(Non-)optimal point sets for numerical integration

based on joint work with D. Krieg and F. Pillichshammer

Mathias Sonnleitner
JKU Linz

> 2020-10-02

JYU
JOHANNES KEPLER UNIVERSITÄT LINZ

Der Wissenschaftsfonds.

The problem setting

$D \ldots$ some bounded domain in \mathbb{R}^{d}, a manifold, etc.
$\mu \ldots$ (absolutely continuous to) the uniform measure on D
$\mathcal{F}(D) \ldots$ a set of bounded functions on D
Given $P=\left\{x_{1}, \ldots, x_{n}\right\} \subset D$ approximate $\int_{D} f(x) \mathrm{d} \mu(x)$ for every $f \in \mathcal{F}(D)$ by a linear algorithm using $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$.

Worst-case error of algorithm with weights $w=\left(w_{1}, \ldots, w_{n}\right)$:

$$
e(P, w, \mathcal{F}(D)):=\sup _{f \in \mathcal{F}(D)}\left|\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)-\int_{D} f(x) \mathrm{d} \mu(x)\right|
$$

Quality of P can be e.g. $e(P, \mathbf{1} / \mathbf{n}, \mathcal{F}(D))$ or

$$
e(P, \mathcal{F}(D)):=\inf _{w \in \mathbb{R}^{n}} e(P, w, \mathcal{F}(D))
$$

Example: Discrepancy on \mathbb{S}^{d}

$D \ldots \mathbb{S}^{d}$, unit sphere of \mathbb{R}^{d+1}
$\mu \ldots \sigma$, normalized surface measure on \mathbb{S}^{d}
$\mathcal{F}(D) \ldots\left\{\mathbf{1}_{C}: C \in \mathcal{C}_{d}\right\}$, where $\mathbf{1}_{C}$ are indicators of caps
$\mathcal{C}_{d}=\left\{C(z, t)=\left\{x \in \mathbb{S}^{d}: x \cdot z \geq t\right\}: z \in \mathbb{S}^{d}, t \in[-1,1]\right\}$
Worst-case error of a linear algorithm is weighted discrepancy:

$$
e(P, w, \mathcal{F}(D))=\sup _{C \in \mathcal{C}_{d}}\left|\sum_{i=1}^{n} w_{i} \mathbf{1}_{C}\left(x_{i}\right)-\int_{\mathbb{S}^{d}} \mathbf{1}_{C}(x) \mathrm{d} \sigma(x)\right|
$$

Spherical cap discrepancy is $D\left(P, \mathcal{C}_{d}\right):=e(P, \mathbf{1} / \mathbf{n}, \mathcal{F}(D))$.

Questions and Motivation

- How good is optimal? That is find $g(n)$ such that

$$
\inf _{\# P=n} D\left(P, \mathcal{C}_{d}\right) \asymp g(n) \operatorname{or~inf}_{\# P=n} e(P, \mathcal{F}(D)) \asymp g(n)
$$

- How to find (near-)optimal (weighted) points?
- How to find optimal weights?

Describe the quality of rather general P in terms of "easy to analyze" geometric quantities.

A sum of distances

$\mathcal{F}(D) \ldots B\left(W_{2}^{(d+1) / 2}\left(\mathbb{S}^{d}\right)\right)$, the unit ball of $W_{2}^{(d+1) / 2}\left(\mathbb{S}^{d}\right)$
(Sobolev space of smoothness $(d+1) / 2$)

J. S. Brauchart, J. Dick, 2013

For every finite $P \subset \mathbb{S}^{d}$ we have

$$
\begin{gathered}
\sup _{\left.f \in B\left(W_{2}^{(d+1) / 2}\left(\mathbb{S}^{d}\right)\right)\right)}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)-\int_{\mathbb{S}^{d}} f(x) \mathrm{d} \sigma(x)\right| \\
= \\
c_{d}\left(\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|x-y\|_{2} \mathrm{~d} \sigma(x) \mathrm{d} \sigma(y)-\frac{1}{n^{2}} \sum_{i, j=1}^{n}\left\|x_{i}-x_{j}\right\|_{2}\right)^{1 / 2}
\end{gathered}
$$

Integration of Sobolev functions

$D \ldots$ a bounded convex domain in \mathbb{R}^{d} and $\mu \ldots$ Lebesgue measure $\mathcal{F}(D) \ldots B\left(W_{p}^{s}(D)\right)$, the unit ball of $W_{p}^{s}(D)$
If $P=\left\{x_{1}, \ldots, x_{n}\right\} \subset D$, the distance function returns for $x \in \mathbb{R}^{d}$

$$
\operatorname{dist}(x, P)=\min _{1 \leq i \leq n}\left\|x-x_{i}\right\|_{2}
$$

Theorem (D. Krieg, MS, 2020)
Let $1 \leq p \leq \infty, 1 / p+1 / p^{*}=1$ and $s>d / p$. For any finite $P \subset D$

$$
e\left(P, B\left(W_{p}^{s}(D)\right)\right) \asymp \begin{cases}\|\operatorname{dist}(\cdot, P)\|_{L_{\infty}(D)}^{s} & \text { if } p=1 \\ \|\operatorname{dist}(\cdot, P)\|_{L_{s p^{*}}(D)}^{s} & \text { if } p>1\end{cases}
$$

The quantization problem

Let X be a random vector in \mathbb{R}^{d} with distribution μ and $r \geq 1$.
Minimize among $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ measurable with $\# f\left(\mathbb{R}^{d}\right) \leq n$

$$
\mathbb{E}\|X-f(X)\|_{2}^{r}
$$

$$
\Uparrow
$$

Minimize among point sets with $\# P \leq n$

$$
\int_{\mathbb{R}^{d}} \operatorname{dist}(x, P)^{r} \mathrm{~d} \mu(x)=\|\operatorname{dist}(\cdot, P)\|_{L_{r}(\mu)}^{r}
$$

Theorem 2: " $s p^{*}$-Quantization error of $P \asymp e\left(P, B\left(W_{p}^{s}(D)\right)\right)$

Application: random points

Let X_{1}, X_{2}, \ldots be i.i.d. uniform on D and $P_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$.

$$
\mathbb{E}\left\|\operatorname{dist}\left(\cdot, P_{n}\right)\right\|_{L_{\gamma}(D)} \asymp \begin{cases}n^{-1 / d} & \text { if } 0<\gamma<\infty \\ n^{-1 / d}(\log n)^{1 / d} & \text { if } \gamma=\infty .\end{cases}
$$

Corollary 1

Random points are asymptotically optimal for weighted numerical integration in $W_{p}^{s}(D)$ iff $p>1$.

Open questions

Say $D=[0,1]$ and $0<x_{0}<x_{1}<\cdots<x_{n}<x_{n+1}=1$. Then we have a discretization of the form

$$
\|\operatorname{dist}(\cdot, P)\|_{L_{\gamma}([0,1])}^{\gamma} \asymp \sum_{i=0}^{n}\left|x_{i+1}-x_{i}\right|^{\gamma+1} .
$$

- Discrete version in higher dimensions?
- Characterization for $e\left(P, \mathbf{1} / \mathbf{n}, B\left(W_{p}^{s}(D)\right)\right)$?
- Relation of $\|\operatorname{dist}(\cdot, P)\|_{L_{\gamma}(D)}$ to (weighted) discrepancy?

