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Resolution over s-DNF

A 2-DNF: ((vy A =v2) V (Vo A v3) V (=v1 A vg))

Resolution (= Res(1)) Res(2)
H Cvx —X (9 —XV- D
Main Rule \i =D vD V(XAY) Cvé XV=y)V
Refutations for CNF CNF

Proof Size for UNSAT CNF: minimal number of s-DNFs to derive the

empty clause OJ.
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Resolution over s-DNF

@ The A-introduction rule is

Dy Vv /\jeJ1 ll Dy v /\jng //
DiVvDeV /\jeJ1uJ2 l

Y

provided that |J; U J»| < s.
@ The cut (or resolution) rule is

DiVVjeyli D2V N\jey ™l
D1V D> ’

@ The two weakening rules are

D and DV Njesus

ID\//\jeJlf Dv/\jeJ1// ’

provided that |J| < s.
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We turn a Res(s) proof upside-down, i.e. reverse the edges of the underlying graph
and negate the s-DNF on the vertices, we get a special kind of restricted branching
s-program whose nodes are labelled by s-CNFs and at each node some s-disjunction
is queried.

o Querying a new s-disjunction, and branching on the answer, which can be
depicted as follows.

C
T N L
CAVjesli CANesl

9 Querying a known s-disjunction, and splitting it according to the answer:

CA \\//jEJ1 Udp /]
ird .
Vijedy
T / 1 \l 1 (2)
CA VjeJ1 I CA Vjer l
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Q There are two ways of forgetting information,

C1 ANCo CA vj€J1 //
1 and 4 s (3)
C CAVjesuw

Nicola Galesi esolution the binary encoding of combinatorial principles



k-clique principle

G = (V, E). We want to define a formula
Cliquek(G) satisfiable iff G contains a k-clique.
X;, = "v is the i-th node in the clique”

Vyev Xiv i€ [K] a node in each position
Cliquex(G) = Xy VX, UFVEV,iclK] no two nodes in one position
—Xu VX, (u,v)g€E,i#je[k] ’no-edges”are notin the clique

Cliquex(G) UNSAT iff G does not have a k-clique
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Binary Combinatorial Principles: What and Why

k-Clique Principle: Simplified version

@ G formed from k blocks V,, of n nodes each:
G = (Upegx Vb, E)
@ Variables v; 4 with i € [k], a € [n], with clauses

“Via \ Vb ((17 a)7 (17 b)) g E

iy
Cliqueg(G) = { Vap Via 1€ [K]

Cliquep(G) UNSAT iff G does not have a k-clique
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(2,1)

X1,1
X2.1
X3,1
(—Xx1,1V —X3,1)

Cliquep(G) =

Motivations(Informal): Cliquey captures the proof strength of adding
to a proof system the ability to count up to k. [1,2]

[1]=[Beyersorff Galesi Lauria Razborov 12]
[2]=[Dantchev Martin Szeider 11]
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k-Clique Principle (Binary Version)

@ (Bit-)Variables: wjj, for i € [k], € [log n]

@ Notation: _
waj o Wi j if aj = 1
b Wi j if aj = 0
Vi = (Wi A oan ), where (j)2 = a
LI — \®%j 7 Wi Jlogn -

Bin_C“queE(G) = /\ ((wl1 a oy w: loglr;’gn) V( 111 biy. . v w] ;gl;gn))

Nicola Galesi
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Pigeonhole principle (Binary Version)

@ (Bit-)Variables: wj;, for i € [m],j < [log ],

@ Notation:
wh". _ Wi j if h/' =1
h Wi j if hj =0

wjj encodes that i — h and j-th bit of his h;.

Pin = (w,h1‘ VAN /\whlogn )

ilogn

two distinct pigeons i and i/’ cannot go into the same hole h, i.e. with
the same binary representation

PHP?' : Unary encoding Bin-PH Pm Binary encoding

\/, 1 Pij IE[m] \/Jogn ’ jv\/logn /—.
pl/\/p/’ i,#i’E[ijG[n] [7&, E[m] hE[n]
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@ preserve the combinatorial hardness of the unary principle;

@ are less exposed to details of the encoding when attacked
with a lower bound technique;

@ give significative lower bounds.

Example: Formula width

(W(FF)—w(F))? )

Size-Widlth tradeoffs for Res: Size(F +) > e el
Space-Width relation for Res:
Space(F F) > w(F ) — w(F) +1

w(PHP) = n while w(Bin-PHP) = 2log n
| Vars(PHP)| = mn while | Vars(Bin-PHP)| = mlog n
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Res(1) proofs of Cliquey(G) — Res(log n) proofs of Bin-Cliqueg(G).

— a a
Via = (W3 Ao Awiiogn)

Res(1) proofs of PHP]' — Res(log n) proofs of Bin-PHP]"

— h hlogn
Pin = (wi{ Ao A Wilog )
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Known results for k-Clique Principles in Res

@ For any G there are O(n¥) proofs in tree-Res (brute force)

@ If Gisthe (k — 1)-partite graph: Clique;(G) has Read Once-Res
refutations of size O(2¢n?) [1,2]

@ Difficult to find G’s without a k-clique making hard to refute

Clique(G).
Known Lower Bounds: (G ~ G(n,p), p = n‘(”f)%)
G~ G(n,p) tree-Res | Reg-Res Res(1) Res(s)
Clique](G) QM1 | Q(nf)[2] | Open - Q(2F) [4] Open
Bin-Clique] (G) — — Q(nf)[3] Q(n*), s = o(y/loglog n)

[1] = [Beyersdorff Galesi Lauria 13 ]

[2] = [Atserias Bonacina de Rezende Lauria Nérdstrom Razborov 18]
[3] = [Lauria Pudlak Rédl Thapen 17 ]

[4] = [Pang 19]

Nicola Galesi Resolution and the binary encoding of combinatorial principles



Results for Bin-PHP]

§ > 0. Any refutation of Bin-PHP] in Res(s) for s < \/lognis
of size 2" ™).

There are tree-Res(1) refutations of Bin-PHP of size 29("),
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Lower Bound Proof (for Bin-Cliquey(G) )

Main Tools(for Binary Principles):

@ Covering Number on s-DNFs [1]

o Res(s) proofs with small CN efficiently simulated in
Res(s—1)
o Bottlenecks

@ (Random) restrictions for binary principles
© Hardness properties of Bin-Cliquef(G), when G ~ G(n, p) [2]
© Induction on s.
o Base Case: known hardness on Res(1) [3].
[1]=[Segerlind Buss Impagliazzo 04]

[2]=[Beyersdorff Galesi Lauria 13 ]
[3]=[Lauria Pudlak R&dl Thapen 17]
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Covering number of a Res(s) proof

A covering setfor a s-DNF F is a set of literals L such that each
term of F has at least a literal in L.

The covering number cv(F) of a s-DNF F is the minimal size of
a covering set for D.

CN(7) = max c(F)

Ferm
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Small covering number vs simulations

Lemma (Simulation Lemma)

If F has a refutation = in Res(s) with CN(w) < d, then F has a
Res(s — 1) refutation of size at most 29+2N.

Put 7 upside-down. Get a restricted branching s-program whose nodes are labelled by
s-CNFs and at each node some s-disjunction \/;¢(q / is queried.

Example

?Viers N @

CAVies CA Nies)
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Let cv(C) < d, witnessed by variable set {v1, ..., vq4}.

Y
o/\1
V2 3
% \d
0/ 1 ON
A« Le . X fg
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Bottlenecks in Res(s)

A c-bottleneck in a Res(s) proof is a s-DNF F whose
cv(F) > c. c(s) is the bottleneck number at Res(s).

Fact (Independence)

Ifc=rs,r>1andcv(F) > c, thenin F itis always possible to
find r pairwise disjoint s-tuples of literals

To=(A,....08),..., T = ({},...,£5) such that the \ T;’s are
terms of F.
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A s-restriction assigns | 227 | bit-variables w;; in each block
i € [K].

ifo and T are (disjoint) s-restrictions, then o7 is a (s — 1)-restriction

A random s-restriction for Bin-Cliquey (G) is an s-restriction
obtained by choosing independently in each block i, [ 297

25+1
variables among w; 1, . . . ,wj jog n, and setting these uniformly at
randomto O or 1.
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Hardness Properties

G = (Upepq Vb, E) and 0 < o < 1. U'is a-transversal if:

@ |U| < ak, and

Q forallbel[k], |VbnU| <.
Let B(U) C [K] be the set of blocks mentioned in U, and
B(U) = [k] \ B(U).

U is extendible in a block b € B(U) if there exists a vertex a € V,
which is a common neighbour of all nodes in U.
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A restriction o is consistent with v = (i, a) if for all j € [log n], o(w ;) is
either g; or not assigned (i.e. assigns the right bit or can do it in the
future)

Definition

Let0 < o, 8 < 1. A a-transversal U is g-extendible, if for all
B-restriction o, there is a node v? in each block b € B(U), such that o
is consistent with v2.

Lemma (Extension Lemma, similar to [1])

LetO<e< 1, letk <logn. Let1 >« >0and1 > g > 0 such that
1—58>a(2+¢€). Let G ~ G(n,p). With high probability both
properties hold:

@ all a-transversal sets U are 3-extendible;
@ G does not have a k-clique.

[1]=[Beyersodrff Galesi Lauria 13]
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|dea of the proof

Property (Clique(G, s, k))

For any s-restriction p, there are no Res(s) refutations of Bin-Cliquei(G), of
5(k—1)
size less than n” 9

Theorem

If Clique(G, s, k) holds, then there are no Res(s) proofs of Bin-Cliqueg (G)
S(k—1
with size n~ dG)

Theorem

Let1 < s = o(+/loglog n). There exists a graph G such that Res(s)
refutations of Bin-Cliquef(G) are n®*).

| A\

By Extension Lemma there exists a G ~ G(n, p) with the extension
properties.

Clique(G, 1, k) holds. (use [1])
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Steps of the proof

Clique(G, s — 1, k) = Clique(G, s, k) as long as s = o(~/loglog n).

S(k—1)

We prove that — Clique(G, s, k) = — Clique(G, s — 1, k). Let L(s) = n 9 .
@ Since — Clique(G, s, k), then 3 a s-restriction p and = a proof of
Bin-Cliquey(G)l,, such that || < L(s).
@ Let ¢ = ¢(s) be the bottleneck number and r = cs
© o be a s-random restriction on Bin-Cliquef(G),.

© Prlbottleneck F survives in 7[,] < e 9. Use Independence Property.
@ Pr[CN(x|,) > c] < 1. Union bound.

@ Define 7 = op and apply Simulation Lemmato =|,. We get a
(s-1)-restriction 7 and a < L(s)2°*2 size proof in Res(s — 1) of
Bin-CliqueR(G)I . If L(s)2°"2 < L(s — 1), this is — Clique(G, s — 1, k).

@ knowing p(s), define d(s) and ¢(s) in such a way to force
L(s)2°"2 < L(s — 1) and union bound to work.
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The case of Bin-PHP

tree-Res Res(s),m < 2n Res(s),m > 2n
Bin-PHP} 20 2% (s = o(y/logn)) | 2277 (s = o(1/log n))
PHPP | 28(loan) [3 4] | 2%gioan)(s < 1/log n) [2] M,...]

A form of optimality of the lower bound: [5] Proved an upper bound of

O(2V"™'°9") in Res for PHP?, when m > 2V"%9"_(Jse the fact that size S
proof in Res(1) for PHP implies size S proof in Res(log n) for Bin-PHP.

[1]=[Razborov 02] (Survey: "Proof Complexity of PHP”)
[2]=[Segerlind Buss Impagliazzo 03]

[3]=[Beyersdorff Galesi Lauria 10 ]

[4]=[Dantchev Riis 01]

[5]=[Buss Pitassi 97]
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Other Results for Binary Principles

OP, : Unary encoding Bin-OP, : Binary encoding

Vx,x x € [n] Ux,x x € [n]

VxyVVyzVVxz X, ¥,zZ€][n] Ux,y VUyzVUxz X,y,z € [n]
1—a;

Vieg Y. x € [n] Vietogn wx,i ' V¥xa X,a€|[n]

Bin-OP\, and Bin-LOP,, have polynomial size Res(1) proofs.

@ Res proof complexity of binary version of propositional version of principles
which are expressible as first order formulae with no finite model in M»-form, i.e.
as VX3wy(X, w) (Riis approach).

@ Relations between different forms of binary encodings.

@ Complexity of proofs in Res of the binary versions of a large family of formulas
(those having clauses v; ; @ v; ;, implying a comparisons among all pairs of
variables). LOP is included here.
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Further Development in Sherali-Adams

[Dantchev Ghani Martin 19]. Similar approach for
Sherali-Adams.
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