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Tseitin formulas

I Let G (V ,E ) be an undirected graph.

I f : V → {0, 1} is a charging function.

I Edge e ∈ E 7→ variable xe .

I T (G , f ) =
∧

v∈v Parity(v), where
Parity(v) =( ∑

e is incident to v

xe = f (v) mod 2

)
.

I T (G , f ) is represented in CNF.
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x1 + x2 = 1

x1 + x3 + x4 = 0

x2 + x4 = 1

x3 = 1

I [Urquhart, 1987] T (G , f ) is satisfiable ⇐⇒ for every
connected component U ⊆ V ,

∑
v∈U f (v) = 0.
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Resolution and its subsystems

I Resolution refutation of a CNF formula φ
I Resolution rule C∨x,D∨¬x

C∨D ,
I A refutation of φ is a sequence of clauses C1,C2, . . . ,Cs such

that
I for every i , Ci is either a clause of φ or is obtained by the

resolution rule from previous.
I Cs is an empty clause.

I Regular resolution: for any path in the proof-graph no
variable is used twice in a resolution rule.

I Tree-like resolution: the proof-graph is a tree.

S(φ) ≤ Sreg (φ) ≤ ST (φ)

I Resolution width The width of a clause is the number of
literals in it. The width of a refutation is the maximal width
of a clause in it. w(φ) is the minimal posible width of
resolution refutation of φ.
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Tseitin formulas and resolution

I Lower bounds for particular graphs
I Sreg (T (�n, f )) = nω(1) where �n is n × n grid (Tseitin, 1968).
I S(T (�n, f )) = 2Ω(n) (Dantchev, Riis, 2001)
I S(T (G , f )) = 2Ω(n) for an expander G with n vertices

(Urquhart, 1987, Ben-Sasson, Wigderson, 2001).

I Upper bound (Alekhnovich, Razborov, 2011)
I Sreg (T (G , f ) = 2O(w(T (G ,f )))poly(|V |), where w(φ) is a

resolution width of φ.

I Urquhart’s conjecture. Regular resolution polynomially
simulates general resolution on Tseitin formulas.

I Stronger conjecture. S(T (G , f )) = 2Ω(w(T (G ,f )))

I It is false for star graph Sn,
S(T (Sn, f ) = O(n), while w(T (Sn, f )) = n.

I Perhaps, the conjecture is true for
constant-degree graphs.
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Constant degree graphs
I (Galesi et al. 2018) w(T (G , f )) = Θ(tw(G )) for O(1)-degree

graphs.
I The inequality S(T (G , f )) ≥ 2Ω(tw(G)) is known for following

O(1)-degree graphs:
I (Size-width relation): graphs with large treewidth:

tw(G ) = Ω(n)
I (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
I (xorification): graphs with doubled edges

I Grid Minor Theorem (Robertson, Seymour 1986),
(Chuzhoy 2015): Every graph G has a grid minor of size t × t,
where t = Ω

(
tw(G )δ

)
.

I Known for δ = 1/10. Necessary: δ ≤ 1
2 .

I (Håstad, 2017) Let S be the size of the shortest d-depth Frege

proof of T (�n, f ). Then S ≥ 2nΩ(1/d)

for d ≤ C log n
log log n

I For resolution this method gives S(T (G , f )) ≥ 2tw(G)δ .
I Tree-like resolution

I ST (T (G , f )) ≥ 2Ω(tw(G)) (size-width relation)
I ST (T (G , f )) ≤ 2Ω(tw(G) log |V |) (Beame, Beck, Impagliazzo,

2013, I., Oparin, 2013)
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I (Håstad, 2017) Let S be the size of the shortest d-depth Frege

proof of T (�n, f ). Then S ≥ 2nΩ(1/d)

for d ≤ C log n
log log n

I For resolution this method gives S(T (G , f )) ≥ 2tw(G)δ .
I Tree-like resolution

I ST (T (G , f )) ≥ 2Ω(tw(G)) (size-width relation)
I ST (T (G , f )) ≤ 2Ω(tw(G) log |V |) (Beame, Beck, Impagliazzo,

2013, I., Oparin, 2013)
5 / 19



Constant degree graphs
I (Galesi et al. 2018) w(T (G , f )) = Θ(tw(G )) for O(1)-degree

graphs.
I The inequality S(T (G , f )) ≥ 2Ω(tw(G)) is known for following

O(1)-degree graphs:
I (Size-width relation): graphs with large treewidth:

tw(G ) = Ω(n)
I (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
I (xorification): graphs with doubled edges

I Grid Minor Theorem (Robertson, Seymour 1986),
(Chuzhoy 2015): Every graph G has a grid minor of size t × t,
where t = Ω

(
tw(G )δ

)
.

I Known for δ = 1/10. Necessary: δ ≤ 1
2 .
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I (Håstad, 2017) Let S be the size of the shortest d-depth Frege

proof of T (�n, f ). Then S ≥ 2nΩ(1/d)

for d ≤ C log n
log log n

I For resolution this method gives S(T (G , f )) ≥ 2tw(G)δ .
I Tree-like resolution

I ST (T (G , f )) ≥ 2Ω(tw(G)) (size-width relation)
I ST (T (G , f )) ≤ 2Ω(tw(G) log |V |) (Beame, Beck, Impagliazzo,

2013, I., Oparin, 2013)
5 / 19



Constant degree graphs
I (Galesi et al. 2018) w(T (G , f )) = Θ(tw(G )) for O(1)-degree

graphs.
I The inequality S(T (G , f )) ≥ 2Ω(tw(G)) is known for following

O(1)-degree graphs:
I (Size-width relation): graphs with large treewidth:

tw(G ) = Ω(n)
I (Alekhnovich, Razborov, 2011): graphs with bounded cyclicity
I (xorification): graphs with doubled edges

I Grid Minor Theorem (Robertson, Seymour 1986),
(Chuzhoy 2015): Every graph G has a grid minor of size t × t,
where t = Ω

(
tw(G )δ

)
.

I Known for δ = 1/10. Necessary: δ ≤ 1
2 .
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Our results
Main theorem. Sreg (T (G , f ) ≥ 2Ω(tw(G)/ log |V |).

Plan of the proof

1. If Sreg (T (G , f )) = S , then there exists a 1-BP computing

satisfiable Tseitin formula T (G , f ′) of size SO(log |V |).
I If ST (T (G , f )) = S , then there exists a 1-BP computing

satisfiable Tseitin formula T (G , f ′) of size S .
I Remark: it is not true for decision trees. Let Pn be a path with

doubled edges. Then ST (T (Pn, f )) = O(n2) but any decision
tree computing satisfiable T (Pn, f ) has size at least 2n.

2. 1-BP(T (G , f ′)) ≥ 2Ω(tw(G))

I Previouse result: (Glinskih, I., 2019)

2O(tw(G) log |V |) ≥ 1-BP(T (G , f ′)) ≥ 2Ω(tw(G)δ), where δ is a
constant from Grid Minor Theorem.

Example. There exist O(1)-degree graphs Gn(Vn,En) such that
1-BP(T(Gn, c)) ≥ 2Ω(tw(Gn) log |Vn|) and tw(Gn) = nΩ(1).

I ST (T(Gn, c)) ≥ 2Ω(tw(Gn) log |Vn|), Sreg (T(Gn, c)) = 2Θ(tw(Gn)).

6 / 19
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1-BP

x

y z

z z y

0 1

0 1

0
0

1

0

1

1

1

0

0

1

0

start

I f : {0, 1}n → X is represented by a
DAG with the unique source.

I Sinks are labeled with distinct
elements of X . Each non-sink node
is labeled with a variable and has
two outgoing edges: 0-edge and
1-edge.

I Given an assignment ξ a branching
program returns the label of the
sink at the end of the path
corresponding to ξ.

I Read-once branching program (1-BP): in every path every
variable appears at most once.

I In 1-BP: u
a→ v , and u is labeled with x . If u computes fu and

v computes fv , then fv = fu|x=a.
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SearchVertex

I Searchφ: Let φ be an unsatisfiable CNF. Given an assignment
σ, find a clause of φ falsified by σ.

I Theorem (folklore). φ has a regular resolution refutation of
size S iff there exists a 1-BP of size S computing Searchφ.

I For an unsatisfiable formula T(G , f ):
I SearchT(G ,f ): given an assignment, find a falsified clause of

T(G , f ).
I SearchVertex(G , f ): given an assignment, find a vertex of G

with violated parity condition.

I Simple observation
1-BP(SearchT(G ,f )) ≥ 1-BP(SearchVertex(G , f )).

I We are going to prove that
1-BP(T(G , f ′)) ≤ 1-BP(SearchVertex(G , f ))O(log |V |).
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SearchVertex(G , f ) vs SearchT(G ,f )

I SearchVertex(G , f ) and SearchT(G ,f ) are equivalent for
decision trees.

I For 1-BP:

1.

Unrestricted degrees. Gn:
1-BP(SearchVertex(Gn, f )) = O(n),
while SearchT(Gn,f ) = 2Ω(n).

2. Logarithmic degrees. Klog n:
1-BP(SearchVertex(Klog n, f )) = O(n), while

1-BP(SearchT(Klog n,f )) = 2Ω(log2 n) by size-width relation.
3. Constant degrees. We conjecture that for O(1)-degree

graphs two problems are polynomially equivalent. But this
conjecture implies stronger inequality
Sreg (T(G , f )) ≥ 2Ω(tw(G)).
I Xorification: S(φ⊕) ≥ 2Ω(w(φ)).
I For Tseitin formulas xorification = doubling of edges.
I It improves bound on SearchT(Gn,f )⊕ but 1-BP for

SearchVertex increases in at most a constant. 10 / 19
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Structure of a 1-BP computing a satisfiable T(G , f )

(V ,E )

xe = 0 xe = 1

e
u v

u v u v

(V ,E \ e) (V ,E \ e)

xe = 0 xe = 1

e
u v

u v0-sink

T(H, f )|xe=a = T (H − e, f +
a (1u + 1v )), where e = (u, v).

If e is a bridge, then for some
a ∈ {0, 1}, T(H, f )|xe=a is unsat-
isfiable.
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Structure of a 1-BP computing SearchVertex

(V ,E )

xe = 0 xe = 1

e
u v

u v u v

(V ,E \ e) (V ,E \ e)

xe = 0 xe = 1

e
u v

u v

I Let D be a minimum-size 1-BP computing
SearchVertex(G , f ). Let s be a node of D
computing SearchVertex(H, g) labeled by
Xe . Then the children of s compute
SearchVertex(H − e, g0) and
SearchVertex(H − e, g1).

I Structural lemma. If e is a bridge of H and
H − e = C1 t C2 for two connected
components C1 and C2, then the children of
s compute SearchVertex(C1, g0) and
SearchVertex(C2, g1).
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Transformation
SearchVertex(G , f ) T(G , f ′)

(V ,E )

xe = 0 xe = 1

e
u v

u v u v

(V ,E \ e) (V ,E \ e)

xe = 0 xe = 1

e
u v

u v

(V ,E )

xe = 0 xe = 1

e
u v

u v u v

(V ,E \ e) (V ,E \ e)

xe = 0 xe = 1

e
u v

u v0-sink

Let D be a 1-BP computing SearchVertex(G , f ). By induction
(from sinks) for every node s ∈ D computing SearchVertex(H, c)
and every w ∈ V (H), we construct a node s computing
T(H, c + 1w).
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Transformation

xe = 0 xe = 1

e
u v

u v
0-sink

C1 C2

T(C1 ∪ C2, f ) = T(C1, f ) ∧ T(C2, f )

0 1 0 1

T(C1, f ) T(C2, f )
0

0 1

T(C1, f ) ∧ T(C2, f )

I Nontrivial case: e is a bridge.

I By induction hypothesis we have
node s1 computing T(C1, f ) and
s2 computing T(C1, f ) but we
need a node computing
T(C1 ∪ C2, f ) =
T(C1, f ) ∧ T(C2, f ).

I Make a copy of subprogram of
s1 where all edges to 1-sink
redirected to s2.

I The necessity to copy one of the
subdiagrams results in a
quasipolynomial
(S 7→ SO(log |V |)) blowup.
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Our results

Main theorem. Sreg (T (G , f ) ≥ 2Ω(tw(G)/ log |V |).

Plan of the proof

1. If Sreg (T (G , f )) = S , then there exists a 1-BP computing
satisfiable Tseitin formula T (G , f ′) of size SO(log |V |).

2. 1-BP(T (G , f ′)) ≥ 2Ω(tw(G))

I Minimal 1-BP for (T(G , f )) is OBDD (in every path variables
appear in the same order).

I OBDD(T(G , f )) ≥ 2Ω(tw(G)).
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Number of acc. paths passing a node of 1-BP

s

1

E1 t E2 = E

0

G1 = (V ,E1)E1

G2 = (V ,E2)E2

I Let s computes T(G2, c2), where
G2 = (V ,E2). Hence, there are exactly
]T(G2, c2) paths from s to 1-sink.

I Every path from the source to s is a sat.
assignment of T(G1, c1), where
G1 = (V ,E1). Hence, there are at most
]T(G1, c1) paths from the source to s.

I In minimal OBDD all paths starts with
E1, hence all sat. assignments of
T(G1, c1) can be realized. Hence there
are exactly ]T(G1, c1) paths from the
source to s.

I In 1-BP: at most ]T(G1, c1)× ]T(G2, c2) accepting passing s.

I In minimal OBDD: exactly ]T(G1, c1)× ]T(G2, c2) accepting
paths passing s.
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Optimal 1-BP computing a Tseitin formula is OBDD

Theorem. 1-BP(T(G , c)) ≥ OBDD(T(G , c)).

I Let D be a minimal 1-BP computing T(G , c).

I Let as be the number of accepting paths passing s.

I For an accepting path p we denote by γ(p) =
∑

s∈p
1
as

.

I Let P be the set of accepting paths in D; |P| = ]T(G , c).

I |D| − 1 =
∑

p∈P γ(p) ≥ |P|minp∈P γ(p) = |P|γ(p∗).

I Let D ′ be a minimal OBDD for T(G , c) in order
corresponding p∗.
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OBDD and component width
I The number of satisfying assignments of a satisfiable T(G , f )

is 2|E |−|V |+cc(G).
I Fix a spanning forest, take arbitrary values to all edges out of

it. The value of edges from the spanning forest will be
uniquely determined.

I Consider a node s of a minimal OBDD D computing T(G , f ).
The number of nodes on level ` equals

]T(G ,f )
]T(G1,f1)]T(G2,f2) = 2|V |+cc(G)−cc(G1)−cc(G2).

I Bob plays the following game: G1 = G , G2 is the empty graph
on V . Every his move, Bob remove one edge from G1 and add
it to G2. Bob calculates a value α = cc(G1) + cc(G2). Initially
α0 = |V |+ cc(G ). Bob pays the maximal value of α0 − α.
The component width of G (compw(G )) is the minimum
possible Bob’s payout.
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I Theorem. pw(G ) + 1 ≥
compw(G ) ≥ 1

2 (tw(G )− 1).
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Open problems

I Is it possible to prove that SR(T(G , c)) ≥ 2Ω(tw(G))?

I Is it possible to prove a similar lower bound for unrestricted
resolution?

I Is it possible to separate SearchT(G ,c) and SearchVertexG ,c
for constant degree graphs?
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