Non-negative rank of ϵ-perturbed matrices

Pavel Hrubeš

Institute of Mathematics, Prague
January 24, 2020

The model

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

The model

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

- $\mathcal{L}(x, y)$ a system of inequalities

$$
\begin{aligned}
& L_{1}(x, y) \geq b_{1}, \ldots, L_{m}(x, y) \geq b_{m} \\
& x=\left(x_{1}, \ldots x_{n}\right), y=\left(y_{1}, \ldots, y_{k}\right)
\end{aligned}
$$

The model

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

- $\mathcal{L}(x, y)$ a system of inequalities

$$
\begin{aligned}
& \quad L_{1}(x, y) \geq b_{1}, \ldots, L_{m}(x, y) \geq b_{m} \\
& x=\left(x_{1}, \ldots x_{n}\right), y=\left(y_{1}, \ldots, y_{k}\right) \\
& \forall x \in\{0,1\}^{n}
\end{aligned}
$$

$$
f(x)=1 \text { iff } \exists y \in \mathbb{R}^{k} \mathcal{L}(x, y) \text { holds }
$$

The model

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

- $\mathcal{L}(x, y)$ a system of inequalities

$$
\begin{aligned}
& \quad L_{1}(x, y) \geq b_{1}, \ldots, L_{m}(x, y) \geq b_{m} \\
& x=\left(x_{1}, \ldots x_{n}\right), y=\left(y_{1}, \ldots, y_{k}\right) \\
& \forall x \in\{0,1\}^{n}
\end{aligned}
$$

$$
f(x)=1 \text { iff } \exists y \in \mathbb{R}^{k} \mathcal{L}(x, y) \text { holds }
$$

- Complexity $=$ number of inequalities in \mathcal{L}

The model

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

- $\mathcal{L}(x, y)$ a system of inequalities

$$
\begin{aligned}
& \quad L_{1}(x, y) \geq b_{1}, \ldots, L_{m}(x, y) \geq b_{m} \\
& x=\left(x_{1}, \ldots x_{n}\right), y=\left(y_{1}, \ldots, y_{k}\right) \\
& \nabla \forall x \in\{0,1\}^{n}
\end{aligned}
$$

$$
f(x)=1 \text { iff } \exists y \in \mathbb{R}^{k} \mathcal{L}(x, y) \text { holds }
$$

- Complexity $=$ number of inequalities in \mathcal{L}

Monotone version: require x to have non-negative coefficients

The model

$P \subseteq \mathbb{R}^{n}$ a polyhedron

The model

$P \subseteq \mathbb{R}^{n}$ a polyhedron

- Extension complexity of $P, \mathrm{xc}(P):=$ the smallest r s.t. P is a projection of some $Q \subseteq \mathbb{R}^{n+k}$ with r facets.

$$
x \in P \text { iff } \exists y \in \mathbb{R}^{k}(x, y) \in Q, Q \text { given by } r \text { inequalities. }
$$

The model

$P \subseteq \mathbb{R}^{n}$ a polyhedron

- Extension complexity of $P, \mathrm{xc}(P):=$ the smallest r s.t. P is a projection of some $Q \subseteq \mathbb{R}^{n+k}$ with r facets.

$$
x \in P \text { iff } \exists y \in \mathbb{R}^{k}(x, y) \in Q, Q \text { given by } r \text { inequalities. }
$$

- Separation complexity of $f:\{0,1\}^{n} \rightarrow\{0,1\}, \operatorname{sep}(f):=$ minimum extension complexity of $P \subseteq \mathbb{R}^{n}$ with

$$
f^{-1}(1) \subseteq P, f^{-1}(0) \cap P=\emptyset .
$$

The model

$P \subseteq \mathbb{R}^{n}$ a polyhedron

- Extension complexity of $P, \mathrm{xc}(P):=$ the smallest r s.t. P is a projection of some $Q \subseteq \mathbb{R}^{n+k}$ with r facets.

$$
x \in P \text { iff } \exists y \in \mathbb{R}^{k}(x, y) \in Q, Q \text { given by } r \text { inequalities. }
$$

- Separation complexity of $f:\{0,1\}^{n} \rightarrow\{0,1\}$, $\operatorname{sep}(f):=$ minimum extension complexity of $P \subseteq \mathbb{R}^{n}$ with

$$
f^{-1}(1) \subseteq P, f^{-1}(0) \cap P=\emptyset .
$$

- Monotone separation complexity of $f, \operatorname{sep}_{+}(f):=$ minimum extension complexity of P with

$$
\begin{aligned}
& f^{-1}(1) \subseteq P^{*}, f^{-1}(0) \cap P^{*}=\emptyset, \\
& P^{*}:=\left\{z \in \mathbb{R}^{n}: \exists x \in P, x \leq z\right\} .
\end{aligned}
$$

- Considered in [Valiant' 82], [Yannakakis'91]
- Considered in [Valiant' 82], [Yannakakis'91]

Circuit-Size $(f) \geq \frac{1}{10} \operatorname{sep}(f)$.

- Considered in [Valiant' 82], [Yannakakis'91]

Circuit-Size $(f) \geq \frac{1}{10} \operatorname{sep}(f)$.

- [Oliveira, Pudlák'17]

Monotone-Circuit-Size $(f) \geq \frac{1}{10} \operatorname{sep}_{+}(f)$.

- Considered in [Valiant' 82], [Yannakakis'91]

Circuit-Size $(f) \geq \frac{1}{10} \operatorname{sep}(f)$.

- [Oliveira, Pudlák'17]

Monotone-Circuit-Size $(f) \geq \frac{1}{10} \operatorname{sep}_{+}(f)$.

- There exists a non-explicit f with $\operatorname{sep}(f) \geq 2^{\Omega(n)}\left[H^{\prime} 19\right]$

Lovász-Schrijver connection

- Exponential I.b. for LS* [Beame et al.'07], [LS'08, Sherstov'12,..]

Lovász-Schrijver connection

- Exponential I.b. for LS* [Beame et al.'07], [LS'08, Sherstov'12,..]
- LS has feasible interpolation via general Boolean circuits [Pudlák'98]

Lovász-Schrijver connection

- Exponential I.b. for LS* [Beame et al.'07], [LS'08, Sherstov'12,..]
- LS has feasible interpolation via general Boolean circuits [Pudlák'98]
- a modification of LS has feasible interpolation via monotone linear programs [Oliveira, Pudlák'98]

Non-negative rank

$M \in \mathbb{R}^{n \times m}$, a matrix with non-negative entries

Non-negative rank

$M \in \mathbb{R}^{n \times m}$, a matrix with non-negative entries
Non-negative rank of $M, \mathrm{rk}_{+}(f):=$ minimum r s.t.

$$
M=A \cdot B,
$$

for some $A \in \mathbb{R}^{n \times r}, B \in \mathbb{R}^{r \times m}$ with non-negative entries.

$$
\begin{aligned}
& P_{0} \subseteq P_{1} \subseteq \mathbb{R}^{n} \\
& P_{0}:=\operatorname{conv}\left(v_{1}, \ldots, v_{m_{0}}\right) \\
& P_{1} \text { defined by inequalities } \ell_{1}(x) \geq b_{1}, \ldots, \ell_{m_{1}}(x) \geq b_{m_{1}}
\end{aligned}
$$

Slack matrix $S \in \mathbb{R}^{m_{1} \times m_{0}}$:
$P_{0} \subseteq P_{1} \subseteq \mathbb{R}^{n}$
$P_{0}:=\operatorname{conv}\left(v_{1}, \ldots, v_{m_{0}}\right)$
P_{1} defined by inequalities $\ell_{1}(x) \geq b_{1}, \ldots, \ell_{m_{1}}(x) \geq b_{m_{1}}$
Slack matrix $S \in \mathbb{R}^{m_{1} \times m_{0}}$:

- Rows indexed by the constraints of P_{1}, columns by the points v_{j}.
$P_{0} \subseteq P_{1} \subseteq \mathbb{R}^{n}$
$P_{0}:=\operatorname{conv}\left(v_{1}, \ldots, v_{m_{0}}\right)$
P_{1} defined by inequalities $\ell_{1}(x) \geq b_{1}, \ldots, \ell_{m_{1}}(x) \geq b_{m_{1}}$
Slack matrix $S \in \mathbb{R}^{m_{1} \times m_{0}}$:
- Rows indexed by the constraints of P_{1}, columns by the points v_{j}.
- $S_{i, j}=\ell_{i}\left(v_{j}\right)-b_{i}$.
$P_{0} \subseteq P_{1} \subseteq \mathbb{R}^{n}$
$P_{0}:=\operatorname{conv}\left(v_{1}, \ldots, v_{m_{0}}\right)$
P_{1} defined by inequalities $\ell_{1}(x) \geq b_{1}, \ldots, \ell_{m_{1}}(x) \geq b_{m_{1}}$
Slack matrix $S \in \mathbb{R}^{m_{1} \times m_{0}}$:
- Rows indexed by the constraints of P_{1}, columns by the points v_{j}.
- $S_{i, j}=\ell_{i}\left(v_{j}\right)-b_{i}$.

Theorem (Yannakakis, Fiorini et al.)

$$
r k_{+}(S)-1 \leq \min _{P_{0} \subseteq P \subseteq P_{1}} x c(P) \leq r k_{+}(S) .
$$

$f:\{0,1\}^{n} \rightarrow\{0,1\}$ a monotone Boolean function.

$f:\{0,1\}^{n} \rightarrow\{0,1\}$ a monotone Boolean function.
Define $M_{+}(f)$ as $\left|f^{-1}(0)\right| \times\left|f^{-1}(1)\right|$ matrix s.t.:
$f:\{0,1\}^{n} \rightarrow\{0,1\}$ a monotone Boolean function.
Define $M_{+}(f)$ as $\left|f^{-1}(0)\right| \times\left|f^{-1}(1)\right|$ matrix s.t.:

- rows indexed by rejecting inputs $f(y)=0$, columns by accepting inputs $f(x)=1$,
$f:\{0,1\}^{n} \rightarrow\{0,1\}$ a monotone Boolean function.
Define $M_{+}(f)$ as $\left|f^{-1}(0)\right| \times\left|f^{-1}(1)\right|$ matrix s.t.:
- rows indexed by rejecting inputs $f(y)=0$, columns by accepting inputs $f(x)=1$,
- $M_{+}(f)_{y, x}=\sum_{i=1}^{n} x_{i}\left(1-y_{i}\right)$.
$f:\{0,1\}^{n} \rightarrow\{0,1\}$ a monotone Boolean function.
Define $M_{+}(f)$ as $\left|f^{-1}(0)\right| \times\left|f^{-1}(1)\right|$ matrix s.t.:
- rows indexed by rejecting inputs $f(y)=0$, columns by accepting inputs $f(x)=1$,
- $M_{+}(f)_{y, x}=\sum_{i=1}^{n} x_{i}\left(1-y_{i}\right)$.

Properties:
$f:\{0,1\}^{n} \rightarrow\{0,1\}$ a monotone Boolean function.
Define $M_{+}(f)$ as $\left|f^{-1}(0)\right| \times\left|f^{-1}(1)\right|$ matrix s.t.:

- rows indexed by rejecting inputs $f(y)=0$, columns by accepting inputs $f(x)=1$,
- $M_{+}(f)_{y, x}=\sum_{i=1}^{n} x_{i}\left(1-y_{i}\right)$.

Properties:

- every entry is ≥ 1,
$f:\{0,1\}^{n} \rightarrow\{0,1\}$ a monotone Boolean function.
Define $M_{+}(f)$ as $\left|f^{-1}(0)\right| \times\left|f^{-1}(1)\right|$ matrix s.t.:
- rows indexed by rejecting inputs $f(y)=0$, columns by accepting inputs $f(x)=1$,
- $M_{+}(f)_{y, x}=\sum_{i=1}^{n} x_{i}\left(1-y_{i}\right)$.

Properties:

- every entry is ≥ 1,
- $\mathrm{rk}_{+}\left(M_{+}(f)\right) \leq n$.
$f:\{0,1\}^{n} \rightarrow\{0,1\}$ a monotone Boolean function.
Define $M_{+}(f)$ as $\left|f^{-1}(0)\right| \times\left|f^{-1}(1)\right|$ matrix s.t.:
- rows indexed by rejecting inputs $f(y)=0$, columns by accepting inputs $f(x)=1$,
- $M_{+}(f)_{y, x}=\sum_{i=1}^{n} x_{i}\left(1-y_{i}\right)$.

Properties:

- every entry is ≥ 1,
- $\mathrm{rk}_{+}\left(M_{+}(f)\right) \leq n$.
$M(f)$:
- $M(f)_{y, x}=$ Hamming distance of y and x.

$$
R_{\epsilon}(f):=\mathrm{rk}_{+}\left(M_{+}(f)-\epsilon J\right) \text {, where } J \text { is the all-ones matrix. }
$$

$$
R_{\epsilon}(f):=\mathrm{rk}_{+}\left(M_{+}(f)-\epsilon J\right) \text {, where } J \text { is the all-ones matrix. }
$$

- Monotone-Fla-Size $(f) \geq \frac{R_{1}(f)}{n-1}\left[H^{\prime} 12\right.$, Goos et al.'18].

$$
R_{\epsilon}(f):=\mathrm{rk}_{+}\left(M_{+}(f)-\epsilon J\right) \text {, where } J \text { is the all-ones matrix. }
$$

- Monotone-Fla-Size (f) $\geq \frac{R_{1}(f)}{n-1}$ [H'12, Goos et al.'18].
- Monotone-Circuit-Size $(f) \geq \frac{\min _{\epsilon \gg} R_{\epsilon}(f)}{10}-n$.

$$
R_{\epsilon}(f):=\mathrm{rk}_{+}\left(M_{+}(f)-\epsilon \mathcal{J}\right) \text {, where } J \text { is the all-ones matrix. }
$$

- Monotone-Fla-Size $(f) \geq \frac{R_{1}(f)}{n-1}\left[H^{\prime} 12\right.$, Goos et al.'18].
- Monotone-Circuit-Size $(f) \geq \frac{\min _{\epsilon}>R_{\epsilon}(f)}{10}-n$.

Theorem

$$
\left|\operatorname{sep}_{+}(f)-\min _{\epsilon>0} R_{\epsilon}(f)\right| \leq O(n) .
$$

$$
R_{\epsilon}(f):=\mathrm{rk}_{+}\left(M_{+}(f)-\epsilon J\right) \text {, where } J \text { is the all-ones matrix. }
$$

- Monotone-Fla-Size (f) $\geq \frac{R_{1}(f)}{n-1}$ [H'12, Goos et al.'18].
- Monotone-Circuit-Size $(f) \geq \frac{\min _{\epsilon}>R_{\epsilon}(f)}{10}-n$.

Theorem

$$
\left|\operatorname{sep}_{+}(f)-\min _{\epsilon>0} R_{\epsilon}(f)\right| \leq O(n) .
$$

- Replacing $M_{+}(f)$ by $M(f)$, the above hold for non-monotone computations.

Strictly positive rank

$M \in \mathbb{R}^{n \times m}$, a matrix with positive entries

Strictly positive rank

$M \in \mathbb{R}^{n \times m}$, a matrix with positive entries
Strictly positive rank of M, $\mathrm{rk}_{*}(f)$:= minimum r s.t.

$$
M=A \cdot B,
$$

for some $A \in \mathbb{R}^{n \times r}, B \in \mathbb{R}^{r \times m}$ with positive entries

Strictly positive rank

$M \in \mathbb{R}^{n \times m}$, a matrix with positive entries
Strictly positive rank of $M, \mathrm{rk}_{*}(f)$:= minimum r s.t.

$$
M=A \cdot B
$$

for some $A \in \mathbb{R}^{n \times r}, B \in \mathbb{R}^{r \times m}$ with positive entries

Theorem

$$
\left|\operatorname{sep}_{+}(f)-r k_{*}\left(M_{+}(f)\right)\right| \leq O(n) .
$$

Open problem 1
Find an explicit monotone f with $\operatorname{sep}_{+}(f)$ superpolynomial in n.
Open problem 2
Find an explicit M with positive entries such that $\min _{\epsilon>0} \mathrm{rk}_{+}\left(M_{+}(f)-\epsilon J\right)$ is superpolynomial in $\mathrm{rk}_{+}(M)$.

THANK YOU

