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Convex bodies

G K n
(o): convex bodies (compact convex sets) with the origin o in their interiors.

G K n
o : convex bodies containing the origin o.

G Sn−1: {x ∈ Rn : |x | = 1} = ∂Bn, the unit sphere in Rn.

G For K ∈ K n
(o):

F Support function hK : Sn−1 → R,

hK (u) = max
x∈K
〈x , u〉 for each u ∈ Sn−1.

F Radial function ρK : Sn−1 → R,

ρK (u) = max
{
λ : λu ∈ K

}
, for each u ∈ Sn−1.

F Polar body:
K∗ = {x ∈ Rn : 〈x , y〉 ≤ 1 for all y ∈ K} ∈ K n

(o).
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Convex bodies

Figure: Support function, radial function and Gauss map

Figure: Polar body
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Aleksandrov body

For f ∈ C+(Ω) (positive continuous function on Ω), the Aleksandrov body (Wulff
shape) associated with f is

[f ] =
⋂
u∈Ω

{x ∈ Rn : 〈x , u〉 ≤ f (u)} ∈ K n
(o), Ω ⊂ Sn−1.

In particular,

K =
⋂

u∈Sn−1

{x ∈ Rn : 〈x , u〉 ≤ hK (u)} .

Figure: Aleksandrov body
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Surface area measure

G The inverse Gauss map ν−1
K (·) : Sn−1 → ∂K ,

ν−1
K (η) := {x ∈ ∂K : νK (x) ∈ η}

for any Borel set η ⊂ Sn−1.

G H n−1: n − 1 dimensional Hausdorff measure.

Surface area measure

For a convex body K ∈ K n
(o), the surface area measure S(K , ·) is

S(K , η) = H n−1(ν−1
K (η)),

for any Borel set η ⊂ Sn−1.

G Volume: V (K ) = 1
n

∫
Sn−1 hK (u)dS(K , u) = 1

n

∫
Sn−1 ρK (u)ndu.
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Characterization of S(K , ·)

The classical Minkowski problem

For a given nonzero finite Borel measure µ on Sn−1, what are the necessary and
sufficient conditions on µ such that µ = S(K , ·) for some K ∈ K n

(o)?

Solution to the Minkowski problem

A Borel measure µ on Sn−1 is S(K , ·) for some K ∈ K n
(o) iff µ has centroid at the

origin and is not concentrated on a great hemisphere. Moreover, K is unique up to
translations.

G Discrete measure: Minkowski, 1897, 1903.
G General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.
G Applications: to establish the Affine Sobolev inequality.
G Monge-Ampère type equation:

f = det
(
∇2h + hI

)
.

6 / 26



Characterization of S(K , ·)

The classical Minkowski problem

For a given nonzero finite Borel measure µ on Sn−1, what are the necessary and
sufficient conditions on µ such that µ = S(K , ·) for some K ∈ K n

(o)?

Solution to the Minkowski problem

A Borel measure µ on Sn−1 is S(K , ·) for some K ∈ K n
(o) iff µ has centroid at the

origin and is not concentrated on a great hemisphere. Moreover, K is unique up to
translations.

G Discrete measure: Minkowski, 1897, 1903.
G General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.
G Applications: to establish the Affine Sobolev inequality.
G Monge-Ampère type equation:

f = det
(
∇2h + hI

)
.

6 / 26



Characterization of S(K , ·)

The classical Minkowski problem

For a given nonzero finite Borel measure µ on Sn−1, what are the necessary and
sufficient conditions on µ such that µ = S(K , ·) for some K ∈ K n

(o)?

Solution to the Minkowski problem

A Borel measure µ on Sn−1 is S(K , ·) for some K ∈ K n
(o) iff µ has centroid at the

origin and is not concentrated on a great hemisphere. Moreover, K is unique up to
translations.

G Discrete measure: Minkowski, 1897, 1903.
G General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.
G Applications: to establish the Affine Sobolev inequality.
G Monge-Ampère type equation:

f = det
(
∇2h + hI

)
.

6 / 26



Characterization of S(K , ·)

The classical Minkowski problem

For a given nonzero finite Borel measure µ on Sn−1, what are the necessary and
sufficient conditions on µ such that µ = S(K , ·) for some K ∈ K n

(o)?

Solution to the Minkowski problem

A Borel measure µ on Sn−1 is S(K , ·) for some K ∈ K n
(o) iff µ has centroid at the

origin and is not concentrated on a great hemisphere. Moreover, K is unique up to
translations.

G Discrete measure: Minkowski, 1897, 1903.

G General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.
G Applications: to establish the Affine Sobolev inequality.
G Monge-Ampère type equation:

f = det
(
∇2h + hI

)
.

6 / 26



Characterization of S(K , ·)

The classical Minkowski problem

For a given nonzero finite Borel measure µ on Sn−1, what are the necessary and
sufficient conditions on µ such that µ = S(K , ·) for some K ∈ K n

(o)?

Solution to the Minkowski problem

A Borel measure µ on Sn−1 is S(K , ·) for some K ∈ K n
(o) iff µ has centroid at the

origin and is not concentrated on a great hemisphere. Moreover, K is unique up to
translations.

G Discrete measure: Minkowski, 1897, 1903.
G General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.

G Applications: to establish the Affine Sobolev inequality.
G Monge-Ampère type equation:

f = det
(
∇2h + hI

)
.

6 / 26



Characterization of S(K , ·)

The classical Minkowski problem

For a given nonzero finite Borel measure µ on Sn−1, what are the necessary and
sufficient conditions on µ such that µ = S(K , ·) for some K ∈ K n

(o)?

Solution to the Minkowski problem

A Borel measure µ on Sn−1 is S(K , ·) for some K ∈ K n
(o) iff µ has centroid at the

origin and is not concentrated on a great hemisphere. Moreover, K is unique up to
translations.

G Discrete measure: Minkowski, 1897, 1903.
G General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.
G Applications: to establish the Affine Sobolev inequality.

G Monge-Ampère type equation:

f = det
(
∇2h + hI

)
.

6 / 26



Characterization of S(K , ·)

The classical Minkowski problem

For a given nonzero finite Borel measure µ on Sn−1, what are the necessary and
sufficient conditions on µ such that µ = S(K , ·) for some K ∈ K n

(o)?

Solution to the Minkowski problem

A Borel measure µ on Sn−1 is S(K , ·) for some K ∈ K n
(o) iff µ has centroid at the

origin and is not concentrated on a great hemisphere. Moreover, K is unique up to
translations.

G Discrete measure: Minkowski, 1897, 1903.
G General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.
G Applications: to establish the Affine Sobolev inequality.
G Monge-Ampère type equation:

f = det
(
∇2h + hI

)
.

6 / 26



Necessary condition

G A measure µ is not concentrated on any closed hemisphere if∫
Sn−1

〈u, v〉+ dµ(u) > 0 for any v ∈ Sn−1,

where a+ = max{a, 0} for a ∈ R.

G This condition for measure µ is necessary to solve the classical Minkowski problem
and its extensions, since it guarantees convex sets to be bounded (and hence
compact).

Figure: Support of µ on the plane
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The Orlicz-Minkowski problem

The Orlicz-Minkowski problem

Under what conditions on a finite Borel measure µ and φ : (0,∞)→ (0,∞), does
there exist a K ∈ K n

(o) such that for some constant τ > 0,

µ = τφ(hK )S(K , ·)?

G φ(t) = t1−p: Lp Minkowski problem (Lutwak, 1993).

G Extreme problem: inf

{∫
Sn−1 ϕ

(
hQ(u)

)
dµ(u) : V (Q) = V (Bn),Q ∈ K n

(o)

}
?

G Orlicz surface area measure φ (hK ) S(K , ·) derives from a variation formula of
volume in terms of the Aleksandrov body of the Orlicz addition:

φ(t) = 1/ϕ′(t), fε(u) = ϕ−1 (ϕ (hK (u)) + εg(u)) .

G Contributions: Haberl-Lutwak-Yang-Zhang, 2010; Huang-He, 2012; Li, 2014;
Wu-Xi-Leng, 2018; Sun-Long, 2015; Sun-Zhang, 2018; Sun, 2018, etc.
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The reverse radial Gauss image

G νK (·) : ∂K → Sn−1 is the Gauss map.

G αααK (·) : Sn−1 → Sn−1 is the radial Gauss image, i.e., for any η ⊂ Sn−1,
αααK (η) = νννK ({ρK (u)u ∈ ∂K : u ∈ η}).

G ααα∗K (·): Sn−1 → Sn−1 is the reverse radial Gauss image.
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The general dual Orlicz curvature measure C̃G ,ψ

G ψ : (0,∞)→ (0,∞) is continuous,
G G (t, u) : (0,∞)× Sn−1 → (0,∞) is continuous,
G Gt(t, u) = ∂G (t, u)/∂t : (0,∞)× Sn−1 → R is integrable on Sn−1.

The general dual Orlicz curvature measure (Gardner-Hug-Weil-Xing-Ye, CVPDE,
2019)

For K ∈ K n
(o) and Borel set η ⊂ Sn−1, the general dual Orlicz curvature measure

C̃G ,ψ(K , ·) is defined as

C̃G ,ψ(K , η) = 1
n

∫
ααα∗
K (η)

ρK (u)Gt(ρK (u),u)
ψ(hK (αK (u))) du.

F C̃G ,ψ is a finite signed Borel measure;

F C̃G ,ψ is weakly convergent in terms of the Hausdorff metric;

F C̃G ,ψ is not concentrated on any closed hemisphere;

F C̃G ,ψ is absolutely continuous to S(K , ·), etc.
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Uniqueness under certain conditions

Let G : (0,∞)× Sn−1 → (0,∞) and ψ : (0,∞)→ (0,∞) be continuous. Suppose
that Gt > 0 (or Gt < 0) on (0,∞)× Sn−1 and that if

Gt(t, u)

ψ(s)
≥ λGt(λt, u)

ψ(λs)
(or

Gt(t, u)

ψ(s)
≤ λGt(λt, u)

ψ(λs)
, respectively) (1)

for some λ, s, t > 0 and u ∈ Sn−1, then λ ≥ 1. If K ,K ′ ∈ K n
(o) are both polytopes or

both have support functions in C 2 and

C̃G ,ψ(K , ·) = C̃G ,ψ(K ′, ·),

then
K = K ′.

11 / 26



The general dual Orlicz-Minkowski problem (Gardner-Hug-Weil-Xing-Ye, CVPDE,
2019)

For which nonzero finite Borel measures µ on Sn−1 and continuous functions
G : (0,∞)× Sn−1 → (0,∞) and ψ : (0,∞)→ (0,∞), do there exist τ ∈ R and
K ∈ K n

(o) such that

µ = τ C̃G ,ψ(K , ·)?

G G (t, u) =
∫∞
t φ(ru)rn−1dr : µ = τ C̃φ,V (K , ·)? (Xing-Ye, IUMJ, 2019)

G tGt(t, ·) = ϕ(t), ψ(t) = 1: µ = τ C̃ϕ(K , ·)? (Zhu-Xing-Ye, JGA, 2018; Liu-Lu,
2020)

G tG (t, ·) = tq, ψ(t) = tp: µ = C̃p,q(K , ·)? (Lutwak-Yang-Zhang, ADV, 2019)

G tG (t, ·) = tn, ψ(t) = ψ(t): ψ(hK )µ = S(K , ·)? (Orlicz-Minkowski problem)

G tGt(t, ·) = 1, ψ(t) = tp: dµ = ρpKdJ(K , v)? (Lp Aleksandrov problem)
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Monge-Ampère type equation

• ∇h: gradient vector of h, w.r.t. an orthonormal frame on Sn−1;

• ∇2h: Hessian matrix of h w.r.t. an orthonormal frame on Sn−1;

• ι: the identity map on Sn−1;

• I : the identity matrix.

The corresponding equivalent Monge-Ampère type equation for this general dual
Orlicz-Minkowski problem states that for given G , ψ, and f : Sn−1 → [0,∞), an
h : Sn−1 → (0,∞) and τ ∈ R,

f =
τh

ψ ◦ h
P(∇h + hι) det(∇2h + hI ), (2)

where P(x) = |x |1−nGt(|x |, x̄), x̄ = x/|x |.
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Variation formula to derive C̃G ,ψ(K , ·)

G Orlicz addition: For tϕ′(t) = ψ(t), K ∈ K n
(o), g ∈ C

(
Sn−1

)
and ε > 0,

fε(u) = ϕ−1 (ϕ (hK (u)) + εg(u)) for all u ∈ Sn−1.

G The general dual volume:

ṼG (K ) =

∫
Sn−1

G (ρK (u), u) du.

F G (t, u) =
∫∞
t
φ(ru)rn−1dr : ṼG (K ) = Vφ(K ).

F G (t, u) = ϕ(t) : ṼG (K ) = Vϕ(K ).

F G (t, u) = 1
n t

q : ṼG (K ) = Vq(K ).

F G (t, u) = 1
n t

n : ṼG (K ) = V (K ).

Variation formula

lim
ε→0

ṼG ([fε])− ṼG (K )

ε
= n

∫
Ω
g(u)dC̃G ,ψ(K , u).
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ṼG ([fε])− ṼG (K )
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Solution to the case for G (t, ·) decreasing

G µ: not concentrated on any closed hemisphere as µ = τ C̃G ,ψ(K , ·)� τS(K , ·).
G G:

F G and Gt are continuous and Gt < 0 on (0,∞)× Sn−1.
F For 0 < ε0 < 1, v ∈ Sn−1, 0 < ε ≤ ε0, and Σε(v) = {u ∈ Sn−1 : 〈u, v〉 ≥ ε},

lim
t→0+

∫
Σε(v)

G (t, u) du =∞ and lim
t→∞

∫
Sn−1

G (t, u) du = 0.

G ψ : (0,∞)→ (0,∞) is continuous and satisfies
∫∞

1
ψ(s)
s ds =∞.

Theorem

Under the conditions above, there exists a convex body K ∈ K n
(o) such that

µ

µ (Sn−1)
=

C̃G ,ψ(K , ·)
C̃G ,ψ (K ,Sn−1)

.

G ψ = tp, G = tq: p = 0, q < 0, our results recover Zhao’s result.
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Main steps

G Step 1: (Condition for G )

For {Ki}∞i=1 ⊂ K n
(o) satisfying ṼG (Ki ) = |µ|, there exists a constant R > 0 such

that K ∗i ⊂ RBn.

G Step 2: (Condition for µ and ψ (ϕ))

Based on Blaschke selection theorem, there exists a convex body K0 ∈ K n
(o) such

that ṼG (K0) = |µ| and∫
Sn−1

ϕ(hK0(u))dµ(u) = sup

{∫
Sn−1

ϕ(hK (u))dµ(u) : ṼG (K ) = |µ|,K ∈ K n
(o)

}
.

G Step 3: (Variation formula)

The convex body K0 found in Step 2 is a solution of the dual Orlicz- Minkowski
problem, i.e.,

µ

µ (Sn−1)
=

C̃G ,ψ(K0, ·)
C̃G ,ψ (K0,Sn−1)

.
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The general dual Orlicz curvature measure C̃G ,ψ

G ψ : [0,∞)→ [0,∞) is continuous with ψ(t) > 0 for t > 0,

G G (t, u) : [0,∞)× Sn−1 → [0,∞) is continuous,

G Gt(t, u) = ∂G (t, u)/∂t : [0,∞)× Sn−1 → R is integrable on Sn−1.

The general dual Orlicz curvature measure (Gardner-Hug-Xing-Ye, CVPDE, 2020)

The general Orlicz curvature measure C̃G ,ψ(K , ·) for K ∈ K n
o and any Borel set

E ⊂ Sn−1 is defined by

C̃G ,ψ(K ,E ) = 1
n

∫
ααα∗
K (E\N(K ,o))

ρK (u)Gt(ρK (u),u)
ψ(hK (αK (u))) du.

F C̃G ,ψ(K , ·) for K ∈ K n
o satisfies similar properties as K ∈ K n

(o).
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Normal cone

F Normal cone:

N(K , o) = {y ∈ Rn : 〈y , x〉 ≤ 0 for all x ∈ K}.

F Support cone:

N(K , o)∗ = {x ∈ Rn : 〈x , y〉 ≤ 0 for all y ∈ N(K , o)}
= cl{λx : x ∈ K and λ ≥ 0}.

Figure: Normal cone and support cone of a convex body
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Reverse radial Gauss image

• Radial function for K (o ∈ ∂K ):

ρK (u)

{
= 0 if u ∈ Sn−1 \ N(K , o)∗,

> 0 if u ∈ Sn−1 ∩ intN(K , o)∗.

• Reverse radial Gauss image:

ααα∗K (E \ N(K , o)) = ααα∗K (E ) ∩ N(K , o)∗.

19 / 26



Reverse radial Gauss image

• Radial function for K (o ∈ ∂K ):

ρK (u)

{
= 0 if u ∈ Sn−1 \ N(K , o)∗,

> 0 if u ∈ Sn−1 ∩ intN(K , o)∗.

• Reverse radial Gauss image:

ααα∗K (E \ N(K , o)) = ααα∗K (E ) ∩ N(K , o)∗.

19 / 26



Reverse radial Gauss image

• Radial function for K (o ∈ ∂K ):

ρK (u)

{
= 0 if u ∈ Sn−1 \ N(K , o)∗,

> 0 if u ∈ Sn−1 ∩ intN(K , o)∗.

• Reverse radial Gauss image:

ααα∗K (E \ N(K , o)) = ααα∗K (E ) ∩ N(K , o)∗.

19 / 26



Main methods

G Steps 1− 3 fail in the case when both G and ψ are increasing, since it is difficult
to show K ∈ K n

(o).

G The proof is based on the approximation:

µ (general)←− K ∈ K n
o (convex body)

⇑ ⇑
µj (discrete)←− Pj ∈ K n

(o) (convex polytope)

G Multivariable optimization problem: finding z0 =
(
z0

1 , . . . , z
0
m

)
∈ M with

M =

{
(z1, . . . , zm) ∈ [0,∞)m :

m∑
i=1

λiϕ (zi ) =
m∑
i=1

λiϕ(1)

}
such that ṼG

(
P
(
z0
))

= max
{
ṼG (P(z)) : z ∈ M

}
, where

P(z) = {x ∈ Rn : 〈x , ui 〉 ≤ zi , for i = 1, . . . ,m} .
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Contradiction

Based on condition of G and ϕ, we have P2 ∈ M and

ṼG (P2) = ṼG (P2\P1) + ṼG (P1)

> ṼG (P0\P1) + ṼG (P1)

= ṼG (P0) (assumed maximum).

Main point: Perturbation of height.
• P2\P1 : with height ϕ−1(ϕ(zi )− λϕ(t));
• P0\P1 : with height t.
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Discrete solution with o in the interior

G µ =
∑m

i=1 λiδui : λi > 0, i = 1, . . . ,m, and {u1, . . . , um} ⊂ Sn−1 not contained in
a closed hemisphere.

G G : [0,∞)× Sn−1 → [0,∞) is continuous satisfying

F Gt > 0 on [0,∞)× Sn−1,
F tGt(t, u) is continuous on [0,∞)× Sn−1 where tGt(t, u) = 0 at t = 0 for u ∈ Sn−1.

G ψ : [0,∞)→ [0,∞) is continuous satisfying∫ ∞
1

ψ(s)

s
ds =∞ and lim

t→0+
ψ(t)/t = 0.

Theorem

Then there exist a convex polytope P ∈ K n
(o) and τ < 0 such that

µ = τ C̃G ,ψ(P, ·) and ‖hP‖µ,ϕ = 1.

‖hK‖µ,ϕ := inf

{
λ > 0 :

1

ϕ(1)µ(Sn−1)

∫
Sn−1

ϕ

(
hK (u)

λ

)
dµ(u) ≤ 1

}
.
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ϕ(1)µ(Sn−1)

∫
Sn−1

ϕ

(
hK (u)

λ

)
dµ(u) ≤ 1

}
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Discrete solution with o in the interior
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Solution to the case for G (t, ·) increasing

G µ: a nonzero finite Borel measure on Sn−1 not concentrated on any closed
hemisphere.

G G : [0,∞)× Sn−1 → [0,∞) is continuous satisfying

F Gt > 0 on [0,∞)× Sn−1,
F tGt(t, u) is continuous on [0,∞)× Sn−1 where tGt(t, u) = 0 at t = 0 for u ∈ Sn−1.

G ψ : [0,∞)→ [0,∞) is continuous satisfying∫ ∞
1

ψ(s)

s
ds =∞ and lim

t→0+
ψ(t)/t = 0.

Theorem

Under the conditions above, there exists a K ∈ K n
o with intK 6= ∅ such that

(ψ(hK ))µ =

(∫
Sn−1

ψ(hK (u)) dµ(u)

)
C̃G (K , ·)

C̃G (K ,Sn−1)
.
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Remarks

G Considering µ to be discrete has the following advantages: to transfer the
optimization problem on functions into a multivariate optimization problem; and
can obtain more information on the solutions must be polytopes, such as the
origin lie in the interiors; etc.

G ψ = tp,G = tq: p > 1, q < 0, our results recover the solution of Böröczky and
Fodor’s result.
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Solution to the even case for G (t, ·) increasing

G µ: a nonzero finite even Borel measure on Sn−1 not concentrated on any closed
hemisphere.

G G : [0,∞)× Sn−1 → [0,∞) is continuous satisfying

F Gt > 0 on [0,∞)× Sn−1,
F Gt(t, u) = Gt(t,−u) for (t, u) ∈ (0,∞)× Sn−1

F tGt(t, u) is continuous on [0,∞)× Sn−1 where tGt(t, u) = 0 at t = 0 for u ∈ Sn−1.

G ψ : [0,∞)→ [0,∞) is continuous satisfying∫ ∞
1

ψ(s)

s
ds =∞ and lim

t→0+
ψ(t)/t = 0.

Theorem

Under the conditions above, there exists a K ∈ K n
(o)s (symmetric convex bodies) with

intK 6= ∅ such that

(ψ(hK ))µ =

(∫
Sn−1

ψ(hK (u)) dµ(u)

)
C̃G (K , ·)

C̃G (K ,Sn−1)
.
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Thank you very much!!!
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