The rectangular peg problem

joint work with Andrew Lobb (Durham / OIST)

Josh Greene
(Boston College)

BIRS
June 11, 2020

Motivation.

In 1911, Otto Toeplitz posed the following question:

Problem 1 (The Square Peg Problem)

Does every continuous Jordan curve in the Euclidean plane contain four points at the vertices of a square?

It posits a striking connection between the topology and the geometry of the Euclidean plane. It remains open to this day.

Jordan curves.

Josh Greene
The rectangular peg problem

Inscribed squares.

Josh Greene
The rectangular peg problem

Why squares / quadrilaterals?

- Three points are ubiquitous: \forall triangle T and \forall Jordan curve γ, γ inscribes a triangle similar to T. (Exercise.)
- Five points are not: dissimilar ellipses inscribe dissimilar pentagons. (Distinct ellipses meet in at most four points.)
- Four is where things get interesting: a recurring theme in low-dimensional topology / geometry.

Early progress.

- Emch (1913) solved the problem for smooth convex curves. (Ideas involving configuration spaces, homology)
- Schnirelman (1929) solved it for smooth Jordan curves. In fact, a generic smooth Jordan curve contains an odd number of "inscribed" squares. (Bordism argument)

Tempting approach to original problem: a limiting argument. Any continuous Jordan curve is a limit of smooth ones, so take a limiting sequence of squares.

Problem: the squares may shrink to points.

Variations.

- Varying regularity condition on curve (e.g. recent work of Feller-Golla, Schwartz, Tao).
- Higher dimensional analogues (e.g. inscribed octahedra in $S^{2} \hookrightarrow \mathbb{R}^{3}$.)
- Fenn's table theorem.
- Kronheimer and son (Peter) on the tripos problem.
- Other inscribed features in Jordan curves.

See, e.g. Matschke, Notices of the AMS, 2014.

Step 1. Vaughan.

Theorem 1 (Vaughan 1977)

Every continuous Jordan curve contains four vertices of a rectangle.
(Reference: Meyerson, Balancing Acts, 1981.)

Proof:

$\operatorname{Sym}^{2}(\gamma)=\{\{z, w\}: z, w \in \gamma\}:$ unordered pairs of points on γ It is a Möbius band:

- send $\{z, w\} \in \operatorname{Sym}^{2}\left(S^{1}\right)$ to the parallelism class of (tangent) line $\overleftarrow{z w}$

- obtain $\operatorname{Sym}^{2}\left(S^{1}\right) \rightarrow \mathbb{R} P^{1}$ as an I-bundle over $\mathbb{R} P^{1}$
- connected boundary $\partial=\{\{z, z\}: z \in \gamma\}$

Define a continuous map $v: \operatorname{Sym}^{2}(\gamma) \rightarrow \mathbb{R}^{2} \times \mathbb{R} \geq 0$:

$$
v(\{z, w\})=\left(\frac{z+w}{2},|z-w|\right) .
$$

The "midpoint, distance" map.

- $\operatorname{im}(v)$ hits $\mathbb{R}^{2} \times\{0\}$ in $v(\partial)=\gamma \times\{0\}$

$$
v(\{z, w\})=v(\{x, y\}) \Longleftrightarrow
$$

$\Longleftrightarrow\{z, w\}$ and $\{x, y\}$ span diagonals of a rectangle
Principle:

$$
\{\text { inscribed rectangles in } \gamma\} \leftrightarrow\{\text { self-intersections of } v\}
$$

reflect $\operatorname{im}(v)$ across $\mathbb{R}^{2} \times\{0\} \subset \mathbb{R}^{3}$:
get continuous map $v \cup \bar{v}$ of the Klein bottle to \mathbb{R}^{3}, 1-to-1 at $\gamma \times\{0\}$.
v contains a point of self-intersection $\Longrightarrow \gamma$ inscribes a rectangle. \square
Any map of the Klein bottle to \mathbb{R}^{3} must contain "a lot" of self-intersection, so there should exist many inscribed rectangles in γ.
How to quantify?

Problem 2 (The rectangular peg problem)

For every (smooth) Jordan curve and every rectangle in the Euclidean plane, do there exist four points on the curve at the vertices of a rectangle similar to the one given?

Step -1 .

Published "solution" in 1991.
Idea: intersection theory / bordism argument.
Each inscribed rectangle in γ gets a sign; signed count of inscribed rectangles in γ similar to a given one is 2 ; hence there exist at least two.
In 2008, Matschke found a mistake: the signed count is 0 .

It suggests a limit to the efficacy of intersection theory / bordism arguments.

Step 2. Hugelmeyer.

In 2018, Cole Hugelmeyer recovered some new cases of the rectangular peg problem:

Theorem 2 (Hugelmeyer 2018)

Every smooth Jordan curve contains four points at the vertices of a rectangle with aspect angle equal to an integer multiple of π / n, for all $n \geq 3$.
In particular, every smooth Jordan curve inscribes a rectangle of aspect ratio $\sqrt{3}$.

aspect ratio: a / b
aspect angle: θ

Resolve v into a 4 D version:

$$
\begin{gathered}
h_{n}: \operatorname{Sym}^{2}(\gamma) \rightarrow \mathbb{C} \times \mathbb{C}, \\
h_{n}(\{z, w\})=\left(\frac{z+w}{2},(z-w)^{2 n}\right)
\end{gathered}
$$

$$
\left\{\begin{array}{c}
\text { inscribed rectangles in } \gamma \\
\text { with aspect angle } k \pi / n, k \in \mathbb{Z}
\end{array}\right\} \leftrightarrow\left\{\text { self-intersections of } h_{n}\right\}
$$

Blow up: $\tilde{h}_{n}: \operatorname{Sym}^{2}(\gamma) \rightarrow X=\mathbb{C} \times \mathbb{R}_{\geq 0} \times S^{1}$,

$$
\begin{aligned}
& \tilde{h}_{n}(z, w)=\left(\frac{z+w}{2},|z-w|^{2 n}, \frac{(z-w)^{2 n}}{|z-w|^{2 n}}\right), \quad z \neq w \\
& \tilde{h}_{n}(z, z)=\left(z, 0, u(z)^{2 n}\right), u(z) \text { unit tangent to } \gamma \text { at } z .
\end{aligned}
$$

$M=\operatorname{im}\left(\tilde{h}_{n}\right)$ hits $\partial X=\mathbb{C} \times\{0\} \times S^{1}$ in a $(1,2 n)$-curve. insert X into $S^{3} \times \mathbb{R}_{\geq 0}$, matching ∂X with an open solid torus in $S^{3} \times\{0\}$ by an axial twist.
∂M maps onto the torus knot $T(2 n, 2 n-1)$.
Batson (2014): $T(2 n, 2 n-1)$ does not bound a smoothly embedded Möbius band in $S^{3} \times \mathbb{R}_{\geq 0}$ for any $n \geq 3$.
Hence M self-intersects $\Longrightarrow \exists$ asserted inscribed rectangle. \square
(The case of a square does not follow: e.g. $T(4,3)$ bounds a Möbius band in B^{4}.)

Feller and Golla (2020): recovered Hugelmeyer's result, and the case of a square, for curves obeying a weaker regularity condition than smoothness.
Proof based on branched covering / intersection form arguments (free of gauge theory / symplectic geometry).

Step 3. Hugelmeyer v2.0.

In 2019, Hugelmeyer recovered $1 / 3$ of the rectangular peg problem:

Theorem 3 (Hugelmeyer 2019)

For every smooth Jordan curve γ, the set of angles $\phi \in(0, \pi / 2]$ such that γ contains an inscribed rectangle of aspect angle ϕ has Lebesgue measure $\geq(1 / 3)(\pi / 2)$.

Proof:

Reconsider $h=h_{2}: \operatorname{Sym}^{2}(\gamma) \rightarrow \mathbb{C} \times \mathbb{C}$,

$$
h(\{z, w\})=\left(\frac{z+w}{2},(z-w)^{2}\right)
$$

It is a smooth embedding. Write $M=\operatorname{im}(h)$.
For $\phi \in \mathbb{R}$, let $R_{\phi}: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C} \times \mathbb{C}$ denote rotation by ϕ in the second coordinate:

$$
R_{\phi}(z, w)=\left(z, e^{i \phi} \cdot w\right)
$$

$$
\left\{\begin{array}{c}
\text { inscribed rectangles in } \gamma \\
\text { with aspect angle } \phi
\end{array}\right\} \leftrightarrow \stackrel{\circ}{M} \cap R_{2 \phi}(\circ \circ
$$

Goal: show non-empty for $\geq 1 / 3$ of angles $\phi \in(\underline{Q}, \pi / 2]$.

Blow up as before (γ is smooth).
M_{1}, M_{2} - rotations of M with disjoint interiors.
Define a comparison $M_{1} \prec M_{2}$ based on linking number.
Fact 1. \prec is antisymmetric.
(Linking number argument.)
M_{1}, M_{2}, M_{3} - rotations of M with pairwise disjoint interiors.
Fact 2. \prec is transitive on M_{1}, M_{2}, M_{3}.
(Milnor triple linking number.)
$\prec+$ additive combinatorics (Kemperman / Cauchy-Davenport) delivers the result. \square

In fact $\exists M$ (not derived from any γ) s.t. $\stackrel{\circ}{M} \cap R_{\phi}(\stackrel{\circ}{M}) \neq \emptyset$ for $1 / 3$ of angles ϕ.
How to ensure that $\stackrel{\circ}{M} \cap R_{\phi}(\stackrel{\circ}{M}) \neq \emptyset$ for all $\phi, M=\operatorname{im}(h)$?

Step 4. Shift in perspective: symplectic geometry.

Idea: place a symplectic form on $\mathbb{C} \times \mathbb{C}$ so that M is Lagrangian and R_{ϕ} form a family of Hamiltonian symplectomorphisms.
"Optimistic" Arnold-Givental:

$$
\left|\grave{M} \cap R_{\phi}(\stackrel{\circ}{M})\right| \geq \operatorname{dim} H_{*}(M ; \mathbb{Z} / 2 \mathbb{Z})=2
$$

Technicality: M is nonorientable and has boundary. Shortcut: nonembeddability of the Klein bottle.

The rectangular peg problem.

Theorem 4 (G-Lobb 2020)

For every smooth Jordan curve and rectangle in the Euclidean plane, there exist four points on the curve that form the vertices of a rectangle similar to the one given.

Proof, minus details:

Define $f: \operatorname{Sym}^{2}(\gamma) \rightarrow \mathbb{C} \times \mathbb{C}$,

$$
f(\{z, w\})=\left(\frac{z+w}{2}, \frac{(z-w)^{2}}{2 \sqrt{2}|z-w|}\right) \quad(z \neq w)
$$

Möbius band $M=\operatorname{im}(f)$.
M hits $\mathbb{C} \times\{0\}$ in $\partial M=\gamma \times\{0\}$.
Away from ∂, M is smooth and Lagrangian w.r.t. symplectic form $\omega_{\text {std }}=\frac{i}{2}(d z \wedge d \bar{z}+d w \wedge d \bar{w})$ on \mathbb{C}^{2}.
Let $\phi \in(0, \pi / 2]$.

$$
\left\{\begin{array}{c}
\text { inscribed rectangles in } \gamma \\
\text { with aspect angle } \phi
\end{array}\right\} \leftrightarrow \stackrel{\circ}{M} \cap R_{2 \phi}(\circ \circ
$$

R_{ϕ} is a symplectomorphism.
It fixes ∂M.
Hence M and $R_{2 \phi}(M)$ are Möbius bands, smooth and
Lagrangian away from their common boundary $\gamma \times\{0\}$, where they meet in a controlled way.
We can smooth $M \cup R_{2 \phi}(M)$ nearby $\gamma \times\{0\}$ to get a smoothly mapped, Lagrangian Klein bottle.

Theorem 5 (Shevchishin, Nemirovski 2007)

There does not exist a smooth, Lagrangian embedding of the Klein bottle in $\left(\mathbb{C}^{2}, \omega\right)$.

Hence $\dot{M} \cap R_{2 \phi}(\dot{M}) \neq \emptyset \Longrightarrow \exists$ inscribed rectangle in γ of aspect angle $\phi . \square$

Details.

1. Why is M Lagrangian?
$\gamma \subset \mathbb{C}$ is Lagrangian
$\Longrightarrow \gamma \times \gamma \subset \mathbb{C} \times \mathbb{C}$ is
$\Longrightarrow \operatorname{Sym}^{2}(\gamma)-\Delta \subset \operatorname{Sym}^{2}(\mathbb{C})-\Delta$ is.
The map f is just $\mathbb{C} \times \mathbb{C} \xrightarrow{\pi} \operatorname{Sym}^{2}(\mathbb{C}) \xrightarrow{\sim} \mathbb{C} \times \mathbb{C}$ written explicitly: $f=g \circ l$, where $g, l: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C} \times \mathbb{C}$,

$$
l(z, w)=\left(\frac{z+w}{2}, \frac{z-w}{2}\right), g(z, r, \theta)=(z, r / \sqrt{2}, 2 \theta)
$$

l is a diffeomorphism and $l^{*}(\omega)=\omega / 2$.
g is smooth and $g^{*}(\omega)=\omega$ away from $\mathbb{C} \times\{0\}$. $M=f(\gamma \times \gamma)$ is Lagrangian (away from $\mathbb{C} \times\{0\}$).

Details.

2. Why is the smoothing possible?

Work with Lagrangian tori $L=l(\gamma \times \gamma)$ and $R_{\phi}(L)$.
They intersect cleanly at $\gamma \times\{0\} \subset \mathbb{C} \times\{0\}$. They are invariant under R_{π}.
Apply equivariant Weinstein theorem à la Poźniak:
$\exists \mathbb{Z} / 2$-equivariant symplectomorphism of neighborhood of intersection to $S^{1} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ with

- coordinates: $x_{1}, x_{2}, y_{1}, y_{2}$
- symplectic form: $d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}$
- $\mathbb{Z} / 2$ action: $\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \leftrightarrow\left(x_{1},-x_{2}, y_{1},-y_{2}\right)$
- Lagrangians: $S^{1} \times \mathbb{R} \times\{0\} \times\{0\}$ and $S^{1} \times\{0\} \times\{0\} \times \mathbb{R}$. smooth the intersection $\mathbb{Z} / 2$-equivariantly, then project via g

Details.

3. Nonexistence of Lagrangian Klein bottles in \mathbb{C}^{2}.

This had been a question of Givental.
Nemirovski's proof:
Given smoothly embedded Lagrangian Klein bottle $K \subset(X, \omega)$, $[K]=0 \in H_{2}(X ; \mathbb{Z} / 2)$, do Luttinger surgery.
Get dual Klein bottle $K^{\prime} \subset\left(X^{\prime}, \omega^{\prime}\right),\left[K^{\prime}\right] \neq 0 \in H_{2}\left(X^{\prime} ; \mathbb{Z} / 2\right)$. $(X-N(K), \omega) \approx\left(X^{\prime}-N\left(K^{\prime}\right), \omega^{\prime}\right)$.
Gromov: any symplectic 4 -manifold asymptotic to $\left(\mathbb{C}^{2}, \omega_{s t d}\right)$ at ∞ with $\pi_{2}=0$ is actually $\left(\mathbb{C}^{2}, \omega_{s t d}\right)$.
So could not have been in $\left(\mathbb{C}^{2}, \omega_{s t d}\right)$ in the first place (else get $\mathbb{C}^{2}=X=X^{\prime}$ and $\left[K^{\prime}\right] \neq 0 \in H_{2}\left(\mathbb{C}^{2} ; \mathbb{Z} / 2\right)$ 亿 $)$.

Beyond.

1. Does every smooth Jordan curve inscribe a rectangle of each aspect ratio whose vertices appear in the same cyclic order around both the curve and the rectangle? ("Yes" for the square: Schwartz.)

2. Does every smooth Jordan curve inscribe every cyclic quadrilateral?
3. Is there an "algorithm" to locate an inscribed square in a smooth Jordan curve? Compare: finding a fixed point of a continuous map from the disk to itself.
