

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

MAX PLANCK INSTITUTE FOR TERRESTRIAL MICROBIOLOGY

Information processing by bacterial quorum sensing systems

Ilka B. Bischofs

μCATs-Lab @ BioQuant, Heidelberg

Adaptation

"The only constant in life is change."

Information about the niche.

Adaptation

,, The only constant in life is change. "

Environmental conditions change.

Adaptation

Cell differentiation

Signal Transduction in Bacteria

e.g. chemotaxis CheA-CheY, EnvZ/OmpR 5

e.g. Lac repressor

Signal Transduction in Bacteria

One component systems Two component systems ΗK R R **Binding** Enzymatic **Modulator Modulator** R

Auto-inducer signaling (Quorum sensing)

more cells – more signal

"The quorum"– a minimal behavioral unit

"The quorum response"

(Almost) 50 Years of Quorum Sensing

Bioluminescence is regulated by cell density.

The Quorum Response Spectrum

Quorum Sensing in Synthetic Biology Applications

LuxIR-type of QS Circuitry

Advanced Biosensors

Prindle et al., Nature 2012

Multi-cellular Computing

Synthetic Ecology

Brenner et al., Trends in Biotechnology, 2008¹⁴

Tamsir et al., Nature 2011

Diversity of Quorum Sensing Architectures

Adopting a modular view on QSS

Diversity of Encoding Architectures

99 networks (85%) are capable

of encoding information about cell density into SM concentration.

Adopting a Modular View on QSS

Defining a Performance Criterion

Relation to mutual information:

$$M_{max} = \log_2 \left(\frac{1}{\sqrt{2\pi e}} \int \frac{R(I)}{I} dI \right)$$

Quantifying Performance

QS architectures have distinct sensitivity and noise charachteristics.

QSS achieve optimal performance at a certain cell density input.

The optimal sensory performance is matched to the "quorum"

Performance Trade-offs

Conclusions

Traditional Quorum Sensing Research

The QS Paradigm

Homogeneous	
population	

Cell density sensing Synchronized response

Complex adaptive traits

Distribution of different phenotypes

Division of labor

J. van Gestel et al., Plos Biology, 2015 Bet hedging

Reviewed in: Veening et al., Annu. Rev. Microbiol. 2008

26

Population-based <u>quantitative</u> trait

Ackermann, Nature Reviews Microbiology (2015)

Fluorescence timelapse microscopy

Heterochronic population response

Mutlu et al., Nat. Commun. (2018)

Mutlu et al., ISME J (2020)

Going beyond the QS paradigm

Communication in *B. subtilis*

Neiditch et al., Ann. Rev. Genetics (2017)

Rap-Phr-Systems are commonly referred as **quorum sensing** systems.

However, there is little experimental evidence for a cell-density dependent type of regulation.

The Pump-Probe Model

Phenomenological (ODE-type) model

Population model

- <u>Heterogeneous population</u>: Signal produced by a subpopulation of cells present at <u>frequency f</u>
- Signal uptake by <u>all cells</u>.
- Exponentially growing population (same growth rate & well-mixed)
- Different starting cell densities (OD)

Signal transduction model

- Signal uptake with Michaelis-Menten pump kinetics
- Signal degradation (and dilution by cell growth)
- Output is a function of the intracellular signal concentration using a Hill function 32

One network architecture – different control functions

Control functions depend on network parameters and operating conditions

not (well) defined

$$k_T = 1/\tau_D * \left(\frac{R_0}{R}\right)^6$$

 τ_D : Fluorescence lifetime of the donor R: Distance between chromophores

Babel et al., Nat. Commun. 2020

Acceptor-photobleaching experiments

FRET specifically reports on PhrA

43

Dose-dependent signal processing

Dose-dependent signal processing

Composition Sensing

PP Systems: Frequency-dependent regulation

Frequency dependent investments into mating in yeast (Banderas et al., 2016) Conjugation in Enterococcus faecalis, Banderas et al., BioArXiv 2019. See also upcoming work by Avigdor Eldar on phages (Tel Aviv University).

Future work

The Enzymatic Modulator Model

Signal processing by single cells

Signal processing by engineered receptors

Parashar et al., 2011 Gallego et al., 2013 Parashar et al., 2013

Summary

One sensory function – different architectures

The architecture of QSS could constrain the operating regime for cell density sensing.

One architecture – different sensory functions

Pump-probe networks could implement versatile control functions, including the ability for composition sensing and frequency-dependent regulation.

FRET is a powerful way to quantitatively interrogate signal processing in bacteria by montoring protein-protein interactions in the cell.

Acknowledgements

<u>µCATS Group</u>

Hsuan Chang Qinna Cui Leonard Ernst Charlotte Kaspar Max Kilian Katja Nagler **Pablo Naranjo** Svenja Schwindt Benedikt Steinfeld Sophie Zhu

Alumni

<u>Bastian Drees</u> <u>Alper Mutlu</u> <u>Heiko Babel</u> Sonja Schulmeister Stephanie Trauth

Collaborators

Kirsten Jung (Munich) Thomas Höfer (Heidelberg) Nils Becker (Heidelberg) Victor Sourjik (Marburg) Gabriele Malengo (Marburg)

burg) CellNetworks HBIGS Heidelberg Biosciences International Graduate School

erc

Support

