Khovanov Homology Detects Split Links

Robert Lipshitz¹

Joint work with Sucharit Sarkar

arXiv:1910.04246

This research was supported by NSF Grant DMS-1810893.

Outline

- History, statement of main theorem
- Overview of proof.
- Background on A_{∞} -modules.
- The basepoint action on Khovanov homology.
- Twisted coefficients and action of the exterior algebra on Heegaard Floer homology

Khovanov homology detects...

Khovanov homology detects...

- [Grigsby-Wehrli, '08] dim Kh (n cable of K) detects the unknot ∀ n > 1.
- [Hedden, '08] dim Kh(2 cable of K) detects the unknot.
- [Kronheimer-Mrowka, '10]
 dim Kh(K) detects the unknot.
- [Hedden-Ni, '10] g dim Kh(L) detects the 2-component unlink.
- [Hedden-Ni, '12] Kh(L) as a module over $\mathbb{F}_2[X_1, \dots, X_\ell]/(X_1^2, \dots, X_\ell^2)$ detects the unlink.

- [Batson-Seed, '13] g dim Kh(L) detects the unlink.
- [Baldwin-Sivek, '18] Kh(L; Z) detects the trefoils.
- [Baldwin-Sivek-Xie, '18] g dim Kh(L; 𝔽₂) detects the Hopf link.
- [Xie-B. Zhang, '19] dim Kh(L; 𝔽₂) detects forests of Hopf links and unknots.
- [J. Wang, '20] dim $Kh(L; \mathbb{F}_2)$ detects trivial band sums $K_1 \coprod K_2$ of split links, among all band sums of $K_1 \coprod K_2$.

Near-universal strategy: exploit a spectral sequence to a more geometric invariant (Heegaard / monopole Floer homology or instanton Floer homology)

Khovanov homology [also] detects...split links.

- Given a link $L, p, q \in L$, can
 - form reduced Khovanov homology $\widetilde{Kh}(L)$ using the basepoint p
 - which is a module over $R = \mathbb{F}_2[X]/(X^2)$ using the basepoint q.
- **THEOREM**. [L-Sarkar, '19] Given a link L and points $p, q \in L$, there is a 2-sphere in $S^3 \setminus L$ separating p and q if and only if $\widetilde{Kh}(L)$ is a free $R = \mathbb{F}_2[X]/(X^2)$ -module.
- (For the rest of the talk, everything is with \mathbb{F}_2 -coefficients.)

Equivalent conditions to the main theorem

- Call a chain complex C_{*} over R quasi-free if C_{*} is quasi-isomorphic to a bounded chain complex of free R-modules.
- An obstruction to quasi-freeness over $\underset{X}{R} = \underset{X}{\mathbb{F}_2}[X]/(X^2)$: is total complex of $\cdots \leftarrow C_* \leftarrow C_* \leftarrow C_* \leftarrow C_* \leftarrow \cdots$

acyclic? Call the homology of this the *unrolled homology*.

- **THEOREM**.[L-Sarkar] For $p, q \in L$, the following are equivalent:
 - 1. There is a 2-sphere separating p and q.
 - 2. $\widetilde{Kh}(L)$ is a free *R*-module.
 - 3. $\tilde{C}^{Kh}(L)$ is quasi-free.
 - 4. The unrolled homology of $\tilde{C}^{Kh}(L)$ is trivial.

Overview of the proof

TFAE:

- 1. There is a 2-sphere separating p and q.
- 2. $\widetilde{Kh}(L)$ is a free *R*-module.
- 3. $\tilde{C}^{Kh}(L)$ is quasi-free.
- 4. The unrolled homology of $\tilde{C}^{Kh}(L)$ is trivial.
- FREENESS. [Shumakovitch '03] Kh(K) (unreduced) is a free R = $\mathbb{F}_2[X]/(X^2)$ -module.

Ingredients

- Also follows from an argument in odd Khovanov homology (Ozsváth-Rasmussen-Szabó).
- **BASEPOINT INDEPENDENCE**. Up to quasi-isomorphism over R, $\tilde{C}^{Kh}(L)$ depends only on L and which components contain p, q.

• **SPECTRAL SEQUENCE**. The Ozsváth-Szabó spectral sequence $\widetilde{Kh}(L) \Rightarrow \widehat{HF}(\Sigma(L))$ respects the (A_{∞}) *R*-module structure.

- **UNROLLED** \widehat{HF} . The unrolled homology of $\widehat{HF}(Y)$ is isomorphic to the Novikov twisted Heegaard Floer homology $\widehat{HF}(Y; \Lambda_{\omega})$.
- **SPHERE DETECTION.** $\widehat{HF}(Y; \Lambda_{\omega})$ detects homologically essential S^2 s. Specifically, $\widehat{HF}(Y; \Lambda_{\omega}) = 0$ if and only if there is an S^2 with $\langle \omega, S^2 \rangle \neq 0$.

Ni, Hedden-Ni, Alishahi-L

Ozsváth-Szabó.

Hedden-Ni + ϵ

Sarkar

-Ni + ϵ

TFAE:

- 1. There is a 2-sphere separating p and q.
- 2. $\widetilde{Kh}(L)$ is a free *R*-module.
- 3. $\tilde{C}^{Kh}(L)$ is quasi-free.
- 4. The unrolled homology of $\tilde{C}^{Kh}(L)$ is trivial.
- $1 \Rightarrow 2, 1 \Rightarrow 3$: For a split diagram, immediate from FREENESS of Kh(K) and Künneth theorem. For a general diagram, follows from **BASEPOINT INDEPENDENCE**.
- 2 \Rightarrow 4, 3 \Rightarrow 4: Algebra:
 - Can compute unrolled homology from A_{∞} -module structure on $\widetilde{Kh}(L)$.
 - Consider the filtration on $\dots \stackrel{X}{\leftarrow} C_* \stackrel{X}{\leftarrow} C_* \stackrel{X}{\leftarrow} C_* \stackrel{X}{\leftarrow} \dots$ from grading on C_* .
- 4 ⇒ 1:
 - SPECTRAL SEQUENCE: Unrolled homology of $\tilde{C}^{Kh}(L)$ trivial implies unrolled homology of $\widehat{HF}(\Sigma(L))$ trivial.
 - **UNROLLED HOMOLOGY**: this is equivalent to $\widehat{HF}(\Sigma(L); \Lambda_{\omega}) = 0$.
 - **SPHERE DETECTION**: this is equivalent to existence of a splitting sphere.

Steps

A_{∞} background

A_{∞} -module basics

- An A_{∞} -module over R is a (graded) vector space M and maps $m_{1+n}: M \otimes R^{\otimes n} \to M$ satisfying some compatibility conditions.
- For $R = \mathbb{F}_2[X]/(X^2)$ (and M strictly unital) these are maps $m_{1+n}(\cdot, X, \cdots, X): M \to M$ $\sum_{i+j=n} m_{1+i} \circ m_{1+j} = 0$
- The operation m_1 is a differential on M.
- A chain complex of R-modules gives an A_{∞} -module with $m_{1+n} = 0$ for n > 1.

A_{∞} -module basics

- HOMOLOGICAL PERTURBATION LEMMA. Given an A_{∞} -module M, a chain complex N, and a chain homotopy equivalence $M \simeq N$ over \mathbb{F}_2 there is an induced A_{∞} -module structure on N so that M and N are homotopy equivalent A_{∞} -modules.
- In particular, homology of any chain complex of R-modules is an A_{∞} -module.
- **DERIVED CATEGORY IS THE** A_{∞} **HOMOTOPY CATEGORY**. Given chain complexes of *R*-modules *M* and *N*, *M* and *N* are quasiisomorphic chain complexes of *R*-modules if and only if they are homotopy equivalent as A_{∞} -modules.

- There is a 2-sphere separating p and q. 1.
- $\widetilde{Kh}(L)$ is a free *R*-module. 2.

Unrolled complex of an A_{∞} -module ^{3.} $\tilde{C}^{Kh}(L)$ is quasi-free. The unrolled homology of $\tilde{C}^{Kh}(L)$ is trivial.

• The unrolled complex of M is $M \bigotimes_{\mathbb{F}_2} \mathbb{F}_2[Y^{-1}, Y]]$ with differential

- Clearly invariant under A_{∞} homotopy equivalence. So, by homological perturbation lemma, unrolled complex of $\widetilde{Kh}(L)$ and $\widetilde{C}^{Kh}(L)$ agree.
- 2 \Rightarrow 4 obvious. 3 \Rightarrow 4 follows by filtering by grading on M.

The basepoint action on Khovanov homology

Invariance of the module structure.

- Fix points $p, q \in L$. Endows $C^{Kh}(L)$ with structure of a $(\mathbb{F}_2[W]/(W^2), \mathbb{F}_2[X]/(X^2))$ -bimodule (or $\mathbb{F}_2[W, X]/(W^2, X^2)$ -module).
- **THEOREM**. [Hedden-Ni; LS] Up to quasi-isomorphism, the differential bimodule $C^{Kh}(L)$ depends only on the components containing p, q.
- **COROLLARY**. Up to quasi-isomorphism, the module structure on $\tilde{C}^{Kh}(L)$ and A_{∞} -module structure on Kh(L) and $\widetilde{Kh}(L)$ depend only on the components containing p, q.
- To prove the theorem, it suffices to construct an A_{∞} homotopy equivalence (or quasi-isomorphism) associated to moving a basepoint through a crossing.

Solid: differential. Dashed: $m_2(W, \cdot)$. Dotted: $m_2(\cdot, X)$. Double: $f_{0,1,0}$. Double-dashed: $f_{0,1,1}(\cdot, X)$.

Module structures on Heegaard Floer homology

A tale of two twistings

- Fix Y^3 , homomorphism $\omega: H_2(Y) \to \mathbb{Z}$.
- Ozsváth-Szabó construct:
 - An action of $\Lambda^* \mathbb{F}_2 = \mathbb{F}_2[X]/(X^2)$ on (untwisted) $\widehat{HF}(Y)$. (More generally, a $\Lambda^*(H_1(Y)/tors)$ -action.)
 - Twisted $\underline{\widehat{HF}}(Y; \Lambda_{\omega})$, a module over $\mathbb{F}_2[t^{-1}, t]$ or $\mathbb{F}_2[t^{-1}, t]$]
- Ni, Hedden-Ni, Alishahi-L: $\underline{\widehat{HF}}(Y; \Lambda_{\omega})$ vanishes if and only if Y has an S^2 with $\omega([S^2]) \neq 0$.
- Hedden-Ni, LS: The spectral sequence $\widehat{Kh}(L) \Rightarrow \widehat{HF}(\Sigma(L))$ respects the $\mathbb{F}_2[X]/(X^2)$ -action.
- Goal: relate $\widehat{HF}(Y)_{\mathbb{F}_2[X]/(X^2)}$ and $\underline{\widehat{HF}}(Y; \Lambda_{\omega})_{\mathbb{F}_2[t^{-1},t]}$.
- (cf. earlier work of Sarkar, work of Zemke.)

The H_1 /torsion-action

• Differential on $\widehat{HF}(\Sigma, \alpha, \beta, z)$: $\partial x = \sum_{y} \sum_{\substack{\phi \in \pi_2(x,y) \\ n_z(\phi) = 0 \\ \mu(\phi) = 1}} (\#\mathcal{M}(\phi))y$ $\partial(x) = 2y = 0$ $\partial(y) = 0$

 $x \cdot \zeta = y$

 $\mathbf{y} \cdot \boldsymbol{\zeta} = \mathbf{0}$

• Action of
$$\zeta \in H_1(Y)$$
:
 $x \cdot \zeta = \sum_{y} \sum_{\substack{\phi \in \pi_2(x,y) \\ n_z(\phi) = 0 \\ \mu(\phi) = 1}} (\#\mathcal{M}(\phi))(\zeta \cdot \partial_\alpha \phi)y$

The A_{∞} $H_1/torsion$ -action

 $\partial(x) = 2y = 0$ $\partial(y) = 0$

- $x \cdot \zeta = \sum_{y} \sum_{\substack{\phi \in \pi_2(x,y) \\ n_z(\phi) = 0 \\ \mu(\phi) = 1}} (\#\mathcal{M}(\phi))(\zeta \cdot \partial_\alpha \phi)y$
- Equivalently, $x \cdot \zeta$ counts disks $u: [0,1] \times \mathbb{R} \to Sym^g(\Sigma)$ with $u(1,0) \in \zeta \times Sym^{g-1}(\Sigma)$.

• Action of $\zeta \in H_1(Y)$:

At the level of homology, (x · ζ) · ζ = 0 by considering 1D moduli space of u with u(1,0) ∈ ζ, u(1,t) ∈ ζ' for some t > 0 (ζ' a pushoff of ζ).

 $\begin{aligned} x \cdot \zeta &= y \\ y \cdot \zeta &= 0 \end{aligned}$

The A_{∞} $H_1/torsion$ -action

• Action of $\zeta \in H_1(Y)$:

$$x \cdot \zeta = \sum_{y} \sum_{\substack{\phi \in \pi_2(x,y) \\ n_z(\phi) = 0 \\ \mu(\phi) = 1}} (\#\mathcal{M}(\phi))(\zeta \cdot \partial_\alpha \phi)y$$

- Equivalently, $x \cdot \zeta$ counts disks $u: [0,1] \times \mathbb{R} \to Sym^g(\Sigma \setminus \{z\})$ with $u(1,0) \in \zeta \times Sym^{g-1}(\Sigma)$.
- At the level of homology, $(x \cdot \zeta) \cdot \zeta = 0$ by considering 1D moduli space of u with $u(1,0) \in \zeta$, $u(1,t) \in \zeta'$ for some t > 0 (ζ' a pushoff of ζ).
- Define m₃(x, ζ, ζ) by counting 0D moduli space of this form.
- Define $m_n(x, \zeta, ..., \zeta)$, n > 3, similarly.

 $a \cdot \zeta = b + 2b + c + 2c = b + c$ $b \cdot \zeta = d$ $c \cdot \zeta = 0$ $d \cdot \zeta = 0$ $m_3(a, \zeta, \zeta) = b + 2b + 2c = b$ $m_3(\partial(a), \zeta, \zeta) + \partial(m_3(a, \zeta, \zeta)) = 0 + d$

Twisted coefficient \widehat{HF}

- Fix Y^3 , homomorphism $\omega: H_2(Y) \to \mathbb{Z}$.
- Choose $\zeta \in H_1(\Sigma)$ with $\omega(B) = \zeta \cdot \partial_{\alpha}(B)$.
- Define $\underline{\partial} x = \sum_{y} \sum_{\substack{\phi \in \pi_2(x,y) \\ n_z(\phi) = 0 \\ \mu(\phi) = 1}} (\#\mathcal{M}(\phi)) t^{(\zeta \cdot \partial_\alpha \phi)} y.$
- (This is a module over $\mathbb{F}_2[t^{-1}, t]$.)
- Notice that

$$\partial = \underline{\partial} \Big|_{t=1}$$

 $\frac{\partial}{\partial}(x) = t^1 y + t^0 y$ $\frac{\partial}{\partial}(y) = 0$

 $\partial(x) = 2y = 0$ $\partial(y) = 0$

First relation: Hasse derivatives

•
$$\underline{\partial} x = \sum_{y} \sum_{\phi \in \pi_2(x,y)} (\# \mathcal{M}(\phi)) t^{(\zeta \cdot \partial_{\alpha} \phi)} y.$$

 $n_z(\phi) = 0$
 $\mu(\phi) = 1$

•
$$x \cdot \zeta = \sum_{y} \sum_{\substack{\phi \in \pi_2(x,y) \\ n_z(\phi) = 0 \\ \mu(\phi) = 1}} (\# \mathcal{M}(\phi))(\zeta \cdot \partial_\alpha \phi)y = \frac{d}{dt}|_{t=1}(\underline{\partial}x)$$

- $\frac{d^2}{dt^2} = 0$ over \mathbb{F}_2 . But there's an analogue D^2 of $\frac{1}{2} \left(\frac{d^2}{dt^2} \right)$, called the *Hasse derivative*. (More generally, D^n is an analogue of $\frac{1}{n!} \left(\frac{d^n}{dt^n} \right)$.)
- **PROPOSITION.** [LS] $m_{1+n}(x, \zeta, \dots, \zeta) = D^n|_{t=1} (\underline{\partial} x).$
- COROLLARY.[LS] The unrolled homology of $\widehat{CF}(Y)$ (or $\widehat{HF}(Y)$) is isomorphic to $\underline{\widehat{HF}}(Y; \Lambda_{\omega})_{\mathbb{F}_2[t^{-1},t]}$ (so detects homologically essential S^2 s).

Second relation: Koszul duality

- Can view \mathbb{F}_2 as an $\mathbb{F}_2[t^{-1}, t]$ -module where t acts as 1.
- There is an isomorphism of algebras (or A_{∞} -algebras) $\mathbb{F}_{2}[X] / (X^{2}) \cong Ext_{\mathbb{F}_{2}[t^{-1},t]}(\mathbb{F}_{2},\mathbb{F}_{2})$
- **PROPOSITION**. [LS] There is an isomorphism of A_{∞} -modules over $\mathbb{F}_{2}[X] / (X^{2})$ $\widehat{HF}(Y) \cong Tor_{\mathbb{F}_{2}[t^{-1},t]}(\widehat{CF}(Y),\mathbb{F}_{2})$
- **PROOF.** See that tensoring with a free resolution of \mathbb{F}_2 leads to the formula with Hasse derivatives from the previous slide.

The Ozsváth-Szabó spectral sequence respects the A_{∞} -module structure

- **PROPOSITION**. [LS] There is a filtered A_{∞} -module C so that:
 - 1. As an unfiltered A_{∞} -module, *C* is quasi-isomorphic to $\widehat{CF}(\Sigma(L))$.
 - 2. The differential strictly increases the filtration.
 - 3. There is an isomorphism of modules $C \cong \tilde{C}_{Kh}(L)$ taking filtration to homological grading.
 - 4. To first order, the differential on *C* agrees with the Khovanov differential.
 - 5. To zeroth order, m_2 agrees with the action of X on $\tilde{C}_{Kh}(L)$.
- **COROLLARY**.[LS] If the unrolled homology of the Khovanov complex is trivial then the unrolled homology of the $\widehat{CF}(\Sigma(L))$ is trivial.
- In that case, $\Sigma(L)$ has a homologically essential S^2 so L is split.

TFAE:

- 1. There is a 2-sphere separating p and q.
- 2. $\widetilde{Kh}(L)$ is a free *R*-module.
- 3. $\tilde{C}^{Kh}(L)$ is quasi-free.
- 4. The unrolled homology of $\tilde{C}^{Kh}(L)$ is trivial.

• $1 \Rightarrow 2, 1 \Rightarrow 3$: For a split diagram, immediate from FREENESS of Kh(K) and Künneth theorem. For a general diagram, follows from **BASEPOINT INDEPENDENCE**.

- 2 \Rightarrow 4, 3 \Rightarrow 4: Algebra:
 - Can compute unrolled homology from A_{∞} -module structure on $\widetilde{Kh}(L)$.
 - Consider the filtration on $\dots \stackrel{X}{\leftarrow} C_* \stackrel{X}{\leftarrow} C_* \stackrel{X}{\leftarrow} C_* \stackrel{X}{\leftarrow} \dots$ from grading on C_* .
- 4 ⇒ 1:
 - SPECTRAL SEQUENCE: Unrolled homology of $\tilde{C}^{Kh}(L)$ trivial implies unrolled homology of $\widehat{HF}(\Sigma(L))$ trivial.
 - **UNROLLED HOMOLOGY**: this is equivalent to $\widehat{HF}(\Sigma(L); \Lambda_{\omega}) = 0$.
 - **SPHERE DETECTION**: this is equivalent to existence of a splitting sphere.

Review of the proof

That's all. Thanks for listening!