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The model

f : {0,1}n → {0,1}

I L(x , y) a system of inequalities

L1(x , y) ≥ b1, . . . , Lm(x , y) ≥ bm

x = (x1, . . . xn), y = (y1, . . . , yk )

I ∀x ∈ {0,1}n

f (x) = 1 iff ∃y ∈ Rk L(x , y) holds

I Complexity= number of inequalities in L

Monotone version: require x to have non-negative coefficients
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The model
P ⊆ Rn a polyhedron

I Extension complexity of P, xc(P) := the smallest r s.t. P is
a projection of some Q ⊆ Rn+k with r facets.

x ∈ P iff ∃y ∈ Rk (x , y) ∈ Q , Q given by r inequalities.

I Separation complexity of f : {0,1}n → {0,1}, sep(f ):=
minimum extension complexity of P ⊆ Rn with

f−1(1) ⊆ P , f−1(0) ∩ P = ∅ .

I Monotone separation complexity of f , sep+(f ):= minimum
extension complexity of P with

f−1(1) ⊆ P∗ , f−1(0) ∩ P∗ = ∅ ,

P∗ := {z ∈ Rn : ∃x ∈ P , x ≤ z}.
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I Considered in [Valiant’ 82], [Yannakakis’91]

Circuit-Size(f ) ≥ 1
10

sep(f ) .

I [Oliveira, Pudlák’17]

Monotone-Circuit-Size(f ) ≥ 1
10

sep+(f ) .

I There exists a non-explicit f with sep(f ) ≥ 2Ω(n) [H’19]
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Lovász-Schrijver connection

I Exponential l.b. for LS∗ [Beame et al.’07], [LS’08,
Sherstov’12,..]

I LS has feasible interpolation via general Boolean circuits
[Pudlák’98]

I a modification of LS has feasible interpolation via
monotone linear programs [Oliveira, Pudlák’98]
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Non-negative rank

M ∈ Rn×m, a matrix with non-negative entries

Non-negative rank of M, rk+(f ):= minimum r s.t.

M = A · B ,

for some A ∈ Rn×r , B ∈ Rr×m with non-negative entries.
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P0 ⊆ P1 ⊆ Rn

P0 := conv(v1, . . . , vm0)
P1 defined by inequalities `1(x) ≥ b1, . . . , `m1(x) ≥ bm1

Slack matrix S ∈ Rm1×m0 :

I Rows indexed by the constraints of P1, columns by the
points vj .

I Si,j = `i(vj)− bi .

Theorem (Yannakakis, Fiorini et al. )

rk+(S)− 1 ≤ min
P0⊆P⊆P1

xc(P) ≤ rk+(S) .
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f : {0,1}n → {0,1} a monotone Boolean function.

Define M+(f ) as |f−1(0)| × |f−1(1)| matrix s.t.:
I rows indexed by rejecting inputs f (y) = 0, columns by

accepting inputs f (x) = 1,
I M+(f )y ,x =

∑n
i=1 xi(1− yi).

Properties:

I every entry is ≥ 1,
I rk+(M+(f )) ≤ n.

M(f ):
I M(f )y ,x = Hamming distance of y and x .
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Rε(f ) := rk+(M+(f )− εJ) , where J is the all-ones matrix.

I Monotone-Fla-Size(f ) ≥ R1(f )
n−1 [H’12, Goos et al.’18].

I Monotone-Circuit-Size(f ) ≥ minε>0 Rε(f )
10 − n.

Theorem

|sep+(f )−min
ε>0

Rε(f )| ≤ O(n) .

I Replacing M+(f ) by M(f ), the above hold for
non-monotone computations.
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Strictly positive rank

M ∈ Rn×m, a matrix with positive entries

Strictly positive rank of M, rk∗(f ):= minimum r s.t.

M = A · B ,

for some A ∈ Rn×r , B ∈ Rr×m with positive entries

Theorem

|sep+(f )− rk∗(M+(f ))| ≤ O(n) .

Non-negative rank of ε-perturbed matrices Institute of Mathematics, Prague



Strictly positive rank

M ∈ Rn×m, a matrix with positive entries

Strictly positive rank of M, rk∗(f ):= minimum r s.t.

M = A · B ,

for some A ∈ Rn×r , B ∈ Rr×m with positive entries

Theorem

|sep+(f )− rk∗(M+(f ))| ≤ O(n) .

Non-negative rank of ε-perturbed matrices Institute of Mathematics, Prague



Strictly positive rank

M ∈ Rn×m, a matrix with positive entries

Strictly positive rank of M, rk∗(f ):= minimum r s.t.

M = A · B ,

for some A ∈ Rn×r , B ∈ Rr×m with positive entries

Theorem

|sep+(f )− rk∗(M+(f ))| ≤ O(n) .

Non-negative rank of ε-perturbed matrices Institute of Mathematics, Prague



Open problem 1
Find an explicit monotone f with sep+(f ) superpolynomial in n.

Open problem 2
Find an explicit M with positive entries such that
minε>0 rk+(M+(f )− εJ) is superpolynomial in rk+(M).
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THANK YOU
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