# Dual curvature measures and Orlicz-Minkowski problems 

Sudan Xing

Geometric Tomography

Banff International Research Station

Feb 12, 2020

Convex bodies

## Convex bodies

$\diamond \mathscr{K}_{(0)}^{n}$ : convex bodies (compact convex sets) with the origin o in their interiors.

## Convex bodies

« $\mathscr{K}_{(0)}^{n}$ : convex bodies (compact convex sets) with the origin $o$ in their interiors.
$\diamond \mathscr{K}_{0}^{n}$ : convex bodies containing the origin $o$.

## Convex bodies

$\diamond \mathscr{K}_{(o)}^{n}$ : convex bodies (compact convex sets) with the origin o in their interiors.
४ $\mathscr{K}_{0}^{n}$ : convex bodies containing the origin $o$.
$\stackrel{\wedge}{ } S^{n-1}:\left\{x \in \mathbb{R}^{n}:|x|=1\right\}=\partial B^{n}$, the unit sphere in $\mathbb{R}^{n}$.

## Convex bodies

$\diamond \mathscr{K}_{(0)}^{n}$ : convex bodies (compact convex sets) with the origin o in their interiors.
४ $\mathscr{K}_{0}^{n}$ : convex bodies containing the origin $o$.
ヶ $S^{n-1}:\left\{x \in \mathbb{R}^{n}:|x|=1\right\}=\partial B^{n}$, the unit sphere in $\mathbb{R}^{n}$.
$\triangleleft$ For $K \in \mathscr{K}_{(0)}^{n}$ :

## Convex bodies

$\triangleleft \mathscr{K}_{(0)}^{n}$ : convex bodies (compact convex sets) with the origin o in their interiors.
४ $\mathscr{K}_{0}^{n}$ : convex bodies containing the origin $o$.
ヶ $S^{n-1}:\left\{x \in \mathbb{R}^{n}:|x|=1\right\}=\partial B^{n}$, the unit sphere in $\mathbb{R}^{n}$.
$\diamond$ For $K \in \mathscr{K}_{(o)}^{n}$ :

- Support function $h_{K}: S^{n-1} \rightarrow \mathbb{R}$,

$$
h_{K}(u)=\max _{x \in K}\langle x, u\rangle \text { for each } u \in S^{n-1} .
$$

## Convex bodies

$\diamond \mathscr{K}_{(0)}^{n}$ : convex bodies (compact convex sets) with the origin o in their interiors.
$\diamond \mathscr{K}_{0}^{n}$ : convex bodies containing the origin $o$.
$\diamond S^{n-1}:\left\{x \in \mathbb{R}^{n}:|x|=1\right\}=\partial B^{n}$, the unit sphere in $\mathbb{R}^{n}$.
$\triangleleft$ For $K \in \mathscr{K}_{(o)}^{n}$ :

- Support function $h_{K}: S^{n-1} \rightarrow \mathbb{R}$,

$$
h_{K}(u)=\max _{x \in K}\langle x, u\rangle \text { for each } u \in S^{n-1} .
$$

$\bullet$ Radial function $\rho_{K}: S^{n-1} \rightarrow \mathbb{R}$,

$$
\rho_{K}(u)=\max \{\lambda: \lambda u \in K\}, \text { for each } u \in S^{n-1} .
$$

## Convex bodies

今 $\mathscr{K}_{(0)}^{n}$ : convex bodies (compact convex sets) with the origin o in their interiors.
$\diamond \mathscr{K}_{0}^{n}$ : convex bodies containing the origin $o$.
$\diamond S^{n-1}:\left\{x \in \mathbb{R}^{n}:|x|=1\right\}=\partial B^{n}$, the unit sphere in $\mathbb{R}^{n}$.
$\triangleleft$ For $K \in \mathscr{K}_{(o)}^{n}$ :
$\rightarrow$ Support function $h_{K}: S^{n-1} \rightarrow \mathbb{R}$,

$$
h_{K}(u)=\max _{x \in K}\langle x, u\rangle \text { for each } u \in S^{n-1} .
$$

$\bullet$ Radial function $\rho_{K}: S^{n-1} \rightarrow \mathbb{R}$,

$$
\rho_{K}(u)=\max \{\lambda: \lambda u \in K\}, \text { for each } u \in S^{n-1} .
$$

$\uparrow$ Polar body:

$$
K^{*}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1 \text { for all } y \in K\right\} \in \mathscr{K}_{(0)}^{n} .
$$

Convex bodies

## Convex bodies



Figure: Support function, radial function and Gauss map

## Convex bodies



Figure: Support function, radial function and Gauss map


Figure: Polar body

## Aleksandrov body

For $f \in C^{+}(\Omega)$ (positive continuous function on $\Omega$ ), the Aleksandrov body (Wulff shape) associated with $f$ is

$$
[f]=\bigcap_{u \in \Omega}\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq f(u)\right\} \in \mathscr{K}_{(o)}^{n}, \quad \Omega \subset S^{n-1}
$$

## Aleksandrov body

For $f \in C^{+}(\Omega)$ (positive continuous function on $\Omega$ ), the Aleksandrov body (Wulff shape) associated with $f$ is

$$
[f]=\bigcap_{u \in \Omega}\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq f(u)\right\} \in \mathscr{K}_{(o)}^{n}, \quad \Omega \subset S^{n-1}
$$

In particular,

$$
K=\bigcap_{u \in S^{n-1}}\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq h_{K}(u)\right\} .
$$

## Aleksandrov body

For $f \in C^{+}(\Omega)$ (positive continuous function on $\Omega$ ), the Aleksandrov body (Wulff shape) associated with $f$ is

$$
[f]=\bigcap_{u \in \Omega}\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq f(u)\right\} \in \mathscr{K}_{(o)}^{n}, \quad \Omega \subset S^{n-1}
$$

In particular,

$$
K=\bigcap_{u \in S^{n-1}}\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq h_{K}(u)\right\}
$$



Figure: Aleksandrov body

Surface area measure

## Surface area measure

$\diamond$ The inverse Gauss map $\nu_{K}^{-1}(\cdot): S^{n-1} \rightarrow \partial K$,

$$
\nu_{K}^{-1}(\eta):=\left\{x \in \partial K: \nu_{K}(x) \in \eta\right\}
$$

for any Borel set $\eta \subset S^{n-1}$.

## Surface area measure

$\diamond$ The inverse Gauss map $\nu_{K}^{-1}(\cdot): S^{n-1} \rightarrow \partial K$,

$$
\nu_{K}^{-1}(\eta):=\left\{x \in \partial K: \nu_{K}(x) \in \eta\right\}
$$

for any Borel set $\eta \subset S^{n-1}$.
$\diamond \mathscr{H}^{n-1}: n-1$ dimensional Hausdorff measure.

## Surface area measure

$\diamond$ The inverse Gauss map $\nu_{K}^{-1}(\cdot): S^{n-1} \rightarrow \partial K$,

$$
\nu_{K}^{-1}(\eta):=\left\{x \in \partial K: \nu_{K}(x) \in \eta\right\}
$$

for any Borel set $\eta \subset S^{n-1}$.
$\diamond \mathscr{H}^{n-1}: n-1$ dimensional Hausdorff measure.

## Surface area measure

For a convex body $K \in \mathscr{K}_{(o)}^{n}$, the surface area measure $S(K, \cdot)$ is

$$
S(K, \eta)=\mathscr{H}^{n-1}\left(\nu_{K}^{-1}(\eta)\right)
$$

for any Borel set $\eta \subset S^{n-1}$.

## Surface area measure

$\diamond$ The inverse Gauss map $\nu_{K}^{-1}(\cdot): S^{n-1} \rightarrow \partial K$,

$$
\nu_{K}^{-1}(\eta):=\left\{x \in \partial K: \nu_{K}(x) \in \eta\right\}
$$

for any Borel set $\eta \subset S^{n-1}$.
↔ $\mathscr{H}^{n-1}: n-1$ dimensional Hausdorff measure.

## Surface area measure

For a convex body $K \in \mathscr{K}_{(0)}^{n}$, the surface area measure $S(K, \cdot)$ is

$$
S(K, \eta)=\mathscr{H}^{n-1}\left(\nu_{K}^{-1}(\eta)\right)
$$

for any Borel set $\eta \subset S^{n-1}$.
$\diamond$ Volume: $\quad V(K)=\frac{1}{n} \int_{S^{n-1}} h_{K}(u) d S(K, u)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}(u)^{n} d u$.

Characterization of $S(K, \cdot)$

## Characterization of $S(K, \cdot)$

## The classical Minkowski problem

For a given nonzero finite Borel measure $\mu$ on $S^{n-1}$, what are the necessary and sufficient conditions on $\mu$ such that $\mu=S(K, \cdot)$ for some $K \in \mathscr{K}_{(0)}^{n}$ ?

## Characterization of $S(K, \cdot)$

## The classical Minkowski problem

For a given nonzero finite Borel measure $\mu$ on $S^{n-1}$, what are the necessary and sufficient conditions on $\mu$ such that $\mu=S(K, \cdot)$ for some $K \in \mathscr{K}_{(o)}^{n}$ ?

## Solution to the Minkowski problem

A Borel measure $\mu$ on $S^{n-1}$ is $S(K, \cdot)$ for some $K \in \mathscr{K}_{(o)}^{n}$ iff $\mu$ has centroid at the origin and is not concentrated on a great hemisphere. Moreover, $K$ is unique up to translations.

## Characterization of $S(K, \cdot)$

## The classical Minkowski problem

For a given nonzero finite Borel measure $\mu$ on $S^{n-1}$, what are the necessary and sufficient conditions on $\mu$ such that $\mu=S(K, \cdot)$ for some $K \in \mathscr{K}_{(0)}^{n}$ ?

## Solution to the Minkowski problem

A Borel measure $\mu$ on $S^{n-1}$ is $S(K, \cdot)$ for some $K \in \mathscr{K}_{(o)}^{n}$ iff $\mu$ has centroid at the origin and is not concentrated on a great hemisphere. Moreover, $K$ is unique up to translations.

ヶ Discrete measure: Minkowski, 1897, 1903.

## Characterization of $S(K, \cdot)$

## The classical Minkowski problem

For a given nonzero finite Borel measure $\mu$ on $S^{n-1}$, what are the necessary and sufficient conditions on $\mu$ such that $\mu=S(K, \cdot)$ for some $K \in \mathscr{K}_{(0)}^{n}$ ?

## Solution to the Minkowski problem

A Borel measure $\mu$ on $S^{n-1}$ is $S(K, \cdot)$ for some $K \in \mathscr{K}_{(o)}^{n}$ iff $\mu$ has centroid at the origin and is not concentrated on a great hemisphere. Moreover, $K$ is unique up to translations.
« Discrete measure: Minkowski, 1897, 1903.
« General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.

## Characterization of $S(K, \cdot)$

## The classical Minkowski problem

For a given nonzero finite Borel measure $\mu$ on $S^{n-1}$, what are the necessary and sufficient conditions on $\mu$ such that $\mu=S(K, \cdot)$ for some $K \in \mathscr{K}_{(0)}^{n}$ ?

## Solution to the Minkowski problem

A Borel measure $\mu$ on $S^{n-1}$ is $S(K, \cdot)$ for some $K \in \mathscr{K}_{(o)}^{n}$ iff $\mu$ has centroid at the origin and is not concentrated on a great hemisphere. Moreover, $K$ is unique up to translations.
« Discrete measure: Minkowski, 1897, 1903.
« General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.
$\diamond$ Applications: to establish the Affine Sobolev inequality.

## Characterization of $S(K, \cdot)$

## The classical Minkowski problem

For a given nonzero finite Borel measure $\mu$ on $S^{n-1}$, what are the necessary and sufficient conditions on $\mu$ such that $\mu=S(K, \cdot)$ for some $K \in \mathscr{K}_{(0)}^{n}$ ?

## Solution to the Minkowski problem

A Borel measure $\mu$ on $S^{n-1}$ is $S(K, \cdot)$ for some $K \in \mathscr{K}_{(o)}^{n}$ iff $\mu$ has centroid at the origin and is not concentrated on a great hemisphere. Moreover, $K$ is unique up to translations.
« Discrete measure: Minkowski, 1897, 1903.
« General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.
$\diamond$ Applications: to establish the Affine Sobolev inequality.
$\diamond$ Monge-Ampère type equation:

$$
f=\operatorname{det}\left(\nabla^{2} h+h l\right) .
$$

## Necessary condition

$\stackrel{\rightharpoonup}{ }$ A measure $\mu$ is not concentrated on any closed hemisphere if

$$
\int_{S^{n-1}}\langle u, v\rangle_{+} d \mu(u)>0 \quad \text { for any } v \in S^{n-1}
$$

where $a_{+}=\max \{a, 0\}$ for $a \in \mathbb{R}$.

## Necessary condition

$\diamond$ A measure $\mu$ is not concentrated on any closed hemisphere if

$$
\int_{S^{n-1}}\langle u, v\rangle_{+} d \mu(u)>0 \quad \text { for any } v \in S^{n-1}
$$

where $a_{+}=\max \{a, 0\}$ for $a \in \mathbb{R}$.
$\diamond$ This condition for measure $\mu$ is necessary to solve the classical Minkowski problem and its extensions, since it guarantees convex sets to be bounded (and hence compact).

## Necessary condition

$\diamond$ A measure $\mu$ is not concentrated on any closed hemisphere if

$$
\int_{S^{n-1}}\langle u, v\rangle_{+} d \mu(u)>0 \quad \text { for any } v \in S^{n-1}
$$

where $a_{+}=\max \{a, 0\}$ for $a \in \mathbb{R}$.
$\triangleleft$ This condition for measure $\mu$ is necessary to solve the classical Minkowski problem and its extensions, since it guarantees convex sets to be bounded (and hence compact).


Figure: Support of $\mu$ on the plane

## The Orlicz-Minkowski problem

## The Orlicz-Minkowski problem

Under what conditions on a finite Borel measure $\mu$ and $\phi:(0, \infty) \rightarrow(0, \infty)$, does there exist a $K \in \mathscr{K}_{(o)}^{n}$ such that for some constant $\tau>0$,

$$
\mu=\tau \phi\left(h_{K}\right) S(K, \cdot) ?
$$

## The Orlicz-Minkowski problem

## The Orlicz-Minkowski problem

Under what conditions on a finite Borel measure $\mu$ and $\phi:(0, \infty) \rightarrow(0, \infty)$, does there exist a $K \in \mathscr{K}_{(o)}^{n}$ such that for some constant $\tau>0$,

$$
\mu=\tau \phi\left(h_{K}\right) S(K, \cdot) ?
$$

ヶ $\phi(t)=t^{1-p}: L_{p}$ Minkowski problem (Lutwak, 1993).

## The Orlicz-Minkowski problem

## The Orlicz-Minkowski problem

Under what conditions on a finite Borel measure $\mu$ and $\phi:(0, \infty) \rightarrow(0, \infty)$, does there exist a $K \in \mathscr{K}_{(o)}^{n}$ such that for some constant $\tau>0$,

$$
\mu=\tau \phi\left(h_{K}\right) S(K, \cdot) ?
$$

« $\phi(t)=t^{1-p}: L_{p}$ Minkowski problem (Lutwak, 1993).
$\diamond$ Extreme problem: $\inf \left\{\int_{S^{n-1}} \varphi\left(h_{Q}(u)\right) d \mu(u): V(Q)=V\left(B^{n}\right), Q \in \mathscr{K}_{(o)}^{n}\right\}$ ?

## The Orlicz-Minkowski problem

## The Orlicz-Minkowski problem

Under what conditions on a finite Borel measure $\mu$ and $\phi:(0, \infty) \rightarrow(0, \infty)$, does there exist a $K \in \mathscr{K}_{(o)}^{n}$ such that for some constant $\tau>0$,

$$
\mu=\tau \phi\left(h_{K}\right) S(K, \cdot) ?
$$

ヶ $\phi(t)=t^{1-p}: L_{p}$ Minkowski problem (Lutwak, 1993).
$\diamond$ Extreme problem: $\inf \left\{\int_{S^{n-1}} \varphi\left(h_{Q}(u)\right) d \mu(u): V(Q)=V\left(B^{n}\right), Q \in \mathscr{K}_{(o)}^{n}\right\}$ ?
$\diamond$ Orlicz surface area measure $\phi\left(h_{K}\right) S(K, \cdot)$ derives from a variation formula of volume in terms of the Aleksandrov body of the Orlicz addition:

$$
\phi(t)=1 / \varphi^{\prime}(t), \quad f_{\epsilon}(u)=\varphi^{-1}\left(\varphi\left(h_{K}(u)\right)+\epsilon g(u)\right) .
$$

## The Orlicz-Minkowski problem

## The Orlicz-Minkowski problem

Under what conditions on a finite Borel measure $\mu$ and $\phi:(0, \infty) \rightarrow(0, \infty)$, does there exist a $K \in \mathscr{K}_{(o)}^{n}$ such that for some constant $\tau>0$,

$$
\mu=\tau \phi\left(h_{K}\right) S(K, \cdot) ?
$$

ヶ $\phi(t)=t^{1-p}: L_{p}$ Minkowski problem (Lutwak, 1993).
$\diamond$ Extreme problem: $\inf \left\{\int_{S^{n-1}} \varphi\left(h_{Q}(u)\right) d \mu(u): V(Q)=V\left(B^{n}\right), Q \in \mathscr{K}_{(o)}^{n}\right\}$ ?
$\diamond$ Orlicz surface area measure $\phi\left(h_{K}\right) S(K, \cdot)$ derives from a variation formula of volume in terms of the Aleksandrov body of the Orlicz addition:

$$
\phi(t)=1 / \varphi^{\prime}(t), \quad f_{\epsilon}(u)=\varphi^{-1}\left(\varphi\left(h_{K}(u)\right)+\epsilon g(u)\right) .
$$

$\diamond$ Contributions: Haberl-Lutwak-Yang-Zhang, 2010; Huang-He, 2012; Li, 2014; Wu-Xi-Leng, 2018; Sun-Long, 2015; Sun-Zhang, 2018; Sun, 2018, etc.

The reverse radial Gauss image

## The reverse radial Gauss image



## The reverse radial Gauss image



४ $\nu_{K}(\cdot): \partial K \rightarrow S^{n-1}$ is the Gauss map.

## The reverse radial Gauss image


$\triangleleft \nu_{K}(\cdot): \partial K \rightarrow S^{n-1}$ is the Gauss map.
$\triangleleft \alpha_{K}(\cdot): S^{n-1} \rightarrow S^{n-1}$ is the radial Gauss image, i.e., for any $\eta \subset S^{n-1}$, $\boldsymbol{\alpha}_{K}(\eta)=\boldsymbol{\nu}_{K}\left(\left\{\rho_{K}(u) u \in \partial K: u \in \eta\right\}\right)$.

## The reverse radial Gauss image


$\triangleleft \nu_{K}(\cdot): \partial K \rightarrow S^{n-1}$ is the Gauss map.
$\triangleleft \alpha_{K}(\cdot): S^{n-1} \rightarrow S^{n-1}$ is the radial Gauss image, i.e., for any $\eta \subset S^{n-1}$, $\boldsymbol{\alpha}_{K}(\eta)=\boldsymbol{\nu}_{K}\left(\left\{\rho_{K}(u) u \in \partial K: u \in \eta\right\}\right)$.
$\triangleleft \alpha_{K}^{*}(\cdot): S^{n-1} \rightarrow S^{n-1}$ is the reverse radial Gauss image.

The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$
$\diamond \psi:(0, \infty) \rightarrow(0, \infty)$ is continuous,

## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

ヶ $\psi:(0, \infty) \rightarrow(0, \infty)$ is continuous,
$\diamond G(t, u):(0, \infty) \times S^{n-1} \rightarrow(0, \infty)$ is continuous,

## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

ヶ $\psi:(0, \infty) \rightarrow(0, \infty)$ is continuous,
$\diamond G(t, u):(0, \infty) \times S^{n-1} \rightarrow(0, \infty)$ is continuous,
$\diamond G_{t}(t, u)=\partial G(t, u) / \partial t:(0, \infty) \times S^{n-1} \rightarrow \mathbb{R}$ is integrable on $S^{n-1}$.

## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

« $\psi:(0, \infty) \rightarrow(0, \infty)$ is continuous,
$\diamond G(t, u):(0, \infty) \times S^{n-1} \rightarrow(0, \infty)$ is continuous,
$\diamond G_{t}(t, u)=\partial G(t, u) / \partial t:(0, \infty) \times S^{n-1} \rightarrow \mathbb{R}$ is integrable on $S^{n-1}$.
The general dual Orlicz curvature measure (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For $K \in \mathscr{K}_{(o)}^{n}$ and Borel set $\eta \subset S^{n-1}$, the general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}(K, \cdot)$ is defined as

$$
\widetilde{C}_{G, \psi}(K, \eta)=\frac{1}{n} \int_{\boldsymbol{\alpha}_{K}^{*}(\eta)} \frac{\rho_{K}(u) G_{t}\left(\rho_{K}(u), u\right)}{\psi\left(h_{K}\left(\alpha_{K}(u)\right)\right)} d u .
$$

## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

« $\psi:(0, \infty) \rightarrow(0, \infty)$ is continuous,
$\diamond G(t, u):(0, \infty) \times S^{n-1} \rightarrow(0, \infty)$ is continuous,
$\diamond G_{t}(t, u)=\partial G(t, u) / \partial t:(0, \infty) \times S^{n-1} \rightarrow \mathbb{R}$ is integrable on $S^{n-1}$.
The general dual Orlicz curvature measure (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For $K \in \mathscr{K}_{(o)}^{n}$ and Borel set $\eta \subset S^{n-1}$, the general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}(K, \cdot)$ is defined as

$$
\widetilde{C}_{G, \psi}(K, \eta)=\frac{1}{n} \int_{\boldsymbol{\alpha}_{K}^{*}(\eta)} \frac{\rho_{K}(u) G_{t}\left(\rho_{K}(u), u\right)}{\psi\left(h_{K}\left(\alpha_{K}(u)\right)\right)} d u .
$$

$\uparrow \widetilde{C}_{G, \psi}$ is a finite signed Borel measure;

## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

« $\psi:(0, \infty) \rightarrow(0, \infty)$ is continuous,
$\diamond G(t, u):(0, \infty) \times S^{n-1} \rightarrow(0, \infty)$ is continuous,
$\diamond G_{t}(t, u)=\partial G(t, u) / \partial t:(0, \infty) \times S^{n-1} \rightarrow \mathbb{R}$ is integrable on $S^{n-1}$.
The general dual Orlicz curvature measure (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For $K \in \mathscr{K}_{(o)}^{n}$ and Borel set $\eta \subset S^{n-1}$, the general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}(K, \cdot)$ is defined as

$$
\widetilde{C}_{G, \psi}(K, \eta)=\frac{1}{n} \int_{\boldsymbol{\alpha}_{K}^{*}(\eta)} \frac{\rho_{K}(u) G_{t}\left(\rho_{K}(u), u\right)}{\psi\left(h_{K}\left(\alpha_{K}(u)\right)\right)} d u .
$$

$\downarrow \widetilde{C}_{G, \psi}$ is a finite signed Borel measure;

- $\widetilde{C}_{G, \psi}$ is weakly convergent in terms of the Hausdorff metric;


## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

« $\psi:(0, \infty) \rightarrow(0, \infty)$ is continuous,
$\diamond G(t, u):(0, \infty) \times S^{n-1} \rightarrow(0, \infty)$ is continuous,
$\diamond G_{t}(t, u)=\partial G(t, u) / \partial t:(0, \infty) \times S^{n-1} \rightarrow \mathbb{R}$ is integrable on $S^{n-1}$.
The general dual Orlicz curvature measure (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For $K \in \mathscr{K}_{(o)}^{n}$ and Borel set $\eta \subset S^{n-1}$, the general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}(K, \cdot)$ is defined as

$$
\widetilde{C}_{G, \psi}(K, \eta)=\frac{1}{n} \int_{\boldsymbol{\alpha}_{K}^{*}(\eta)} \frac{\rho_{K}(u) G_{t}\left(\rho_{K}(u), u\right)}{\psi\left(h_{K}\left(\alpha_{K}(u)\right)\right)} d u .
$$

$\downarrow \widetilde{C}_{G, \psi}$ is a finite signed Borel measure;
$\checkmark \widetilde{C}_{G, \psi}$ is weakly convergent in terms of the Hausdorff metric;
$\uparrow \widetilde{C}_{G, \psi}$ is not concentrated on any closed hemisphere;

## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

« $\psi:(0, \infty) \rightarrow(0, \infty)$ is continuous,
४ $G(t, u):(0, \infty) \times S^{n-1} \rightarrow(0, \infty)$ is continuous,
$\diamond G_{t}(t, u)=\partial G(t, u) / \partial t:(0, \infty) \times S^{n-1} \rightarrow \mathbb{R}$ is integrable on $S^{n-1}$.
The general dual Orlicz curvature measure (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For $K \in \mathscr{K}_{(o)}^{n}$ and Borel set $\eta \subset S^{n-1}$, the general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}(K, \cdot)$ is defined as

$$
\widetilde{C}_{G, \psi}(K, \eta)=\frac{1}{n} \int_{\boldsymbol{\alpha}_{K}^{*}(\eta)} \frac{\rho_{K}(u) G_{t}\left(\rho_{K}(u), u\right)}{\psi\left(h_{K}\left(\alpha_{K}(u)\right)\right)} d u .
$$

$\downarrow \widetilde{C}_{G, \psi}$ is a finite signed Borel measure;
$\checkmark \widetilde{C}_{G, \psi}$ is weakly convergent in terms of the Hausdorff metric;
$\downarrow \widetilde{C}_{G, \psi}$ is not concentrated on any closed hemisphere;
$\uparrow \widetilde{C}_{G, \psi}$ is absolutely continuous to $S(K, \cdot)$, etc.

## Uniqueness under certain conditions

Let $G:(0, \infty) \times S^{n-1} \rightarrow(0, \infty)$ and $\psi:(0, \infty) \rightarrow(0, \infty)$ be continuous. Suppose that $G_{t}>0\left(\right.$ or $\left.G_{t}<0\right)$ on $(0, \infty) \times S^{n-1}$ and that if

$$
\begin{equation*}
\frac{G_{t}(t, u)}{\psi(s)} \geq \frac{\lambda G_{t}(\lambda t, u)}{\psi(\lambda s)} \quad\left(\text { or } \quad \frac{G_{t}(t, u)}{\psi(s)} \leq \frac{\lambda G_{t}(\lambda t, u)}{\psi(\lambda s)}, \text { respectively }\right) \tag{1}
\end{equation*}
$$

for some $\lambda, s, t>0$ and $u \in S^{n-1}$, then $\lambda \geq 1$. If $K, K^{\prime} \in \mathscr{K}_{(o)}^{n}$ are both polytopes or both have support functions in $C^{2}$ and

$$
\widetilde{C}_{G, \psi}(K, \cdot)=\widetilde{C}_{G, \psi}\left(K^{\prime}, \cdot\right)
$$

then

$$
K=K^{\prime} .
$$

The general dual Orlicz-Minkowski problem (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For which nonzero finite Borel measures $\mu$ on $S^{n-1}$ and continuous functions $G:(0, \infty) \times S^{n-1} \rightarrow(0, \infty)$ and $\psi:(0, \infty) \rightarrow(0, \infty)$, do there exist $\tau \in \mathbb{R}$ and $K \in \mathscr{K}_{(o)}^{n}$ such that

$$
\mu=\tau \widetilde{C}_{G, \psi}(K, \cdot) ?
$$

The general dual Orlicz-Minkowski problem (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For which nonzero finite Borel measures $\mu$ on $S^{n-1}$ and continuous functions $G:(0, \infty) \times S^{n-1} \rightarrow(0, \infty)$ and $\psi:(0, \infty) \rightarrow(0, \infty)$, do there exist $\tau \in \mathbb{R}$ and $K \in \mathscr{K}_{(o)}^{n}$ such that

$$
\mu=\tau \widetilde{C}_{G, \psi}(K, \cdot) ?
$$

$\diamond G(t, u)=\int_{t}^{\infty} \phi(r u) r^{n-1} d r: \quad \mu=\tau \widetilde{C}_{\phi, \psi}(K, \cdot) ?($ Xing-Ye, IUMJ, 2019)

The general dual Orlicz-Minkowski problem (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For which nonzero finite Borel measures $\mu$ on $S^{n-1}$ and continuous functions $G:(0, \infty) \times S^{n-1} \rightarrow(0, \infty)$ and $\psi:(0, \infty) \rightarrow(0, \infty)$, do there exist $\tau \in \mathbb{R}$ and $K \in \mathscr{K}_{(o)}^{n}$ such that

$$
\mu=\tau \widetilde{C}_{G, \psi}(K, \cdot) ?
$$

$\diamond G(t, u)=\int_{t}^{\infty} \phi(r u) r^{n-1} d r: \quad \mu=\tau \widetilde{C}_{\phi, \mathscr{V}}(K, \cdot)$ ? (Xing-Ye, IUMJ, 2019)
$\diamond t G_{t}(t, \cdot)=\varphi(t), \psi(t)=1: \quad \mu=\tau \widetilde{C}_{\varphi}(K, \cdot)$ ? (Zhu-Xing-Ye, JGA, 2018; Liu-Lu, 2020)

The general dual Orlicz-Minkowski problem (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For which nonzero finite Borel measures $\mu$ on $S^{n-1}$ and continuous functions $G:(0, \infty) \times S^{n-1} \rightarrow(0, \infty)$ and $\psi:(0, \infty) \rightarrow(0, \infty)$, do there exist $\tau \in \mathbb{R}$ and $K \in \mathscr{K}_{(o)}^{n}$ such that

$$
\mu=\tau \widetilde{C}_{G, \psi}(K, \cdot) ?
$$

ヶ $G(t, u)=\int_{t}^{\infty} \phi(r u) r^{n-1} d r: \quad \mu=\tau \widetilde{C}_{\phi, \psi}(K, \cdot) ?(X i n g-Y e, I U M J, 2019)$
$\diamond t G_{t}(t, \cdot)=\varphi(t), \psi(t)=1: \quad \mu=\tau \widetilde{C}_{\varphi}(K, \cdot)$ ? (Zhu-Xing-Ye, JGA, 2018; Liu-Lu, 2020)
$\diamond t G(t, \cdot)=t^{q}, \psi(t)=t^{p}: \quad \mu=\widetilde{C}_{p, q}(K, \cdot) ?$ (Lutwak-Yang-Zhang, ADV, 2019)
$\diamond t G(t, \cdot)=t^{n}, \psi(t)=\psi(t): \psi\left(h_{K}\right) \mu=S(K, \cdot)$ ? (Orlicz-Minkowski problem)
$\diamond t G_{t}(t, \cdot)=1, \psi(t)=t^{p}: \quad d \mu=\rho_{K}^{p} d J(K, v) ?\left(L_{p}\right.$ Aleksandrov problem $)$

## Monge-Ampère type equation

- $\nabla h$ : gradient vector of $h$, w.r.t. an orthonormal frame on $S^{n-1}$;
- $\nabla^{2} h$ : Hessian matrix of $h$ w.r.t. an orthonormal frame on $S^{n-1}$;
- $\iota$ : the identity map on $S^{n-1}$;
- $I$ : the identity matrix.


## Monge-Ampère type equation

- $\nabla h$ : gradient vector of $h$, w.r.t. an orthonormal frame on $S^{n-1}$;
- $\nabla^{2} h$ : Hessian matrix of $h$ w.r.t. an orthonormal frame on $S^{n-1}$;
- $\iota$ : the identity map on $S^{n-1}$;
- $I$ : the identity matrix.

The corresponding equivalent Monge-Ampère type equation for this general dual Orlicz-Minkowski problem states that for given $G, \psi$, and $f: S^{n-1} \rightarrow[0, \infty)$, an $h: S^{n-1} \rightarrow(0, \infty)$ and $\tau \in \mathbb{R}$,

$$
\begin{equation*}
f=\frac{\tau h}{\psi \circ h} P(\nabla h+h \iota) \operatorname{det}\left(\nabla^{2} h+h l\right), \tag{2}
\end{equation*}
$$

where $P(x)=|x|^{1-n} G_{t}(|x|, \bar{x}), \bar{x}=x /|x|$.

Variation formula to derive $\widetilde{C}_{G, \psi}(K, \cdot)$

## Variation formula to derive $\widetilde{C}_{G, \psi}(K, \cdot)$

$\diamond$ Orlicz addition: For $t \varphi^{\prime}(t)=\psi(t), K \in \mathscr{K}_{(0)}^{n}, g \in C\left(S^{n-1}\right)$ and $\varepsilon>0$,

$$
f_{\epsilon}(u)=\varphi^{-1}\left(\varphi\left(h_{K}(u)\right)+\epsilon g(u)\right) \text { for all } u \in S^{n-1}
$$

## Variation formula to derive $\widetilde{C}_{G, \psi}(K, \cdot)$

$\diamond$ Orlicz addition: For $t \varphi^{\prime}(t)=\psi(t), K \in \mathscr{K}_{(o)}^{n}, g \in C\left(S^{n-1}\right)$ and $\varepsilon>0$,

$$
f_{\epsilon}(u)=\varphi^{-1}\left(\varphi\left(h_{K}(u)\right)+\epsilon g(u)\right) \text { for all } u \in S^{n-1}
$$

$\diamond$ The general dual volume:

$$
\begin{aligned}
& \qquad \widetilde{V}_{G}(K)=\int_{S^{n-1}} G\left(\rho_{K}(u), u\right) d u . \\
& \leftrightarrow G(t, u)=\int_{t}^{\infty} \phi(r u) r^{n-1} d r: \widetilde{V}_{G}(K)=V_{\phi}(K) . \\
& \leftrightarrow G(t, u)=\varphi(t): \widetilde{V}_{G}(K)=V_{\varphi}(K) . \\
& \leftrightarrow G(t, u)=\frac{1}{n} t^{q}: \widetilde{V}_{G}(K)=V_{q}(K) . \\
& \leftarrow G(t, u)=\frac{1}{n} t^{n}: \widetilde{V}_{G}(K)=V(K) .
\end{aligned}
$$

## Variation formula to derive $\widetilde{C}_{G, \psi}(K, \cdot)$

$\diamond$ Orlicz addition: For $t \varphi^{\prime}(t)=\psi(t), K \in \mathscr{K}_{(o)}^{n}, g \in C\left(S^{n-1}\right)$ and $\varepsilon>0$,

$$
f_{\epsilon}(u)=\varphi^{-1}\left(\varphi\left(h_{K}(u)\right)+\epsilon g(u)\right) \text { for all } u \in S^{n-1}
$$

$\diamond$ The general dual volume:

$$
\begin{aligned}
& \qquad \widetilde{V}_{G}(K)=\int_{S^{n-1}} G\left(\rho_{K}(u), u\right) d u . \\
& \leftrightarrow G(t, u)=\int_{t}^{\infty} \phi(r u) r^{n-1} d r: \widetilde{V}_{G}(K)=V_{\phi}(K) . \\
& \leftrightarrow G(t, u)=\varphi(t): \widetilde{V}_{G}(K)=V_{\varphi}(K) . \\
& \leftrightarrow G(t, u)=\frac{1}{n} t^{q}: \widetilde{V}_{G}(K)=V_{q}(K) . \\
& \leftarrow G(t, u)=\frac{1}{n} t^{n}: \widetilde{V}_{G}(K)=V(K) .
\end{aligned}
$$

Variation formula

$$
\lim _{\varepsilon \rightarrow 0} \frac{\widetilde{V}_{G}\left(\left[f_{\varepsilon}\right]\right)-\widetilde{V}_{G}(K)}{\varepsilon}=n \int_{\Omega} g(u) d \widetilde{C}_{G, \psi}(K, u)
$$

Solution to the case for $G(t, \cdot)$ decreasing

## Solution to the case for $G(t, \cdot)$ decreasing

$\diamond \mu$ : not concentrated on any closed hemisphere as $\mu=\tau \widetilde{C}_{G, \psi}(K, \cdot) \ll \tau S(K, \cdot)$.

## Solution to the case for $G(t, \cdot)$ decreasing

$\diamond \mu$ : not concentrated on any closed hemisphere as $\mu=\tau \widetilde{C}_{G, \psi}(K, \cdot) \ll \tau S(K, \cdot)$.
$\diamond$ G:

## Solution to the case for $G(t, \cdot)$ decreasing

$\diamond \mu$ : not concentrated on any closed hemisphere as $\mu=\tau \widetilde{C}_{G, \psi}(K, \cdot) \ll \tau S(K, \cdot)$.
$\diamond$ G:
$\uparrow G$ and $G_{t}$ are continuous and $G_{t}<0$ on $(0, \infty) \times S^{n-1}$.

## Solution to the case for $G(t, \cdot)$ decreasing

$\diamond \mu$ : not concentrated on any closed hemisphere as $\mu=\tau \widetilde{C}_{G, \psi}(K, \cdot) \ll \tau S(K, \cdot)$.
$\diamond \mathrm{G}$ :
$\uparrow G$ and $G_{t}$ are continuous and $G_{t}<0$ on $(0, \infty) \times S^{n-1}$.
$\uparrow$ For $0<\varepsilon_{0}<1, v \in S^{n-1}, 0<\varepsilon \leq \varepsilon_{0}$, and $\Sigma_{\varepsilon}(v)=\left\{u \in S^{n-1}:\langle u, v\rangle \geq \varepsilon\right\}$,

$$
\lim _{t \rightarrow 0+} \int_{\Sigma_{\varepsilon}(v)} G(t, u) d u=\infty \text { and } \lim _{t \rightarrow \infty} \int_{S^{n-1}} G(t, u) d u=0
$$

## Solution to the case for $G(t, \cdot)$ decreasing

$\diamond \mu$ : not concentrated on any closed hemisphere as $\mu=\tau \widetilde{C}_{G, \psi}(K, \cdot) \ll \tau S(K, \cdot)$.
$\diamond \mathrm{G}$ :
$\uparrow G$ and $G_{t}$ are continuous and $G_{t}<0$ on $(0, \infty) \times S^{n-1}$.
$\uparrow$ For $0<\varepsilon_{0}<1, v \in S^{n-1}, 0<\varepsilon \leq \varepsilon_{0}$, and $\Sigma_{\varepsilon}(v)=\left\{u \in S^{n-1}:\langle u, v\rangle \geq \varepsilon\right\}$,

$$
\lim _{t \rightarrow 0+} \int_{\Sigma_{\varepsilon}(v)} G(t, u) d u=\infty \text { and } \lim _{t \rightarrow \infty} \int_{S^{n-1}} G(t, u) d u=0
$$

$\stackrel{\psi}{\diamond}(0, \infty) \rightarrow(0, \infty)$ is continuous and satisfies $\int_{1}^{\infty} \frac{\psi(s)}{s} d s=\infty$.

## Solution to the case for $G(t, \cdot)$ decreasing

$\diamond \mu$ : not concentrated on any closed hemisphere as $\mu=\tau \widetilde{C}_{G, \psi}(K, \cdot) \ll \tau S(K, \cdot)$.
$\diamond \mathrm{G}$ :
$\uparrow G$ and $G_{t}$ are continuous and $G_{t}<0$ on $(0, \infty) \times S^{n-1}$.
$\uparrow$ For $0<\varepsilon_{0}<1, v \in S^{n-1}, 0<\varepsilon \leq \varepsilon_{0}$, and $\Sigma_{\varepsilon}(v)=\left\{u \in S^{n-1}:\langle u, v\rangle \geq \varepsilon\right\}$,

$$
\lim _{t \rightarrow 0+} \int_{\Sigma_{\varepsilon}(v)} G(t, u) d u=\infty \text { and } \lim _{t \rightarrow \infty} \int_{S^{n-1}} G(t, u) d u=0
$$

$\stackrel{\psi}{\diamond}(0, \infty) \rightarrow(0, \infty)$ is continuous and satisfies $\int_{1}^{\infty} \frac{\psi(s)}{s} d s=\infty$.

## Theorem

Under the conditions above, there exists a convex body $K \in \mathscr{K}_{(0)}^{n}$ such that

$$
\frac{\mu}{\mu\left(S^{n-1}\right)}=\frac{\widetilde{C}_{G, \psi}(K, \cdot)}{\widetilde{C}_{G, \psi}\left(K, S^{n-1}\right)}
$$

## Solution to the case for $G(t, \cdot)$ decreasing

$\diamond \mu$ : not concentrated on any closed hemisphere as $\mu=\tau \widetilde{C}_{G, \psi}(K, \cdot) \ll \tau S(K, \cdot)$.
$\diamond \mathrm{G}$ :
$\uparrow G$ and $G_{t}$ are continuous and $G_{t}<0$ on $(0, \infty) \times S^{n-1}$.
$\downarrow$ For $0<\varepsilon_{0}<1, v \in S^{n-1}, 0<\varepsilon \leq \varepsilon_{0}$, and $\Sigma_{\varepsilon}(v)=\left\{u \in S^{n-1}:\langle u, v\rangle \geq \varepsilon\right\}$,

$$
\lim _{t \rightarrow 0+} \int_{\Sigma_{\varepsilon}(v)} G(t, u) d u=\infty \text { and } \lim _{t \rightarrow \infty} \int_{S^{n-1}} G(t, u) d u=0
$$

$\diamond \psi:(0, \infty) \rightarrow(0, \infty)$ is continuous and satisfies $\int_{1}^{\infty} \frac{\psi(s)}{s} d s=\infty$.

## Theorem

Under the conditions above, there exists a convex body $K \in \mathscr{K}_{(0)}^{n}$ such that

$$
\frac{\mu}{\mu\left(S^{n-1}\right)}=\frac{\widetilde{C}_{G, \psi}(K, \cdot)}{\widetilde{C}_{G, \psi}\left(K, S^{n-1}\right)}
$$

\& $\psi=t^{p}, G=t^{q}: p=0, q<0$, our results recover Zhao's result.

## Main steps

## Main steps

$\diamond$ Step 1: (Condition for $G$ )
For $\left\{K_{i}\right\}_{i=1}^{\infty} \subset \mathscr{K}_{(0)}^{n}$ satisfying $\widetilde{V}_{G}\left(K_{i}\right)=|\mu|$, there exists a constant $R>0$ such that $K_{i}^{*} \subset R B^{n}$.

## Main steps

$\diamond$ Step 1: (Condition for $G$ )
For $\left\{K_{i}\right\}_{i=1}^{\infty} \subset \mathscr{K}_{(0)}^{n}$ satisfying $\widetilde{V}_{G}\left(K_{i}\right)=|\mu|$, there exists a constant $R>0$ such that $K_{i}^{*} \subset R B^{n}$.
$\diamond$ Step 2: (Condition for $\mu$ and $\psi(\varphi)$ )
Based on Blaschke selection theorem, there exists a convex body $K_{0} \in \mathscr{K}_{(0)}^{n}$ such that $\widetilde{V}_{G}\left(K_{0}\right)=|\mu|$ and

$$
\int_{S^{n-1}} \varphi\left(h_{K_{0}}(u)\right) d \mu(u)=\sup \left\{\int_{S^{n-1}} \varphi\left(h_{K}(u)\right) d \mu(u): \widetilde{V}_{G}(K)=|\mu|, K \in \mathscr{K}_{(0)}^{n}\right\} .
$$

## Main steps

$\diamond$ Step 1: (Condition for $G$ )
For $\left\{K_{i}\right\}_{i=1}^{\infty} \subset \mathscr{K}_{(0)}^{n}$ satisfying $\widetilde{V}_{G}\left(K_{i}\right)=|\mu|$, there exists a constant $R>0$ such that $K_{i}^{*} \subset R B^{n}$.
$\diamond$ Step 2: (Condition for $\mu$ and $\psi(\varphi)$ )
Based on Blaschke selection theorem, there exists a convex body $K_{0} \in \mathscr{K}_{(0)}^{n}$ such that $\widetilde{V}_{G}\left(K_{0}\right)=|\mu|$ and

$$
\int_{S^{n-1}} \varphi\left(h_{K_{0}}(u)\right) d \mu(u)=\sup \left\{\int_{S^{n-1}} \varphi\left(h_{K}(u)\right) d \mu(u): \widetilde{V}_{G}(K)=|\mu|, K \in \mathscr{K}_{(o)}^{n}\right\} .
$$

$\diamond$ Step 3: (Variation formula)
The convex body $K_{0}$ found in Step 2 is a solution of the dual Orlicz- Minkowski problem, i.e.,

$$
\frac{\mu}{\mu\left(S^{n-1}\right)}=\frac{\widetilde{C}_{G, \psi}\left(K_{0}, \cdot\right)}{\widetilde{C}_{G, \psi}\left(K_{0}, S^{n-1}\right)} .
$$

The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

ヶ $\psi:[0, \infty) \rightarrow[0, \infty)$ is continuous with $\psi(t)>0$ for $t>0$,

## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

ヶ $\psi:[0, \infty) \rightarrow[0, \infty)$ is continuous with $\psi(t)>0$ for $t>0$, $\diamond G(t, u):[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous,

## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

$\diamond \psi:[0, \infty) \rightarrow[0, \infty)$ is continuous with $\psi(t)>0$ for $t>0$,
$\diamond G(t, u):[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous,
$\diamond G_{t}(t, u)=\partial G(t, u) / \partial t:[0, \infty) \times S^{n-1} \rightarrow \mathbb{R}$ is integrable on $S^{n-1}$.

## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

$\diamond \psi:[0, \infty) \rightarrow[0, \infty)$ is continuous with $\psi(t)>0$ for $t>0$,
$\diamond G(t, u):[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous,
$\diamond G_{t}(t, u)=\partial G(t, u) / \partial t:[0, \infty) \times S^{n-1} \rightarrow \mathbb{R}$ is integrable on $S^{n-1}$.
The general dual Orlicz curvature measure (Gardner-Hug-Xing-Ye, CVPDE, 2020)
The general Orlicz curvature measure $\widetilde{C}_{G, \psi}(K, \cdot)$ for $K \in \mathscr{K}_{0}^{n}$ and any Borel set $E \subset S^{n-1}$ is defined by

$$
\widetilde{C}_{G, \psi}(K, E)=\frac{1}{n} \int_{\boldsymbol{\alpha}_{K}^{*}(E \backslash N(K, o))} \frac{\rho_{K}(u) G_{t}\left(\rho_{K}(u), u\right)}{\psi\left(h_{K}\left(\alpha_{K}(u)\right)\right)} d u .
$$

## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

$\diamond \psi:[0, \infty) \rightarrow[0, \infty)$ is continuous with $\psi(t)>0$ for $t>0$,
$\diamond G(t, u):[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous,
$\diamond G_{t}(t, u)=\partial G(t, u) / \partial t:[0, \infty) \times S^{n-1} \rightarrow \mathbb{R}$ is integrable on $S^{n-1}$.
The general dual Orlicz curvature measure (Gardner-Hug-Xing-Ye, CVPDE, 2020)
The general Orlicz curvature measure $\widetilde{C}_{G, \psi}(K, \cdot)$ for $K \in \mathscr{K}_{0}^{n}$ and any Borel set $E \subset S^{n-1}$ is defined by

$$
\widetilde{C}_{G, \psi}(K, E)=\frac{1}{n} \int_{\boldsymbol{\alpha}_{K}^{*}(E \backslash N(K, o))} \frac{\rho_{K}(u) G_{t}\left(\rho_{K}(u), u\right)}{\psi\left(h_{K}\left(\alpha_{K}(u)\right)\right)} d u .
$$

## The general dual Orlicz curvature measure $\widetilde{C}_{G, \psi}$

$\diamond \psi:[0, \infty) \rightarrow[0, \infty)$ is continuous with $\psi(t)>0$ for $t>0$,
$\diamond G(t, u):[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous,
$\diamond G_{t}(t, u)=\partial G(t, u) / \partial t:[0, \infty) \times S^{n-1} \rightarrow \mathbb{R}$ is integrable on $S^{n-1}$.
The general dual Orlicz curvature measure (Gardner-Hug-Xing-Ye, CVPDE, 2020)
The general Orlicz curvature measure $\widetilde{C}_{G, \psi}(K, \cdot)$ for $K \in \mathscr{K}_{o}^{n}$ and any Borel set $E \subset S^{n-1}$ is defined by

$$
\widetilde{C}_{G, \psi}(K, E)=\frac{1}{n} \int_{\alpha_{K}^{*}(E \backslash N(K, o))} \frac{\rho_{K}(u) G_{t}\left(\rho_{K}(u), u\right)}{\psi\left(h_{K}\left(\alpha_{K}(u)\right)\right)} d u .
$$

$\uparrow \widetilde{C}_{G, \psi}(K, \cdot)$ for $K \in \mathscr{K}_{o}^{n}$ satisfies similar properties as $K \in \mathscr{K}_{(o)}^{n}$.

## Normal cone

- Normal cone:

$$
N(K, o)=\left\{y \in \mathbb{R}^{n}:\langle y, x\rangle \leq 0 \text { for all } x \in K\right\} .
$$

## Normal cone

- Normal cone:

$$
N(K, o)=\left\{y \in \mathbb{R}^{n}:\langle y, x\rangle \leq 0 \text { for all } x \in K\right\}
$$

- Support cone:

$$
\begin{aligned}
N(K, o)^{*} & =\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 0 \text { for all } y \in N(K, o)\right\} \\
& =c l\{\lambda x: x \in K \text { and } \lambda \geq 0\}
\end{aligned}
$$

## Normal cone

- Normal cone:

$$
N(K, o)=\left\{y \in \mathbb{R}^{n}:\langle y, x\rangle \leq 0 \text { for all } x \in K\right\}
$$

- Support cone:

$$
\begin{aligned}
N(K, o)^{*} & =\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 0 \text { for all } y \in N(K, o)\right\} \\
& =c l\{\lambda x: x \in K \text { and } \lambda \geq 0\}
\end{aligned}
$$



Figure: Normal cone and support cone of a convex body

## Reverse radial Gauss image

- Radial function for $K(o \in \partial K)$ :

$$
\rho_{K}(u) \begin{cases}=0 & \text { if } u \in S^{n-1} \backslash N(K, o)^{*}, \\ >0 & \text { if } u \in S^{n-1} \cap \operatorname{int} N(K, o)^{*} .\end{cases}
$$

## Reverse radial Gauss image

- Radial function for $K(o \in \partial K)$ :

$$
\rho_{K}(u) \begin{cases}=0 & \text { if } u \in S^{n-1} \backslash N(K, o)^{*}, \\ >0 & \text { if } u \in S^{n-1} \cap \operatorname{int} N(K, o)^{*} .\end{cases}
$$

- Reverse radial Gauss image:

$$
\boldsymbol{\alpha}_{K}^{*}(E \backslash N(K, o))=\boldsymbol{\alpha}_{K}^{*}(E) \cap N(K, o)^{*} .
$$

## Reverse radial Gauss image

- Radial function for $K(o \in \partial K)$ :

$$
\rho_{K}(u) \begin{cases}=0 & \text { if } u \in S^{n-1} \backslash N(K, o)^{*}, \\ >0 & \text { if } u \in S^{n-1} \cap \operatorname{int} N(K, o)^{*} .\end{cases}
$$

- Reverse radial Gauss image:

$$
\boldsymbol{\alpha}_{K}^{*}(E \backslash N(K, o))=\boldsymbol{\alpha}_{K}^{*}(E) \cap N(K, o)^{*} .
$$



## Main methods

## Main methods

$\diamond$ Steps $1-3$ fail in the case when both $G$ and $\psi$ are increasing, since it is difficult to show $K \in \mathscr{K}_{(o)}^{n}$.

## Main methods

$\diamond$ Steps $1-3$ fail in the case when both $G$ and $\psi$ are increasing, since it is difficult to show $K \in \mathscr{K}_{(o)}^{n}$.
$\triangleleft$ The proof is based on the approximation:

$$
\begin{array}{cl}
\mu(\text { general }) \longleftarrow & K \in \mathscr{K}_{o}^{n}(\text { convex body }) \\
\Uparrow & \Uparrow \\
\mu_{j}(\text { discrete }) \longleftarrow & P_{j} \in \mathscr{K}_{(o)}^{n}(\text { convex polytope })
\end{array}
$$

## Main methods

$\diamond$ Steps $1-3$ fail in the case when both $G$ and $\psi$ are increasing, since it is difficult to show $K \in \mathscr{K}_{(0)}^{n}$.
$\diamond$ The proof is based on the approximation:

$$
\begin{array}{cl}
\mu(\text { general }) & \left.K \in \mathscr{K}_{o}^{n} \text { (convex body }\right) \\
\Uparrow & \Uparrow \\
\mu_{j}(\text { discrete }) \longleftarrow & P_{j} \in \mathscr{K}_{(o)}^{n}(\text { convex polytope })
\end{array}
$$

$\diamond$ Multivariable optimization problem: finding $z^{0}=\left(z_{1}^{0}, \ldots, z_{m}^{0}\right) \in M$ with

$$
M=\left\{\left(z_{1}, \ldots, z_{m}\right) \in[0, \infty)^{m}: \sum_{i=1}^{m} \lambda_{i} \varphi\left(z_{i}\right)=\sum_{i=1}^{m} \lambda_{i} \varphi(1)\right\}
$$

such that $\widetilde{V}_{G}\left(P\left(z^{0}\right)\right)=\max \left\{\widetilde{V}_{G}(P(z)): z \in M\right\}$, where

$$
P(z)=\left\{x \in \mathbb{R}^{n}:\left\langle x, u_{i}\right\rangle \leq z_{i}, \text { for } i=1, \ldots, m\right\} .
$$

## Contradiction



Based on condition of $G$ and $\varphi$, we have $P_{2} \in M$ and

$$
\begin{aligned}
\widetilde{V}_{G}\left(P_{2}\right) & =\widetilde{V}_{G}\left(P_{2} \backslash P_{1}\right)+\widetilde{V}_{G}\left(P_{1}\right) \\
& >\widetilde{V}_{G}\left(P_{0} \backslash P_{1}\right)+\widetilde{V}_{G}\left(P_{1}\right) \\
& =\widetilde{V}_{G}\left(P_{0}\right) \quad \text { (assumed maximum) }
\end{aligned}
$$

Main point: Perturbation of height.

- $P_{2} \backslash P_{1}$ : with height $\varphi^{-1}\left(\varphi\left(z_{i}\right)-\lambda \varphi(t)\right)$;
- $P_{0} \backslash P_{1}$ : with height $t$.


## Discrete solution with $o$ in the interior

$\diamond \mu=\sum_{i=1}^{m} \lambda_{i} \delta_{u_{i}}: \lambda_{i}>0, i=1, \ldots, m$, and $\left\{u_{1}, \ldots, u_{m}\right\} \subset S^{n-1}$ not contained in a closed hemisphere.

## Discrete solution with $\circ$ in the interior

ヶ $\mu=\sum_{i=1}^{m} \lambda_{i} \delta_{u_{i}}: \lambda_{i}>0, i=1, \ldots, m$, and $\left\{u_{1}, \ldots, u_{m}\right\} \subset S^{n-1}$ not contained in a closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying

## Discrete solution with $o$ in the interior

ヶ $\mu=\sum_{i=1}^{m} \lambda_{i} \delta_{u_{i}}: \lambda_{i}>0, i=1, \ldots, m$, and $\left\{u_{1}, \ldots, u_{m}\right\} \subset S^{n-1}$ not contained in a closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying
$\star G_{t}>0$ on $[0, \infty) \times S^{n-1}$,
$\downarrow t G_{t}(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $t G_{t}(t, u)=0$ at $t=0$ for $u \in S^{n-1}$.

## Discrete solution with $o$ in the interior

$\diamond \mu=\sum_{i=1}^{m} \lambda_{i} \delta_{u_{i}}: \lambda_{i}>0, i=1, \ldots, m$, and $\left\{u_{1}, \ldots, u_{m}\right\} \subset S^{n-1}$ not contained in a closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying

- $G_{t}>0$ on $[0, \infty) \times S^{n-1}$,
$\leftrightarrow t G_{t}(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $t G_{t}(t, u)=0$ at $t=0$ for $u \in S^{n-1}$.
$\stackrel{\psi}{\wedge}:[0, \infty) \rightarrow[0, \infty)$ is continuous satisfying

$$
\int_{1}^{\infty} \frac{\psi(s)}{s} d s=\infty \quad \text { and } \quad \lim _{t \rightarrow 0+} \psi(t) / t=0
$$

## Discrete solution with $o$ in the interior

$\diamond \mu=\sum_{i=1}^{m} \lambda_{i} \delta_{u_{i}}: \lambda_{i}>0, i=1, \ldots, m$, and $\left\{u_{1}, \ldots, u_{m}\right\} \subset S^{n-1}$ not contained in a closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying

- $G_{t}>0$ on $[0, \infty) \times S^{n-1}$,
$\star t G_{t}(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $t G_{t}(t, u)=0$ at $t=0$ for $u \in S^{n-1}$.
$\diamond \psi:[0, \infty) \rightarrow[0, \infty)$ is continuous satisfying

$$
\int_{1}^{\infty} \frac{\psi(s)}{s} d s=\infty \quad \text { and } \quad \lim _{t \rightarrow 0+} \psi(t) / t=0
$$

## Theorem

Then there exist a convex polytope $P \in \mathscr{K}_{(o)}^{n}$ and $\tau<0$ such that

$$
\mu=\tau \widetilde{C}_{G, \psi}(P, \cdot) \quad \text { and } \quad\left\|h_{P}\right\|_{\mu, \varphi}=1
$$

## Discrete solution with $o$ in the interior

$\diamond \mu=\sum_{i=1}^{m} \lambda_{i} \delta_{u_{i}}: \lambda_{i}>0, i=1, \ldots, m$, and $\left\{u_{1}, \ldots, u_{m}\right\} \subset S^{n-1}$ not contained in a closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying

- $G_{t}>0$ on $[0, \infty) \times S^{n-1}$,
$\star t G_{t}(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $t G_{t}(t, u)=0$ at $t=0$ for $u \in S^{n-1}$.
$\diamond \psi:[0, \infty) \rightarrow[0, \infty)$ is continuous satisfying

$$
\int_{1}^{\infty} \frac{\psi(s)}{s} d s=\infty \quad \text { and } \quad \lim _{t \rightarrow 0+} \psi(t) / t=0
$$

## Theorem

Then there exist a convex polytope $P \in \mathscr{K}_{(0)}^{n}$ and $\tau<0$ such that

$$
\begin{gathered}
\mu=\tau \widetilde{C}_{G, \psi}(P, \cdot) \quad \text { and } \quad\left\|h_{P}\right\|_{\mu, \varphi}=1 \\
\left\|h_{K}\right\|_{\mu, \varphi}:=\inf \left\{\lambda>0: \frac{1}{\varphi(1) \mu\left(S^{n-1}\right)} \int_{S^{n-1}} \varphi\left(\frac{h_{K}(u)}{\lambda}\right) d \mu(u) \leq 1\right\} .
\end{gathered}
$$

Solution to the case for $G(t, \cdot)$ increasing

## Solution to the case for $G(t, \cdot)$ increasing

$\diamond \mu$ : a nonzero finite Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.

## Solution to the case for $G(t, \cdot)$ increasing

$\diamond \mu$ : a nonzero finite Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying

## Solution to the case for $G(t, \cdot)$ increasing

$\diamond \mu$ : a nonzero finite Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying
$\uparrow G_{t}>0$ on $[0, \infty) \times S^{n-1}$,

## Solution to the case for $G(t, \cdot)$ increasing

$\triangleleft \mu$ : a nonzero finite Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying
$\downarrow G_{t}>0$ on $[0, \infty) \times S^{n-1}$,
$\downarrow t G_{t}(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $t G_{t}(t, u)=0$ at $t=0$ for $u \in S^{n-1}$.

## Solution to the case for $G(t, \cdot)$ increasing

$\diamond \mu$ : a nonzero finite Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying

- $G_{t}>0$ on $[0, \infty) \times S^{n-1}$,
$\leftrightarrow t G_{t}(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $t G_{t}(t, u)=0$ at $t=0$ for $u \in S^{n-1}$.
$\stackrel{\psi}{\diamond}:[0, \infty) \rightarrow[0, \infty)$ is continuous satisfying

$$
\int_{1}^{\infty} \frac{\psi(s)}{s} d s=\infty \quad \text { and } \quad \lim _{t \rightarrow 0+} \psi(t) / t=0
$$

## Solution to the case for $G(t, \cdot)$ increasing

$\triangleleft \mu$ : a nonzero finite Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying
$\downarrow G_{t}>0$ on $[0, \infty) \times S^{n-1}$,
$\star t G_{t}(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $t G_{t}(t, u)=0$ at $t=0$ for $u \in S^{n-1}$.
$\diamond \psi:[0, \infty) \rightarrow[0, \infty)$ is continuous satisfying

$$
\int_{1}^{\infty} \frac{\psi(s)}{s} d s=\infty \quad \text { and } \quad \lim _{t \rightarrow 0+} \psi(t) / t=0
$$

## Theorem

Under the conditions above, there exists a $K \in \mathscr{K}_{0}^{n}$ with int $K \neq \emptyset$ such that

$$
\left(\psi\left(h_{K}\right)\right) \mu=\left(\int_{S^{n-1}} \psi\left(h_{K}(u)\right) d \mu(u)\right) \frac{\widetilde{C}_{G}(K, \cdot)}{\widetilde{C}_{G}\left(K, S^{n-1}\right)}
$$

## Remarks

$\diamond$ Considering $\mu$ to be discrete has the following advantages: to transfer the optimization problem on functions into a multivariate optimization problem; and can obtain more information on the solutions must be polytopes, such as the origin lie in the interiors; etc.

## Remarks

$\diamond$ Considering $\mu$ to be discrete has the following advantages: to transfer the optimization problem on functions into a multivariate optimization problem; and can obtain more information on the solutions must be polytopes, such as the origin lie in the interiors; etc.

今 $\psi=t^{p}, G=t^{q}: p>1, q<0$, our results recover the solution of Böröczky and Fodor's result.

Solution to the even case for $G(t, \cdot)$ increasing

## Solution to the even case for $G(t, \cdot)$ increasing

$\stackrel{\wedge}{ } \mu$ : a nonzero finite even Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.

## Solution to the even case for $G(t, \cdot)$ increasing

$\diamond \mu$ : a nonzero finite even Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying

## Solution to the even case for $G(t, \cdot)$ increasing

$\diamond \mu$ : a nonzero finite even Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying
$\star G_{t}>0$ on $[0, \infty) \times S^{n-1}$,

## Solution to the even case for $G(t, \cdot)$ increasing

$\diamond \mu$ : a nonzero finite even Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying
$\leftrightarrow G_{t}>0$ on $[0, \infty) \times S^{n-1}$,
$\rightarrow G_{t}(t, u)=G_{t}(t,-u)$ for $(t, u) \in(0, \infty) \times S^{n-1}$

## Solution to the even case for $G(t, \cdot)$ increasing

$\diamond \mu$ : a nonzero finite even Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying

- $G_{t}>0$ on $[0, \infty) \times S^{n-1}$,
- $G_{t}(t, u)=G_{t}(t,-u)$ for $(t, u) \in(0, \infty) \times S^{n-1}$
$\downarrow t G_{t}(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $t G_{t}(t, u)=0$ at $t=0$ for $u \in S^{n-1}$.


## Solution to the even case for $G(t, \cdot)$ increasing

$\diamond \mu$ : a nonzero finite even Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying

- $G_{t}>0$ on $[0, \infty) \times S^{n-1}$,
- $G_{t}(t, u)=G_{t}(t,-u)$ for $(t, u) \in(0, \infty) \times S^{n-1}$
$\downarrow t G_{t}(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $t G_{t}(t, u)=0$ at $t=0$ for $u \in S^{n-1}$.
$\diamond \psi:[0, \infty) \rightarrow[0, \infty)$ is continuous satisfying

$$
\int_{1}^{\infty} \frac{\psi(s)}{s} d s=\infty \quad \text { and } \quad \lim _{t \rightarrow 0+} \psi(t) / t=0
$$

## Solution to the even case for $G(t, \cdot)$ increasing

$\diamond \mu$ : a nonzero finite even Borel measure on $S^{n-1}$ not concentrated on any closed hemisphere.
$\diamond G:[0, \infty) \times S^{n-1} \rightarrow[0, \infty)$ is continuous satisfying

- $G_{t}>0$ on $[0, \infty) \times S^{n-1}$,
- $G_{t}(t, u)=G_{t}(t,-u)$ for $(t, u) \in(0, \infty) \times S^{n-1}$
$\checkmark t G_{t}(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $t G_{t}(t, u)=0$ at $t=0$ for $u \in S^{n-1}$.
$\diamond \psi:[0, \infty) \rightarrow[0, \infty)$ is continuous satisfying

$$
\int_{1}^{\infty} \frac{\psi(s)}{s} d s=\infty \quad \text { and } \quad \lim _{t \rightarrow 0+} \psi(t) / t=0
$$

## Theorem

Under the conditions above, there exists a $K \in \mathscr{K}_{(o) s}^{n}$ (symmetric convex bodies) with int $K \neq \emptyset$ such that

$$
\left(\psi\left(h_{K}\right)\right) \mu=\left(\int_{S^{n-1}} \psi\left(h_{K}(u)\right) d \mu(u)\right) \frac{\widetilde{C}_{G}(K, \cdot)}{\widetilde{C}_{G}\left(K, S^{n-1}\right)}
$$

## Thank you very much!!!

