Resolution and the binary encoding of combinatorial principles

Nicola Galesi

Sapienza, Rome

BIRS Workshop: Proof Complexity — January 21, 2020 Joint work with: Stefan Dantchev and Barnaby Martin

A 2-DNF: $\left(\left(v_{1} \wedge \neg v_{2}\right) \vee\left(v_{2} \wedge v_{3}\right) \vee\left(\neg v_{1} \wedge v_{3}\right)\right)$

	Resolution $(=\operatorname{Res}(1))$	$\operatorname{Res}(2)$
Main Rule	$\frac{C \vee x \quad \neg \vee \vee D}{C \vee D}$	$\frac{C \vee(x \wedge y) \quad(\neg x \vee \neg y) \vee D}{C \vee D}$
Refutations for	$C N F$	$C N F$

Proof Size for UNSAT CNF: minimal number of s-DNFs to derive the empty clause \square.
(1) The \wedge-introduction rule is

$$
\frac{\mathcal{D}_{1} \vee \bigwedge_{j \in \mathcal{J}_{1}} I_{j} \quad \mathcal{D}_{2} \vee \bigwedge_{j \in J_{2}} I_{j}}{\mathcal{D}_{1} \vee \mathcal{D}_{2} \vee \bigwedge_{j \in \mathcal{J}_{1} \cup J_{2}} I_{j}}
$$

provided that $\left|J_{1} \cup J_{2}\right| \leq s$.
(2) The cut (or resolution) rule is

$$
\frac{\mathcal{D}_{1} \vee \bigvee_{j \in J} I_{j} \mathcal{D}_{2} \vee \bigwedge_{j \in J} \neg I_{j}}{\mathcal{D}_{1} \vee \mathcal{D}_{2}},
$$

(3) The two weakening rules are

$$
\frac{\mathcal{D}}{\mathcal{D} \vee \bigwedge_{j \in J} I_{j}} \quad \text { and } \quad \frac{\mathcal{D} \vee \bigwedge_{j \in \mathcal{J}_{1} \cup J_{2} I_{j}}}{\mathcal{D} \vee \bigwedge_{j \in \mathcal{J}_{1}} I_{j}},
$$

provided that $|J| \leq s$.

We turn a $\operatorname{Res}(s)$ proof upside-down, i.e. reverse the edges of the underlying graph and negate the s-DNF on the vertices, we get a special kind of restricted branching s-program whose nodes are labelled by s-CNFs and at each node some s-disjunction is queried.
(1) Querying a new s-disjunction, and branching on the answer, which can be depicted as follows.

(2) Querying a known s-disjunction, and splitting it according to the answer:

(3) There are two ways of forgetting information,

k-clique principle

$G=(V, E)$. We want to define a formula
Clique $_{k}(G)$ satisfiable iff G contains a k-clique.
$x_{i v} \equiv " v$ is the i-th node in the clique"

Clique $_{\mathrm{k}}(G)=\left\{\begin{array}{lll}\bigvee_{v \in V} x_{i, v} & i \in[k] & \text { a node in each position } \\ \neg x_{i, v} \vee \neg x_{i, u} & u \neq v \in V, i \in[k] & \text { no two nodes in one position } \\ \neg x_{i, u} \vee \neg x_{j, v} & (u, v) \notin E, i \neq j \in[k] & \text { "no-edges" are not in the clique }\end{array}\right.$

Fact

Clique $_{k}(G)$ UNSAT iff G does not have a k-clique

Binary Combinatorial Principles: What and Why

k-Clique Principle: Simplified version

- G formed from k blocks V_{b} of n nodes each:

$$
G=\left(\bigcup_{b \in[k]} V_{b}, E\right)
$$

- Variables $v_{i, q}$ with $i \in[k], a \in[n]$, with clauses

$$
\operatorname{Clique}_{k}^{n}(G)= \begin{cases}\neg v_{i, a} \vee \neg v_{j, b} & ((i, a),(j, b)) \notin E \\ V_{a \in[n]} v_{i, a} & i \in[k]\end{cases}
$$

Fact

Clique ${ }_{k}^{n}(G)$ UNSAT iff G does not have a k-clique

$$
\operatorname{Clique}_{\mathrm{k}}^{\mathrm{n}}(G)=\left\{\begin{array}{l}
x_{1,1} \\
x_{2,1} \\
x_{3,1} \\
\left(\neg x_{1,1} \vee \neg x_{3,1}\right)
\end{array}\right.
$$

Motivations(Informal): Clique ${ }_{k}^{n}$ captures the proof strength of adding to a proof system the ability to count up to k. [1,2]
[1]=[Beyersorff Galesi Lauria Razborov 12]
[2]=[Dantchev Martin Szeider 11]

k-Clique Principle (Binary Version)

- (Bit-)Variables: $\omega_{i, j}$, for $i \in[k], j \in[\log n]$
- Notation:

$$
\begin{gathered}
\omega_{i, j}^{a_{j}}= \begin{cases}\omega_{i, j} & \text { if } a_{j}=1 \\
\neg \omega_{i, j} & \text { if } a_{j}=0\end{cases} \\
v_{i, j} \equiv\left(\omega_{i, 1}^{a_{1}} \wedge \ldots \wedge \omega_{i, l \log n}^{a_{n}}\right), \text { where }(j)_{2}=\vec{a}
\end{gathered}
$$

Bin-Clique ${ }_{\mathrm{k}}^{\mathrm{k}}(G)=\bigwedge\left(\left(\omega_{i, 1}^{1-a_{l}} \vee \ldots \vee \omega_{i, 1 \log n}^{1-\log _{n} n}\right) \vee\left(\omega_{j, 1}^{1-b_{1}} \vee \ldots \vee \omega_{j, \log n}^{1-\operatorname{bog}_{n} n}\right)\right)$ $((i, a),(j, b)) \notin E$

Pigeonhole principle (Binary Version)

- (Bit-)Variables: $\omega_{i, j}$, for $i \in[m], j \in[\log n]$,
- Notation:

$$
\omega_{i, j}^{h_{j}}= \begin{cases}\omega_{i, j} & \text { if } h_{j}=1 \\ \neg \omega_{i, j} & \text { if } h_{j}=0\end{cases}
$$

$\omega_{i j}$ encodes that $i \mapsto h$ and j-th bit of h is h_{j}.

$$
p_{i h} \equiv\left(\omega_{i 1}^{h_{1}} \wedge \ldots \wedge \omega_{i \log n}^{h_{\log n}}\right)
$$

two distinct pigeons i and i^{\prime} cannot go into the same hole h, i.e. with the same binary representation

$$
\begin{aligned}
& \mathrm{PHP}_{n}^{m}: \underline{\text { Unary encoding }} \\
& \bigvee_{j=1}^{n} p_{i, j} \quad i \in[m] \\
& \bar{p}_{i, j} \vee \bar{p}_{i^{\prime}, j} \quad i, \neq i^{\prime} \in[m], j \in[n]
\end{aligned}
$$

```
Bin-PHP \({ }_{n}^{m}\) : Binary encoding
    \(\bigvee_{j=1}^{\log n} \omega_{i, j}^{1-h_{j}} \vee \bigvee_{j=1}^{\log n} \omega_{i^{\prime}, j}^{1-h}\)
    \(i \neq i^{\prime} \in[m], h \in[n]\)
```

- preserve the combinatorial hardness of the unary principle;
- are less exposed to details of the encoding when attacked with a lower bound technique;
- give significative lower bounds.

Example: Formula width

Size-Width tradeoffs for Res: Size $(F \vdash) \geq e^{\Omega\left(\frac{(w(F \vdash)-w(F))^{2}}{|\operatorname{Varss}(F)|}\right)}$. Space-Width relation for Res:
$\operatorname{Space}(F \vdash) \geq w(F \vdash)-w(F)+1$

$$
\begin{gathered}
w(\mathrm{PHP})=n \text { while } w(\operatorname{Bin}-\mathrm{PHP})=2 \log n \\
|\operatorname{Vars}(\mathrm{PHP})|=m n \text { while }|\operatorname{Vars}(\mathrm{Bin}-\mathrm{PHP})|=m \log n
\end{gathered}
$$

Fact

Res(1) proofs of Clique ${ }_{\mathrm{k}}^{\mathrm{n}}(G) \longmapsto \operatorname{Res}(\log n)$ proofs of Bin-Clique ${ }_{\mathrm{k}}^{\mathrm{n}}(G)$.

$$
v_{i, a} \equiv\left(\omega_{i, 1}^{a_{1}} \wedge \ldots \wedge \omega_{i, \log n}^{a_{\log n}}\right)
$$

Fact

$\operatorname{Res}(1)$ proofs of $\mathrm{PHP}_{n}^{m} \longmapsto \operatorname{Res}(\log n)$ proofs of $\operatorname{Bin}-\mathrm{PHP}_{n}^{m}$

$$
p_{i h} \equiv\left(\omega_{i 1}^{h_{1}} \wedge \ldots \wedge \omega_{i \log n}^{h_{\log n}}\right)
$$

Known results for k-Clique Principles in Res

- For any G there are $O\left(n^{k}\right)$ proofs in tree-Res (brute force)
- If G is the $(k-1)$-partite graph: Clique $_{\mathrm{k}}^{\mathrm{n}}(G)$ has Read Once-Res refutations of size $O\left(2^{k} n^{2}\right)[1,2]$
- Difficult to find G's without a k-clique making hard to refute Clique $_{\mathrm{k}}^{\mathrm{n}}(G)$.

Known Lower Bounds: $\left(G \sim \mathcal{G}(n, p), p=n^{-(1+\epsilon) \frac{2}{k-1}}\right)$

$G \sim \mathcal{G}(n, p)$	tree-Res	Reg-Res	Res (1)	Res(s)
Clique	((G)	$\Omega\left(n^{k}\right)[1]$	$\Omega\left(n^{k}\right)[2]$	Open $-\Omega\left(2^{k}\right)[4]$
Bin-Clique	Open			

[1] = [Beyersdorff Galesi Lauria 13]
[2] = [Atserias Bonacina de Rezende Lauria Nördstrom Razborov 18]
[3] = [Lauria Pudlák Rödl Thapen 17]
[4] = [Pang 19]

Results for Bin-PHP n_{n}^{m}

Theorem
 $\delta>0$. Any refutation of $\operatorname{Bin}-\mathrm{PHP}_{n}^{m}$ in $\operatorname{Res}(s)$ for $s \leq \sqrt{\log n}$ is of size $2^{\Omega\left(n^{1-\delta}\right)}$.

Theorem

There are tree-Res(1) refutations of $\mathrm{Bin}-\mathrm{PHP}_{n}^{m}$ of size $2^{\Theta(n)}$.

Lower Bound Proof (for Bin-Clique

Main Tools(for Binary Principles):
(1) Covering Number on s-DNFs [1]

- Res(s) proofs with small CN efficiently simulated in $\operatorname{Res}(s-1)$
- Bottlenecks
(2) (Random) restrictions for binary principles
(3) Hardness properties of Bin-Clique ${ }_{\mathrm{k}}^{\mathrm{n}}(G)$, when $G \sim \mathcal{G}(n, p)$ [2]
(4) Induction on s.
- Base Case: known hardness on Res(1) [3].
[1]=[Segerlind Buss Impagliazzo 04]
[2]=[Beyersdorff Galesi Lauria 13]
[3]=[Lauria Pudlák Rödl Thapen 17]

Covering number of a Res(s) proof

A covering set for a s-DNF \mathcal{F} is a set of literals L such that each term of \mathcal{F} has at least a literal in L.

The covering number $\operatorname{cv}(\mathcal{F})$ of a s-DNF \mathcal{F} is the minimal size of a covering set for \mathcal{D}.

$$
C N(\pi)=\max _{\mathcal{F} \in \pi} c(\mathcal{F})
$$

Small covering number vs simulations

Lemma (Simulation Lemma)

If F has a refutation π in $\operatorname{Res}(s)$ with $C N(\pi)<d$, then F has a $\operatorname{Res}(s-1)$ refutation of size at most $2^{d+2} N$.

Put π upside-down. Get a restricted branching s-program whose nodes are labelled by s-CNFs and at each node some s-disjunction $\bigvee_{j \in[s]} l_{j}$ is queried.

Example

Let $c v(\mathcal{C})<d$, witnessed by variable set $\left\{v_{1}, \ldots, v_{d}\right\}$.

Bottlenecks in Res(s)

A c-bottleneck in a Res(s) proof is a s-DNF F whose $c v(F) \geq c . c(s)$ is the bottleneck number at Res(s).

Fact (Independence)

If $c=r s, r \geq 1$ and $\operatorname{cv}(F) \geq c$, then in F it is always possible to find r pairwise disjoint s-tuples of literals
$T_{1}=\left(\ell_{1}^{1}, \ldots, \ell_{1}^{s}\right), \ldots, T_{r}=\left(\ell_{r}^{1}, \ldots, \ell_{r}^{s}\right)$ such that the $\wedge T_{i}$'s are terms of F.

Restrictions

A s-restriction assigns $\left\lfloor\frac{\log n}{2^{s+1}}\right\rfloor$ bit-variables $\omega_{i, j}$ in each block $i \in[k]$.

Fact

if σ and τ are (disjoint) s-restrictions, then $\sigma \tau$ is a ($s-1$)-restriction

A random s-restriction for $\operatorname{Bin}-$ Clique $_{\mathrm{k}}^{\mathrm{n}}(G)$ is an s-restriction obtained by choosing independently in each block $i,\left\lfloor\frac{\log n}{2^{s+1}}\right\rfloor$ variables among $\omega_{i, 1}, \ldots, \omega_{i, \log n}$, and setting these uniformly at random to 0 or 1.

Hardness Properties

$G=\left(\bigcup_{b \in[k]} V_{b}, E\right)$ and $0<\alpha<1 . U$ is α-transversal if:
(1) $|U| \leq \alpha k$, and
(2) for all $b \in[k],\left|V_{b} \cap U\right| \leq 1$.

Let $B(U) \subseteq[k]$ be the set of blocks mentioned in U, and $\bar{B}(U)=[k] \backslash B(U)$.
U is extendible in a block $b \in \overline{B(U)}$ if there exists a vertex $a \in V_{b}$ which is a common neighbour of all nodes in U.

A restriction σ is consistent with $v=(i, a)$ if for all $j \in[\log n], \sigma\left(\omega_{i, j}\right)$ is either a_{j} or not assigned (i.e. assigns the right bit or can do it in the future)

Definition

Let $0<\alpha, \beta<1$. A α-transversal U is β-extendible, if for all β-restriction σ, there is a node v^{b} in each block $b \in \overline{B(U)}$, such that σ is consistent with v^{b}.

Lemma (Extension Lemma, similar to [1])

Let $0<\epsilon<1$, let $k \leq \log n$. Let $1>\alpha>0$ and $1>\beta>0$ such that $1-\beta>\alpha(2+\epsilon)$. Let $G \sim \mathcal{G}(n, p)$. With high probability both properties hold:
(1) all α-transversal sets U are β-extendible;
(2) G does not have a k-clique.

Idea of the proof

Property (Clique($G, s, k)$)

 size less than $n^{\frac{\delta(k-1)}{\mathrm{d}(s)}}$.

Theorem

If Clique (G, s, k) holds, then there are no $\operatorname{Res}(s)$ proofs of $\operatorname{Bin}^{-C_{i q u}^{e n}}{ }_{\mathrm{k}}^{\mathrm{n}}(G)$ with size $n^{\frac{\delta(k-1)}{(s)}}$.

Theorem

Let $1<s=o(\sqrt{\log \log n})$. There exists a graph G such that $\operatorname{Res}(s)$ refutations of Bin-Clique ${ }_{\mathrm{k}}^{\mathrm{n}}(G)$ are $n^{\Omega(k)}$.

By Extension Lemma there exists a $G \sim \mathcal{G}(n, p)$ with the extension properties.

Lemma

Clique(G, 1, k) holds. (use [1])

Steps of the proof

Lemma

$\operatorname{Clique}(G, s-1, k) \Rightarrow \operatorname{Clique}(G, s, k)$ as long as $s=o(\sqrt{\log \log n})$.
We prove that $\neg \operatorname{Clique}(G, s, k) \Rightarrow \neg \operatorname{Clique}(G, s-1, k)$. Let $L(s)=n^{\frac{\delta(k-1)}{\mathrm{d}(s)}}$.
(1) Since $\neg \operatorname{Clique}(G, s, k)$, then \exists a s-restriction ρ and π a proof of $\operatorname{Bin}^{-C_{i q u}^{2}}(G){ }_{j} \rho$, such that $|\pi|<L(s)$.
(2) Let $c=c(s)$ be the bottleneck number and $r=c s$
(3) σ be a s-random restriction on $\left.\operatorname{Bin}^{-C_{i q u e}^{n}}{ }_{\mathrm{k}}^{\mathrm{n}}(G)\right)_{\rho}$.
(4) $\operatorname{Pr}\left[\right.$ bottleneck F survives in $\left.\pi \upharpoonright_{\sigma}\right] \leq e^{-\frac{r}{p(s)}}$. Use Independence Property.
(5) $\operatorname{Pr}\left[C N\left(\pi \upharpoonright_{\sigma}\right) \geq c\right]<1$. Union bound.
(6) Define $\tau=\sigma \rho$ and apply Simulation Lemma to $\pi \upharpoonright_{\sigma}$. We get a (s-1)-restriction τ and $\mathrm{a} \leq L(s) 2^{c+2}$ size proof in $\operatorname{Res}(s-1)$ of Bin-Clique ${ }_{k}^{n}(G) \upharpoonright_{\tau}$. If $L(s) 2^{c+2}<L(s-1)$, this is $\neg \operatorname{Clique}(G, s-1, k)$.
(7) knowing $\mathrm{p}(s)$, define $\mathrm{d}(s)$ and $c(s)$ in such a way to force $L(s) 2^{c+2}<L(s-1)$ and union bound to work.

The case of Bin-PHP ${ }_{n}^{m}$

	tree-Res	$\operatorname{Res}(s), m \leq 2 n$	$\operatorname{Res}(s), m>2 n$
${\mathrm{Bin}-\mathrm{PHP}_{n}^{m}}^{2^{\Theta(n)}}$	$2^{\Omega\left(n^{1-\delta}\right)}(s=o(\sqrt{\log n}))$	$2^{\Omega\left(n^{1-\delta}\right)}(s=o(\sqrt{\log n}))$	
$\operatorname{PHP}_{n}^{m}$	$2^{\Theta(n \log n)}[3,4]$	$2^{\Omega\left(\log \log ^{n}\right)}(s \leq \sqrt{\log n})[2]$	$[1, \ldots]$

A form of optimality of the lower bound: [5] Proved an upper bound of $O\left(2^{\sqrt{n \log n}}\right)$ in Res for PHP n_{n}^{m}, when $m \geq 2{\sqrt{ } \sqrt{n \log n} \text {. Use the fact that size } S}$ proof in Res(1) for PHP implies size S proof in Res $(\log n)$ for Bin-PHP.
[1]=[Razborov 02] (Survey: "Proof Complexity of PHP")
[2]=[Segerlind Buss Impagliazzo 03]
[3]=[Beyersdorff Galesi Lauria 10]
[4]=[Dantchev Riis 01]
[5]=[Buss Pitassi 97]

Other Results for Binary Principles

$\mathrm{OP}_{\mathrm{n}}:$	Unary encoding
$\bar{\nabla}_{x, x}$	$x \in[n]$
$\bar{v}_{x, y} \vee \bar{v}_{y, z} \vee v_{x, z}$	$x, y, z \in[n]$
$\bigvee_{i \in[n]} v_{x, i}$	$x \in[n]$

\[

\]

Lemma

$\mathrm{Bin}-\mathrm{OP}_{\mathrm{n}}$ and $\mathrm{Bin}-\mathrm{LOP}_{\mathrm{n}}$ have polynomial size Res(1) proofs.

- Res proof complexity of binary version of propositional version of principles which are expressible as first order formulae with no finite model in Π_{2}-form, i.e. as $\forall \vec{x} \exists \vec{w} \varphi(\vec{x}, \vec{w})$ (Riis approach).
- Relations between different forms of binary encodings.
- Complexity of proofs in Res of the binary versions of a large family of formulas (those having clauses $v_{i, j} \oplus v_{j, i}$, implying a comparisons among all pairs of variables). $L O P$ is included here.

Further Development in Sherali-Adams

[Dantchev Ghani Martin 19]. Similar approach for Sherali-Adams.

