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BIRS: Use of Wearable and Implantable Devices in Health Research
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IntelliCare for Depression and Anxiety (Lattie et al. 2016)
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IntelliCare Hub - App Recom. (Cheung et al. 2018)

Make weekly recommendations for new app to encourage app usage and
exploration

Hub users: How to recommend apps so as to enhance overall app usage and
possibly translate into clinical benefits?
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IntelliCare Hub - Push Notification

Manage messages and notifications from the other clinical apps

What’s the best time to send out push notification to maximize response rate?
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Data Structure

For each hub user at the t-th decision point:

St ∈ S: usage pattern (lag K information), weekday, etc (could be
exogenous or endogenous);

At ∈ A: Apps to recommend for the week / Time for sending out prompt

Yt ∈ R: Outcome of interest (e.g. app usage, response rate, clinical
outcomes).

m: number of observed follow-up periods varying across app users.

Goal: Develop a policy π : S → A so as to optimize the expected outcome of
interest E[Y(π)].
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Challenges

High dimensional action space: 12 individual apps, recommend at most
2 apps per week, with sparse action observations.

High heterogeneity across users.

Limited amount of information for each user.

Limited number of follow up periods, quickly declined response/app
usage.

Immediate rewards vs long term rewards.
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