation

SearchVertex(G, f) T(G, f')(V, E)(V, E) $x_{e} = 0$ $x_{e} = 1$ $x_e = 0$ = 1и $(V, E \setminus e)$ $(V, E \setminus e)$ $(V, E \setminus e)$ $(V, E \setminus e)$ v e $x_e = 0$ $x_e = 1$ $x_e = 1$ $x_e = 0$ 0-sink

Let *D* be a 1-BP computing SearchVertex(*G*, *f*). By induction (from sinks) for every node $s \in D$ computing SearchVertex(*H*, *c*) and every $w \in V(H)$, we construct a node *s* computing $T(H, c + \mathbf{1}_w)$.

Transformation



- $\mathrm{T}(\mathcal{C}_1 \cup \mathcal{C}_2, f) = \mathrm{T}(\mathcal{C}_1, f) \wedge \mathrm{T}(\mathcal{C}_2, f)$
- $T(C_{1}, f) T(C_{2}, f) = 0$

- Nontrivial case: *e* is a bridge.
- By induction hypothesis we have node s_1 computing $T(C_1, f)$ and s_2 computing $T(C_1, f)$ but we need a node computing $T(C_1 \cup C_2, f) =$ $T(C_1, f) \land T(C_2, f).$
- Make a copy of subprogram of s₁ where all edges to 1-sink redirected to s₂.
 - The necessity to copy one of the subdiagrams results in a quasipolynomial
 (S → S^{O(log |V|)}) blowup.

Our results

Main theorem. $S_{reg}(T(G, f) \ge 2^{\Omega(\operatorname{tw}(G)/\log |V|)})$.

Plan of the proof

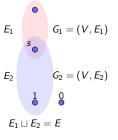
- 1. If $S_{reg}(T(G, f)) = S$, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size $S^{O(\log |V|)}$.
- 2. 1-BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G))}$
 - Minimal 1-BP for (T(G, f)) is OBDD (in every path variables appear in the same order).
 OBDD(T(G, f)) > 20(tw(G))
 - OBDD $(T(G, f)) \ge 2^{\Omega(tw(G))}$.

Our results

Main theorem. $S_{reg}(T(G, f) \ge 2^{\Omega(\operatorname{tw}(G)/\log |V|)})$.

Plan of the proof

- 1. If $S_{reg}(T(G, f)) = S$, then there exists a 1-BP computing satisfiable Tseitin formula T(G, f') of size $S^{O(\log |V|)}$.
- 2. 1-BP $(T(G, f')) \ge 2^{\Omega(\operatorname{tw}(G))}$
 - Minimal 1-BP for (T(G, f)) is OBDD (in every path variables appear in the same order).
 - $\operatorname{OBDD}(\operatorname{T}(G, f)) \geq 2^{\Omega(\operatorname{tw}(G))}$.



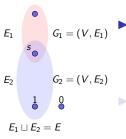
Let s computes T(G₂, c₂), where G₂ = (V, E₂). Hence, there are exactly #T(G₂, c₂) paths from s to 1-sink.

 $G_1 = (V, E_1)$ Every path from the source to *s* is a sat. assignment of $T(G_1, c_1)$, where $G_1 = (V, E_1)$. Hence, there are at most $T(G_1, c_1)$ paths from the source to *s*.

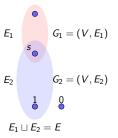
> In minimal OBDD all paths starts with E₁, hence all sat. assignments of T(G₁, c₁) can be realized. Hence there are exactly #T(G₁, c₁) paths from the source to s.

▶ In 1-BP: at most $\sharp T(G_1, c_1) \times \sharp T(G_2, c_2)$ accepting passing *s*.

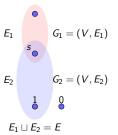
In minimal OBDD: exactly #T(G₁, c₁) × #T(G₂, c₂) accepting paths passing s.



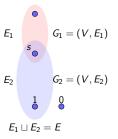
- Let s computes T(G₂, c₂), where
 G₂ = (V, E₂). Hence, there are exactly
 \$\pm T(G₂, c₂)\$ paths from s to 1-sink.
- Every path from the source to s is a sat. assignment of T(G₁, c₁), where G₁ = (V, E₁). Hence, there are at most #T(G₁, c₁) paths from the source to s.
- In minimal OBDD all paths starts with *E*₁, hence all sat. assignments of T(*G*₁, *c*₁) can be realized. Hence there are exactly #T(*G*₁, *c*₁) paths from the source to *s*.
- ▶ In 1-BP: at most $\#T(G_1, c_1) \times \#T(G_2, c_2)$ accepting passing *s*.
- In minimal OBDD: exactly #T(G₁, c₁) × #T(G₂, c₂) accepting paths passing s.



- Let s computes T(G₂, c₂), where
 G₂ = (V, E₂). Hence, there are exactly
 \$\pm T(G₂, c₂)\$ paths from s to 1-sink.
- $G_1 = (V, E_1)$ Every path from the source to *s* is a sat. assignment of $T(G_1, c_1)$, where $G_1 = (V, E_1)$. Hence, there are at most $T(G_1, c_1)$ paths from the source to *s*.
 - In minimal OBDD all paths starts with E₁, hence all sat. assignments of T(G₁, c₁) can be realized. Hence there are exactly #T(G₁, c₁) paths from the source to s.
- In 1-BP: at most #T(G₁, c₁) × #T(G₂, c₂) accepting passing s.
 In minimal OBDD: exactly #T(G₁, c₁) × #T(G₂, c₂) accepting paths passing s.



- Let s computes $T(G_2, c_2)$, where $G_2 = (V, E_2)$. Hence, there are exactly $\#T(G_2, c_2)$ paths from s to 1-sink.
- $G_1 = (V, E_1) \qquad \blacktriangleright \qquad \text{Every path from the source to } s \text{ is a sat.} \\ \text{assignment of } T(G_1, c_1), \text{ where} \\ G_1 = (V, E_1). \text{ Hence, there are at most} \\ \sharp T(G_1, c_1) \text{ paths from the source to } s. \end{cases}$
 - In minimal OBDD all paths starts with E₁, hence all sat. assignments of T(G₁, c₁) can be realized. Hence there are exactly #T(G₁, c₁) paths from the source to s.
- ▶ In 1-BP: at most $\#T(G_1, c_1) \times \#T(G_2, c_2)$ accepting passing *s*.
- In minimal OBDD: exactly #T(G₁, c₁) × #T(G₂, c₂) accepting paths passing s.



- Let s computes $T(G_2, c_2)$, where $G_2 = (V, E_2)$. Hence, there are exactly $\#T(G_2, c_2)$ paths from s to 1-sink.
- $G_1 = (V, E_1) \qquad \blacktriangleright \qquad \text{Every path from the source to } s \text{ is a sat.} \\ \text{assignment of } T(G_1, c_1), \text{ where} \\ G_1 = (V, E_1). \text{ Hence, there are at most} \\ \#T(G_1, c_1) \text{ paths from the source to } s. \end{cases}$
 - In minimal OBDD all paths starts with E₁, hence all sat. assignments of T(G₁, c₁) can be realized. Hence there are exactly #T(G₁, c₁) paths from the source to s.
- ▶ In 1-BP: at most $\#T(G_1, c_1) \times \#T(G_2, c_2)$ accepting passing *s*.
- In minimal OBDD: exactly #T(G₁, c₁) × #T(G₂, c₂) accepting paths passing s.

- Let D be a minimal 1-BP computing T(G, c).
- Let a_s be the number of accepting paths passing s.
- For an accepting path p we denote by $\gamma(p) = \sum_{s \in p} \frac{1}{a_s}$.
- Let \mathcal{P} be the set of accepting paths in D; $|\mathcal{P}| = \sharp T(G, c)$.
- $|D| 1 = \sum_{p \in \mathcal{P}} \gamma(p) \ge |\mathcal{P}| \min_{p \in \mathcal{P}} \gamma(p) = |\mathcal{P}| \gamma(p^*).$
- ▶ Let D' be a minimal OBDD for T(G, c) in order corresponding p*.
- For D' we define a'_s and γ'(p). a'_s depends only on the distance from the source. Hence, γ'(p) does not depend on accepting path. We know that γ(p^{*}) ≥ γ'(p^{*}).

$$|D| - 1 \ge |\mathcal{P}|\gamma(p^*) = \# T(G, c)\gamma(p^*) \ge \# T(G, c)\gamma'(p^*) = |D'| - 1.$$

- Let D be a minimal 1-BP computing T(G, c).
- Let a_s be the number of accepting paths passing s.
- For an accepting path p we denote by $\gamma(p) = \sum_{s \in p} \frac{1}{a_s}$.
- Let \mathcal{P} be the set of accepting paths in D; $|\mathcal{P}| = \sharp T(G, c)$.
- $|D| 1 = \sum_{p \in \mathcal{P}} \gamma(p) \ge |\mathcal{P}| \min_{p \in \mathcal{P}} \gamma(p) = |\mathcal{P}| \gamma(p^*).$
- Let D' be a minimal OBDD for T(G, c) in order corresponding p*.
- For D' we define a'_s and γ'(p). a'_s depends only on the distance from the source. Hence, γ'(p) does not depend on accepting path. We know that γ(p*) ≥ γ'(p*).

$$|D| - 1 \ge |\mathcal{P}|\gamma(p^*) = \# T(G, c)\gamma(p^*) \ge \# T(G, c)\gamma'(p^*) = |D'| - 1.$$

- Let D be a minimal 1-BP computing T(G, c).
- Let a_s be the number of accepting paths passing s.
- For an accepting path p we denote by $\gamma(p) = \sum_{s \in p} \frac{1}{a_s}$.
- Let \mathcal{P} be the set of accepting paths in D; $|\mathcal{P}| = \sharp T(G, c)$.

$$\blacktriangleright |D| - 1 = \sum_{p \in \mathcal{P}} \gamma(p) \ge |\mathcal{P}| \min_{p \in \mathcal{P}} \gamma(p) = |\mathcal{P}| \gamma(p^*).$$

- Let D' be a minimal OBDD for T(G, c) in order corresponding p*.
- For D' we define a'_s and γ'(p). a'_s depends only on the distance from the source. Hence, γ'(p) does not depend on accepting path. We know that γ(p^{*}) ≥ γ'(p^{*}).

$$|D| - 1 \ge |\mathcal{P}|\gamma(p^*) = \# T(G, c)\gamma(p^*) \ge \# T(G, c)\gamma'(p^*) = |D'| - 1.$$

- Let D be a minimal 1-BP computing T(G, c).
- Let a_s be the number of accepting paths passing s.
- For an accepting path p we denote by $\gamma(p) = \sum_{s \in p} \frac{1}{a_s}$.
- Let \mathcal{P} be the set of accepting paths in D; $|\mathcal{P}| = \sharp T(G, c)$.

$$\blacktriangleright |D| - 1 = \sum_{p \in \mathcal{P}} \gamma(p) \ge |\mathcal{P}| \min_{p \in \mathcal{P}} \gamma(p) = |\mathcal{P}| \gamma(p^*).$$

- Let D' be a minimal OBDD for T(G, c) in order corresponding p*.
- For D' we define a'_s and γ'(p). a'_s depends only on the distance from the source. Hence, γ'(p) does not depend on accepting path. We know that γ(p*) ≥ γ'(p*).

$$|D| - 1 \ge |\mathcal{P}|\gamma(p^*) = \#T(G, c)\gamma(p^*) \ge \#T(G, c)\gamma'(p^*) = |D'| - 1.$$

- Let D be a minimal 1-BP computing T(G, c).
- Let a_s be the number of accepting paths passing s.
- For an accepting path p we denote by $\gamma(p) = \sum_{s \in p} \frac{1}{a_s}$.
- Let \mathcal{P} be the set of accepting paths in D; $|\mathcal{P}| = \sharp T(G, c)$.

$$\blacktriangleright |D| - 1 = \sum_{p \in \mathcal{P}} \gamma(p) \ge |\mathcal{P}| \min_{p \in \mathcal{P}} \gamma(p) = |\mathcal{P}| \gamma(p^*).$$

- Let D' be a minimal OBDD for T(G, c) in order corresponding p*.
- For D' we define a'_s and γ'(p). a'_s depends only on the distance from the source. Hence, γ'(p) does not depend on accepting path. We know that γ(p*) ≥ γ'(p*).

$$|D| - 1 \ge |\mathcal{P}|\gamma(p^*) = \#\mathrm{T}(G,c)\gamma(p^*) \ge \#\mathrm{T}(G,c)\gamma'(p^*) = |D'| - 1.$$

- ► The number of satisfying assignments of a satisfiable T(G, f) is 2^{|E|-|V|+cc(G)}.
 - Fix a spanning forest, take arbitrary values to all edges out of it. The value of edges from the spanning forest will be uniquely determined.
- Consider a node *s* of a minimal OBDD *D* computing T(G, f). The number of nodes on level ℓ equals $\frac{T(G, f)}{T(G, f)} = 2^{|V| + cc(G) - cc(G_1) - cc(G_2)}$
- Bob plays the following game: G₁ = G, G₂ is the empty graph on V. Every his move, Bob remove one edge from G₁ and add it to G₂. Bob calculates a value α = cc(G₁) + cc(G₂). Initially α₀ = |V| + cc(G). Bob pays the maximal value of α₀ − α. The component width of G (compw(G)) is the minimum possible Bob's payout.

- The number of satisfying assignments of a satisfiable T(G, f) is 2^{|E|-|V|+cc(G)}.
- Consider a node s of a minimal OBDD D computing T(G, f). The number of nodes on level ℓ equals ^{#T(G,f)}/_{#T(G₁,f₁)#T(G₂,f₂)} = 2^{|V|+cc(G)-cc(G₁)-cc(G₂)}.
- Bob plays the following game: G₁ = G, G₂ is the empty graph on V. Every his move, Bob remove one edge from G₁ and add it to G₂. Bob calculates a value α = cc(G₁) + cc(G₂). Initially α₀ = |V| + cc(G). Bob pays the maximal value of α₀ − α. The component width of G (compw(G)) is the minimum possible Bob's payout.

- The number of satisfying assignments of a satisfiable T(G, f) is 2^{|E|-|V|+cc(G)}.
- Consider a node s of a minimal OBDD D computing T(G, f). The number of nodes on level ℓ equals ^{#T(G,f)}/_{#T(G1,f1)#T(G2,f2)} = 2^{|V|+cc(G)-cc(G1)-cc(G2)}.
- Bob plays the following game: G₁ = G, G₂ is the empty graph on V. Every his move, Bob remove one edge from G₁ and add it to G₂. Bob calculates a value α = cc(G₁) + cc(G₂). Initially α₀ = |V| + cc(G). Bob pays the maximal value of α₀ − α. The component width of G (compw(G)) is the minimum possible Bob's payout.

- The number of satisfying assignments of a satisfiable T(G, f) is 2^{|E|-|V|+cc(G)}.
- Consider a node s of a minimal OBDD D computing T(G, f). The number of nodes on level ℓ equals ^{#T(G,f)}/_{#T(G1,f1)#T(G2,f2)} = 2^{|V|+cc(G)-cc(G1)-cc(G2)}.
- Bob plays the following game: G₁ = G, G₂ is the empty graph on V. Every his move, Bob remove one edge from G₁ and add it to G₂. Bob calculates a value α = cc(G₁) + cc(G₂). Initially α₀ = |V| + cc(G). Bob pays the maximal value of α₀ − α. The component width of G (compw(G)) is the minimum possible Bob's payout.

 $\alpha_0 = 6$ $\alpha_{min} = 6$

- The number of satisfying assignments of a satisfiable T(G, f) is 2^{|E|-|V|+cc(G)}.
- Consider a node s of a minimal OBDD D computing T(G, f). The number of nodes on level ℓ equals ^{#T(G,f)}/_{#T(G1,f1)#T(G2,f2)} = 2^{|V|+cc(G)-cc(G1)-cc(G2)}.
- Bob plays the following game: G₁ = G, G₂ is the empty graph on V. Every his move, Bob remove one edge from G₁ and add it to G₂. Bob calculates a value α = cc(G₁) + cc(G₂). Initially α₀ = |V| + cc(G). Bob pays the maximal value of α₀ − α. The component width of G (compw(G)) is the minimum possible Bob's payout.

 $\alpha_0 = 6 \quad \alpha_{min} = 5$

- The number of satisfying assignments of a satisfiable T(G, f) is 2^{|E|-|V|+cc(G)}.
- Consider a node s of a minimal OBDD D computing T(G, f). The number of nodes on level ℓ equals ^{#T(G,f)}/_{#T(G1,f1)#T(G2,f2)} = 2^{|V|+cc(G)-cc(G1)-cc(G2)}.
- Bob plays the following game: G₁ = G, G₂ is the empty graph on V. Every his move, Bob remove one edge from G₁ and add it to G₂. Bob calculates a value α = cc(G₁) + cc(G₂). Initially α₀ = |V| + cc(G). Bob pays the maximal value of α₀ − α. The component width of G (compw(G)) is the minimum possible Bob's payout.

 $\alpha_0 = 6 \quad \alpha_{min} = 4$

- The number of satisfying assignments of a satisfiable T(G, f) is 2^{|E|-|V|+cc(G)}.
- Consider a node s of a minimal OBDD D computing T(G, f). The number of nodes on level ℓ equals ^{#T(G,f)}/_{#T(G1,f1)#T(G2,f2)} = 2^{|V|+cc(G)-cc(G1)-cc(G2)}.
- Bob plays the following game: G₁ = G, G₂ is the empty graph on V. Every his move, Bob remove one edge from G₁ and add it to G₂. Bob calculates a value α = cc(G₁) + cc(G₂). Initially α₀ = |V| + cc(G). Bob pays the maximal value of α₀ − α. The component width of G (compw(G)) is the minimum possible Bob's payout.

$$\alpha_0 = 6 \quad \alpha_{min} = 4$$

- The number of satisfying assignments of a satisfiable T(G, f) is 2^{|E|-|V|+cc(G)}.
- Consider a node s of a minimal OBDD D computing T(G, f). The number of nodes on level ℓ equals ^{#T(G,f)}/_{#T(G1,f1)#T(G2,f2)} = 2^{|V|+cc(G)-cc(G1)-cc(G2)}.
- Bob plays the following game: G₁ = G, G₂ is the empty graph on V. Every his move, Bob remove one edge from G₁ and add it to G₂. Bob calculates a value α = cc(G₁) + cc(G₂). Initially α₀ = |V| + cc(G). Bob pays the maximal value of α₀ − α. The component width of G (compw(G)) is the minimum possible Bob's payout.

 $\alpha_0 = 6 \quad \alpha_{min} = 3$

- The number of satisfying assignments of a satisfiable T(G, f) is 2^{|E|-|V|+cc(G)}.
- Consider a node s of a minimal OBDD D computing T(G, f). The number of nodes on level ℓ equals ^{#T(G,f)}/_{#T(G1,f1)#T(G2,f2)} = 2^{|V|+cc(G)-cc(G1)-cc(G2)}.
- Bob plays the following game: G₁ = G, G₂ is the empty graph on V. Every his move, Bob remove one edge from G₁ and add it to G₂. Bob calculates a value α = cc(G₁) + cc(G₂). Initially α₀ = |V| + cc(G). Bob pays the maximal value of α₀ − α. The component width of G (compw(G)) is the minimum possible Bob's payout.

 $\alpha_0 = 6$ $\alpha_{min} = 3$

- The number of satisfying assignments of a satisfiable T(G, f) is 2^{|E|-|V|+cc(G)}.
- Consider a node s of a minimal OBDD D computing T(G, f). The number of nodes on level ℓ equals ^{#T(G,f)}/_{#T(G1,f1)#T(G2,f2)} = 2^{|V|+cc(G)-cc(G1)-cc(G2)}.
- Bob plays the following game: G₁ = G, G₂ is the empty graph on V. Every his move, Bob remove one edge from G₁ and add it to G₂. Bob calculates a value α = cc(G₁) + cc(G₂). Initially α₀ = |V| + cc(G). Bob pays the maximal value of α₀ − α. The component width of G (compw(G)) is the minimum possible Bob's payout.

 $\alpha_0 = 6$ $\alpha_{min} = 3$

- The number of satisfying assignments of a satisfiable T(G, f) is 2^{|E|-|V|+cc(G)}.
- Consider a node s of a minimal OBDD D computing T(G, f). The number of nodes on level ℓ equals ^{#T(G,f)}/_{#T(G1,f1)#T(G2,f2)} = 2^{|V|+cc(G)-cc(G1)-cc(G2)}.
- Bob plays the following game: G₁ = G, G₂ is the empty graph on V. Every his move, Bob remove one edge from G₁ and add it to G₂. Bob calculates a value α = cc(G₁) + cc(G₂). Initially α₀ = |V| + cc(G). Bob pays the maximal value of α₀ − α. The component width of G (compw(G)) is the minimum possible Bob's payout.

 $\alpha_0 = 6$ $\alpha_{min} = 3$ payout = 3

- The number of satisfying assignments of a satisfiable T(G, f) is 2^{|E|-|V|+cc(G)}.
- Consider a node s of a minimal OBDD D computing T(G, f). The number of nodes on level ℓ equals ^{#T(G,f)}/_{#T(G1,f1)#T(G2,f2)} = 2^{|V|+cc(G)-cc(G1)-cc(G2)}.
- Bob plays the following game: G₁ = G, G₂ is the empty graph on V. Every his move, Bob remove one edge from G₁ and add it to G₂. Bob calculates a value α = cc(G₁) + cc(G₂). Initially α₀ = |V| + cc(G). Bob pays the maximal value of α₀ − α. The component width of G (compw(G)) is the minimum possible Bob's payout.

- ► Is it possible to prove that $S_R(T(G, c)) \ge 2^{\Omega(tw(G))}$?
- Is it possible to prove a similar lower bound for unrestricted resolution?
- Is it possible to separate Search_{T(G,c)} and SearchVertex_{G,c} for constant degree graphs?