Dual curvature measures and Orlicz-Minkowski problems

Sudan Xing

Geometric Tomography

Banff International Research Station

Feb 12, 2020

 $\mathcal{H}_{(o)}^{n}$: convex bodies (compact convex sets) with the origin o in their interiors.

 $\mathcal{H}_{(o)}^n$: convex bodies (compact convex sets) with the origin o in their interiors.

♦ \mathscr{K}_o^n : convex bodies containing the origin o.

 $\mathcal{H}_{(o)}^n$: convex bodies (compact convex sets) with the origin o in their interiors.

♦ \mathscr{K}_o^n : convex bodies containing the origin o.

♦ S^{n-1} : $\{x \in \mathbb{R}^n : |x| = 1\} = \partial B^n$, the unit sphere in \mathbb{R}^n .

 $\mathcal{K}_{(o)}^{n}$: convex bodies (compact convex sets) with the origin o in their interiors.

♦ \mathscr{K}_o^n : convex bodies containing the origin o.

♦ S^{n-1} : $\{x \in \mathbb{R}^n : |x| = 1\} = \partial B^n$, the unit sphere in \mathbb{R}^n .

♦ For $K \in \mathscr{K}^n_{(o)}$:

 $\Rightarrow \mathscr{K}^n_{(o)}: \text{ convex bodies (compact convex sets) with the origin o in their interiors.}$

♦ \mathscr{K}_o^n : convex bodies containing the origin *o*.

- ♦ S^{n-1} : $\{x \in \mathbb{R}^n : |x| = 1\} = \partial B^n$, the unit sphere in \mathbb{R}^n .
- ♦ For $K \in \mathscr{K}^n_{(o)}$:
 - Support function $h_K: S^{n-1} \to \mathbb{R}$,

$$h_{\mathcal{K}}(u) = \max_{x \in \mathcal{K}} \langle x, u \rangle$$
 for each $u \in S^{n-1}$.

*ℋ*ⁿ_(o): convex bodies (compact convex sets) with the origin o in their interiors.

 *ℋ*ⁿ_o: convex bodies containing the origin o.

- ♦ S^{n-1} : $\{x \in \mathbb{R}^n : |x| = 1\} = \partial B^n$, the unit sphere in \mathbb{R}^n .
- ♦ For $K \in \mathscr{K}^n_{(o)}$:
 - Support function $h_K: S^{n-1} \to \mathbb{R}$,

$$h_{\mathcal{K}}(u) = \max_{x \in \mathcal{K}} \langle x, u \rangle$$
 for each $u \in S^{n-1}$.

• Radial function $\rho_K : S^{n-1} \to \mathbb{R}$,

 $\rho_{\mathcal{K}}(u) = \max\left\{\lambda: \ \lambda u \in \mathcal{K}\right\}, \text{ for each } u \in S^{n-1}.$

*K*ⁿ_(o): convex bodies (compact convex sets) with the origin o in their interiors.

 *K*ⁿ_o: convex bodies containing the origin o.

- ♦ S^{n-1} : $\{x \in \mathbb{R}^n : |x| = 1\} = \partial B^n$, the unit sphere in \mathbb{R}^n .
- ♦ For $K \in \mathscr{K}^n_{(o)}$:
 - Support function $h_K: S^{n-1} \to \mathbb{R}$,

$$h_{\mathcal{K}}(u) = \max_{x \in \mathcal{K}} \langle x, u \rangle$$
 for each $u \in S^{n-1}$.

• Radial function $\rho_K : S^{n-1} \to \mathbb{R}$,

$$\rho_{\mathcal{K}}(u) = \max\left\{\lambda: \ \lambda u \in \mathcal{K}\right\}, \text{ for each } u \in S^{n-1}.$$

✤ Polar body:

$$\mathcal{K}^* = \{x \in \mathbb{R}^n : \langle x, y \rangle \leq 1 \text{ for all } y \in \mathcal{K}\} \in \mathscr{K}^n_{(o)}.$$

Figure: Support function, radial function and Gauss map

Figure: Support function, radial function and Gauss map

Figure: Polar body

Aleksandrov body

For $f \in C^+(\Omega)$ (positive continuous function on Ω), the Aleksandrov body (Wulff shape) associated with f is

$$[f] = igcap_{u \in \Omega} \{ x \in \mathbb{R}^n : \langle x, u
angle \leq f(u) \} \in \mathscr{K}^n_{(o)}, \ \ \Omega \subset S^{n-1}.$$

Aleksandrov body

For $f \in C^+(\Omega)$ (positive continuous function on Ω), the Aleksandrov body (Wulff shape) associated with f is

$$[f] = igcap_{u \in \Omega} \{ x \in \mathbb{R}^n : \langle x, u
angle \leq f(u) \} \in \mathscr{K}^n_{(o)}, \ \ \Omega \subset S^{n-1}.$$

In particular,

$$\mathcal{K} = igcap_{u \in S^{n-1}} \left\{ x \in \mathbb{R}^n : \langle x, u
angle \leq h_{\mathcal{K}}(u)
ight\}.$$

Aleksandrov body

For $f \in C^+(\Omega)$ (positive continuous function on Ω), the Aleksandrov body (Wulff shape) associated with f is

$$[f] = igcap_{u\in\Omega} \left\{ x\in \mathbb{R}^n: \langle x,u
angle \leq f(u)
ight\} \in \mathscr{K}^n_{(o)}, \;\; \Omega\subset S^{n-1},$$

In particular,

$$\mathcal{K} = igcap_{u \in S^{n-1}} \left\{ x \in \mathbb{R}^n : \langle x, u
angle \leq h_{\mathcal{K}}(u)
ight\}.$$

Figure: Aleksandrov body

♦ The inverse Gauss map $\nu_{K}^{-1}(\cdot): S^{n-1} \to \partial K$,

$$u_{\mathcal{K}}^{-1}(\eta) := \{x \in \partial \mathcal{K} : \
u_{\mathcal{K}}(x) \in \eta\}$$

for any Borel set $\eta \subset S^{n-1}$.

 \diamond The inverse Gauss map $u_{\mathcal{K}}^{-1}(\cdot): S^{n-1} \to \partial \mathcal{K},$

$$u_{K}^{-1}(\eta) := \{x \in \partial K : \
u_{K}(x) \in \eta\}$$

for any Borel set $\eta \subset S^{n-1}$.

♦ \mathscr{H}^{n-1} : n-1 dimensional Hausdorff measure.

$$\diamond$$
 The inverse Gauss map $u_{\mathcal{K}}^{-1}(\cdot):S^{n-1}
ightarrow\partial\mathcal{K},$

$$u_{K}^{-1}(\eta) := \{x \in \partial K : \
u_{K}(x) \in \eta\}$$

for any Borel set $\eta \subset S^{n-1}$.

♦ \mathscr{H}^{n-1} : n-1 dimensional Hausdorff measure.

Surface area measure

For a convex body $K \in \mathscr{K}^n_{(o)}$, the surface area measure $S(K, \cdot)$ is

$$S(K,\eta) = \mathscr{H}^{n-1}(\nu_K^{-1}(\eta)),$$

for any Borel set $\eta \subset S^{n-1}$.

$$\diamond$$
 The inverse Gauss map $u_{K}^{-1}(\cdot):S^{n-1}
ightarrow\partial K$,

$$u_{K}^{-1}(\eta) := \{x \in \partial K : \
u_{K}(x) \in \eta\}$$

for any Borel set $\eta \subset S^{n-1}$.

♦ \mathscr{H}^{n-1} : n-1 dimensional Hausdorff measure.

Surface area measure

For a convex body $K \in \mathscr{K}^n_{(o)}$, the surface area measure $S(K, \cdot)$ is

$$S(K,\eta) = \mathscr{H}^{n-1}(\nu_K^{-1}(\eta)),$$

for any Borel set $\eta \subset S^{n-1}$.

♦ Volume: $V(K) = \frac{1}{n} \int_{S^{n-1}} h_K(u) dS(K, u) = \frac{1}{n} \int_{S^{n-1}} \rho_K(u)^n du.$

The classical Minkowski problem

For a given nonzero finite Borel measure μ on S^{n-1} , what are the necessary and sufficient conditions on μ such that $\mu = S(K, \cdot)$ for some $K \in \mathscr{K}^n_{(o)}$?

The classical Minkowski problem

For a given nonzero finite Borel measure μ on S^{n-1} , what are the necessary and sufficient conditions on μ such that $\mu = S(K, \cdot)$ for some $K \in \mathscr{K}^n_{(o)}$?

Solution to the Minkowski problem

The classical Minkowski problem

For a given nonzero finite Borel measure μ on S^{n-1} , what are the necessary and sufficient conditions on μ such that $\mu = S(K, \cdot)$ for some $K \in \mathscr{K}^n_{(o)}$?

Solution to the Minkowski problem

A Borel measure μ on S^{n-1} is $S(K, \cdot)$ for some $K \in \mathscr{K}^n_{(o)}$ iff μ has centroid at the origin and is not concentrated on a great hemisphere. Moreover, K is unique up to translations.

♦ Discrete measure: Minkowski, 1897, 1903.

The classical Minkowski problem

For a given nonzero finite Borel measure μ on S^{n-1} , what are the necessary and sufficient conditions on μ such that $\mu = S(K, \cdot)$ for some $K \in \mathscr{K}^n_{(o)}$?

Solution to the Minkowski problem

- ♦ Discrete measure: Minkowski, 1897, 1903.
- ♦ General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.

The classical Minkowski problem

For a given nonzero finite Borel measure μ on S^{n-1} , what are the necessary and sufficient conditions on μ such that $\mu = S(K, \cdot)$ for some $K \in \mathscr{K}^n_{(o)}$?

Solution to the Minkowski problem

- ♦ Discrete measure: Minkowski, 1897, 1903.
- ♦ General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.
- ♦ Applications: to establish the Affine Sobolev inequality.

The classical Minkowski problem

For a given nonzero finite Borel measure μ on S^{n-1} , what are the necessary and sufficient conditions on μ such that $\mu = S(K, \cdot)$ for some $K \in \mathscr{K}^n_{(o)}$?

Solution to the Minkowski problem

- ♦ Discrete measure: Minkowski, 1897, 1903.
- ♦ General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.
- ♦ Applications: to establish the Affine Sobolev inequality.
- Monge-Ampère type equation:

$$f = \det \left(\nabla^2 h + h I \right).$$

Necessary condition

A measure µ is not concentrated on any closed hemisphere if $\int_{S^{n-1}} \langle u, v \rangle_+ d\mu(u) > 0 \quad \text{for any } v \in S^{n-1},$ where a₊ = max{a, 0} for a ∈ ℝ.

Necessary condition

 \diamond A measure μ is not concentrated on any closed hemisphere if

$$\int_{S^{n-1}} \langle u,v
angle_+ \, d\mu(u) > 0 \quad ext{for any } v \in S^{n-1},$$

where $a_+ = \max\{a, 0\}$ for $a \in \mathbb{R}$.

♦ This condition for measure μ is necessary to solve the classical Minkowski problem and its extensions, since it guarantees convex sets to be bounded (and hence compact).

Necessary condition

 \diamond A measure μ is not concentrated on any closed hemisphere if

$$\int_{S^{n-1}} \langle u,v
angle_+ d\mu(u) > 0$$
 for any $v \in S^{n-1}$,

where $a_+ = \max\{a, 0\}$ for $a \in \mathbb{R}$.

♦ This condition for measure µ is necessary to solve the classical Minkowski problem and its extensions, since it guarantees convex sets to be bounded (and hence compact).

Figure: Support of μ on the plane

The Orlicz-Minkowski problem

Under what conditions on a finite Borel measure μ and $\phi : (0, \infty) \to (0, \infty)$, does there exist a $K \in \mathscr{K}^n_{(o)}$ such that for some constant $\tau > 0$, $\mu = \tau \phi(h_K) S(K, \cdot)$?

The Orlicz-Minkowski problem

Under what conditions on a finite Borel measure μ and $\phi : (0, \infty) \to (0, \infty)$, does there exist a $K \in \mathscr{K}^n_{(o)}$ such that for some constant $\tau > 0$, $\mu = \tau \phi(h_K) S(K, \cdot)$?

♦ $\phi(t) = t^{1-p}$: L_p Minkowski problem (Lutwak, 1993).

The Orlicz-Minkowski problem

Under what conditions on a finite Borel measure μ and $\phi : (0, \infty) \to (0, \infty)$, does there exist a $K \in \mathscr{K}^n_{(o)}$ such that for some constant $\tau > 0$, $\mu = \tau \phi(h_K) S(K, \cdot)$?

The Orlicz-Minkowski problem

Under what conditions on a finite Borel measure μ and ϕ : $(0,\infty) \rightarrow (0,\infty)$, does there exist a $K \in \mathscr{K}^n_{(\alpha)}$ such that for some constant $\tau > 0$, $\mu = \tau \phi(h_{\kappa}) S(K, \cdot)?$

- ♦ φ(t) = t^{1-p}: L_p Minkowski problem (Lutwak, 1993).
 ♦ Extreme problem: inf { ∫_{Sⁿ⁻¹} φ(h_Q(u)) dµ(u) : V(Q) = V(Bⁿ), Q ∈ ℋⁿ_(o) }?
 ♦ Orlicz surface area measure φ(h_K) S(K, ·) derives from a variation formula of
- volume in terms of the Aleksandrov body of the Orlicz addition:

$$\phi(t) = 1/arphi'(t), \quad f_\epsilon(u) = arphi^{-1} \left(arphi \left(h_{\mathcal{K}}(u)
ight) + \epsilon g(u)
ight).$$

The Orlicz-Minkowski problem

Under what conditions on a finite Borel measure μ and ϕ : $(0,\infty) \rightarrow (0,\infty)$, does there exist a $K\in \mathscr{K}^n_{(o)}$ such that for some constant au>0, $\mu = \tau \phi(h_{\kappa}) S(K, \cdot)?$

- ♦ φ(t) = t^{1-p}: L_p Minkowski problem (Lutwak, 1993).
 ♦ Extreme problem: inf { ∫_{Sⁿ⁻¹} φ(h_Q(u)) dµ(u) : V(Q) = V(Bⁿ), Q ∈ ℋⁿ_(o) }?
 ♦ Orlicz surface area measure φ(h_K) S(K, ·) derives from a variation formula of
- volume in terms of the Aleksandrov body of the Orlicz addition:

$$\phi(t) = 1/arphi'(t), \quad f_{\epsilon}(u) = arphi^{-1} \left(arphi \left(h_{\mathcal{K}}(u)
ight) + \epsilon g(u)
ight).$$

♦ Contributions: Haberl-Lutwak-Yang-Zhang, 2010; Huang-He, 2012; Li, 2014; Wu-Xi-Leng, 2018; Sun-Long, 2015; Sun-Zhang, 2018; Sun, 2018, etc.

The reverse radial Gauss image

radial Gauss map $\alpha_{\kappa}: S^{n-1} \rightarrow S^{n-1}$

support function $h_{\mathcal{K}}: S^{n-1} \rightarrow [0,\infty)$

radial function $\rho_{K}: S^{n-1} \rightarrow (0, \infty)$

 $v = \alpha_{\kappa}(u)$ radial Gauss map $\alpha_{\kappa} : S^{n-1} \rightarrow S^{n-1}$

support function $h_{K}: S^{n-1} \rightarrow [0,\infty)$

radial function $\rho_{\kappa}: S^{n-1} \rightarrow (0, \infty)$

♦ $\nu_{K}(\cdot): \ \partial K \to S^{n-1}$ is the Gauss map.

♦ $\nu_{K}(\cdot): \ \partial K \rightarrow S^{n-1}$ is the Gauss map.

$$\stackrel{\diamond}{\rightarrow} \boldsymbol{\alpha}_{\mathcal{K}}(\cdot) : S^{n-1} \to S^{n-1} \text{ is the radial Gauss image, i.e., for any } \eta \subset S^{n-1}, \\ \boldsymbol{\alpha}_{\mathcal{K}}(\eta) = \boldsymbol{\nu}_{\mathcal{K}}(\{\rho_{\mathcal{K}}(u)u \in \partial \mathcal{K} : u \in \eta\}).$$

♦ $\nu_{K}(\cdot): \ \partial K \rightarrow S^{n-1}$ is the Gauss map.

$$\stackrel{\diamond}{\to} \boldsymbol{\alpha}_{\mathcal{K}}(\cdot) : S^{n-1} \to S^{n-1} \text{ is the radial Gauss image, i.e., for any } \eta \subset S^{n-1}, \\ \boldsymbol{\alpha}_{\mathcal{K}}(\eta) = \boldsymbol{\nu}_{\mathcal{K}}(\{\rho_{\mathcal{K}}(u)u \in \partial \mathcal{K} : u \in \eta\}).$$

 $\diamond \ lpha_K^*(\cdot): \ S^{n-1} o S^{n-1}$ is the reverse radial Gauss image.

♦ $\psi: (0,\infty) \rightarrow (0,\infty)$ is continuous,

↔ ψ : (0, ∞) → (0, ∞) is continuous, $↔ G(t, u) : (0, ∞) × S^{n-1} → (0, ∞)$ is continuous,

- ♦ $\psi: (0,\infty) \rightarrow (0,\infty)$ is continuous,
- ♦ $G(t, u) : (0, \infty) \times S^{n-1} \to (0, \infty)$ is continuous,
- ♦ $G_t(t, u) = \partial G(t, u) / \partial t : (0, \infty) \times S^{n-1} \to \mathbb{R}$ is integrable on S^{n-1} .

$$\diamond \ \psi: (0,\infty) o (0,\infty)$$
 is continuous,

- ♦ $G(t, u): (0, \infty) \times S^{n-1} \to (0, \infty)$ is continuous,
- $\Rightarrow \ G_t(t,u) = \partial G(t,u) / \partial t : (0,\infty) \times S^{n-1} \to \mathbb{R} \text{ is integrable on } S^{n-1}.$

The general dual Orlicz curvature measure (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For $K \in \mathscr{K}^n_{(o)}$ and Borel set $\eta \subset S^{n-1}$, the general dual Orlicz curvature measure $\widetilde{C}_{G,\psi}(K,\cdot)$ is defined as

$$\widetilde{C}_{G,\psi}(K,\eta) = rac{1}{n} \int_{oldsymbol{lpha}_K^*(\eta)} rac{
ho_K(u) \, G_t(
ho_K(u),u)}{\psi(h_K(lpha_K(u)))} \, du.$$

$$\diamond \ \psi: (0,\infty) o (0,\infty)$$
 is continuous,

- ♦ $G(t, u) : (0, \infty) \times S^{n-1} \to (0, \infty)$ is continuous,
- $\Rightarrow \ G_t(t,u) = \partial G(t,u) / \partial t : (0,\infty) \times S^{n-1} \to \mathbb{R} \text{ is integrable on } S^{n-1}.$

The general dual Orlicz curvature measure (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For $K \in \mathscr{K}^n_{(o)}$ and Borel set $\eta \subset S^{n-1}$, the general dual Orlicz curvature measure $\widetilde{C}_{G,\psi}(K,\cdot)$ is defined as

$$\widetilde{C}_{G,\psi}(K,\eta) = \frac{1}{n} \int_{\boldsymbol{\alpha}_{K}^{*}(\eta)} \frac{\rho_{K}(u) \, G_{t}(\rho_{K}(u),u)}{\psi(h_{K}(\alpha_{K}(u)))} \, du.$$

• $\widetilde{C}_{G,\psi}$ is a finite signed Borel measure;

$$\diamond \ \psi: (0,\infty) o (0,\infty)$$
 is continuous,

- ♦ $G(t, u) : (0, \infty) \times S^{n-1} \to (0, \infty)$ is continuous,
- $\Rightarrow \ G_t(t,u) = \partial G(t,u) / \partial t : (0,\infty) \times S^{n-1} \to \mathbb{R} \text{ is integrable on } S^{n-1}.$

The general dual Orlicz curvature measure (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For $K \in \mathscr{K}^n_{(o)}$ and Borel set $\eta \subset S^{n-1}$, the general dual Orlicz curvature measure $\widetilde{C}_{G,\psi}(K,\cdot)$ is defined as

$$\widetilde{C}_{G,\psi}(K,\eta) = \frac{1}{n} \int_{\boldsymbol{\alpha}_{K}^{*}(\eta)} \frac{\rho_{K}(u) \, G_{t}(\rho_{K}(u),u)}{\psi(h_{K}(\alpha_{K}(u)))} \, du.$$

• $\tilde{C}_{G,\psi}$ is a finite signed Borel measure;

• $\widetilde{C}_{G,\psi}$ is weakly convergent in terms of the Hausdorff metric;

$$\diamond \ \psi: (0,\infty) o (0,\infty)$$
 is continuous,

- ♦ $G(t, u) : (0, \infty) \times S^{n-1} \to (0, \infty)$ is continuous,
- $\Rightarrow \ G_t(t,u) = \partial G(t,u) / \partial t : (0,\infty) \times S^{n-1} \to \mathbb{R} \text{ is integrable on } S^{n-1}.$

The general dual Orlicz curvature measure (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For $K \in \mathscr{K}^n_{(o)}$ and Borel set $\eta \subset S^{n-1}$, the general dual Orlicz curvature measure $\widetilde{C}_{G,\psi}(K,\cdot)$ is defined as

$$\widetilde{C}_{G,\psi}(K,\eta) = rac{1}{n} \int_{oldsymbol{lpha}_{K}^{*}(\eta)} rac{
ho_{K}(u) \, G_{t}(
ho_{K}(u),u)}{\psi(h_{K}(lpha_{K}(u)))} \, du.$$

• $\widetilde{C}_{G,\psi}$ is a finite signed Borel measure;

- $\widetilde{C}_{G,\psi}$ is weakly convergent in terms of the Hausdorff metric;
- $C_{G,\psi}$ is not concentrated on any closed hemisphere;

$$\diamond \ \psi: (0,\infty) o (0,\infty)$$
 is continuous,

- ♦ $G(t, u) : (0, \infty) \times S^{n-1} \to (0, \infty)$ is continuous,
- $\Leftrightarrow \ G_t(t,u) = \partial G(t,u) / \partial t : (0,\infty) \times S^{n-1} \to \mathbb{R} \text{ is integrable on } S^{n-1}.$

The general dual Orlicz curvature measure (Gardner-Hug-Weil-Xing-Ye, CVPDE, 2019)

For $K \in \mathscr{K}^n_{(o)}$ and Borel set $\eta \subset S^{n-1}$, the general dual Orlicz curvature measure $\widetilde{C}_{G,\psi}(K,\cdot)$ is defined as

$$\widetilde{C}_{G,\psi}(K,\eta) = rac{1}{n} \int_{oldsymbol{lpha}_{K}^{*}(\eta)} rac{
ho_{K}(u) \, G_{t}(
ho_{K}(u),u)}{\psi(h_{K}(lpha_{K}(u)))} \, du.$$

- $\widetilde{C}_{G,\psi}$ is a finite signed Borel measure;
- $\widetilde{C}_{G,\psi}$ is weakly convergent in terms of the Hausdorff metric;
- $C_{G,\psi}$ is not concentrated on any closed hemisphere;
- $\widetilde{C}_{G,\psi}$ is absolutely continuous to $S(K,\cdot)$, etc.

Uniqueness under certain conditions

Let $G: (0,\infty) \times S^{n-1} \to (0,\infty)$ and $\psi: (0,\infty) \to (0,\infty)$ be continuous. Suppose that $G_t > 0$ (or $G_t < 0$) on $(0,\infty) \times S^{n-1}$ and that if

$$\frac{G_t(t,u)}{\psi(s)} \ge \frac{\lambda G_t(\lambda t, u)}{\psi(\lambda s)} \quad \text{(or} \quad \frac{G_t(t,u)}{\psi(s)} \le \frac{\lambda G_t(\lambda t, u)}{\psi(\lambda s)}, \text{ respectively}) \quad (1)$$

for some $\lambda, s, t > 0$ and $u \in S^{n-1}$, then $\lambda \ge 1$. If $K, K' \in \mathscr{K}^n_{(o)}$ are both polytopes or both have support functions in C^2 and

$$\widetilde{C}_{\mathcal{G},\psi}(\mathcal{K},\cdot)=\widetilde{C}_{\mathcal{G},\psi}(\mathcal{K}',\cdot),$$

then

$$K = K'$$
.

For which nonzero finite Borel measures μ on S^{n-1} and continuous functions $G: (0,\infty) \times S^{n-1} \to (0,\infty)$ and $\psi: (0,\infty) \to (0,\infty)$, do there exist $\tau \in \mathbb{R}$ and $K \in \mathscr{K}^n_{(o)}$ such that

 $\mu = au \ \widetilde{C}_{\mathcal{G},\psi}(\mathcal{K},\cdot)$?

For which nonzero finite Borel measures μ on S^{n-1} and continuous functions $G: (0,\infty) \times S^{n-1} \to (0,\infty)$ and $\psi: (0,\infty) \to (0,\infty)$, do there exist $\tau \in \mathbb{R}$ and $K \in \mathscr{K}^n_{(o)}$ such that

 $\mu = \tau \ \widetilde{C}_{G,\psi}(K,\cdot)?$

♦ $G(t, u) = \int_t^\infty \phi(ru) r^{n-1} dr$: $\mu = \tau \widetilde{C}_{\phi, \mathscr{V}}(K, \cdot)$? (Xing-Ye, IUMJ, 2019)

For which nonzero finite Borel measures μ on S^{n-1} and continuous functions $G: (0,\infty) \times S^{n-1} \to (0,\infty)$ and $\psi: (0,\infty) \to (0,\infty)$, do there exist $\tau \in \mathbb{R}$ and $K \in \mathscr{K}^n_{(o)}$ such that

 $\mu = au \ \widetilde{C}_{\mathcal{G},\psi}(\mathcal{K},\cdot)?$

For which nonzero finite Borel measures μ on S^{n-1} and continuous functions $G: (0,\infty) \times S^{n-1} \to (0,\infty)$ and $\psi: (0,\infty) \to (0,\infty)$, do there exist $\tau \in \mathbb{R}$ and $K \in \mathscr{K}^n_{(o)}$ such that

 $\mu = au \ \widetilde{C}_{\mathcal{G},\psi}(\mathcal{K},\cdot)?$

 $\Rightarrow G(t,u) = \int_t^\infty \phi(ru) r^{n-1} dr: \quad \mu = \tau \widetilde{C}_{\phi,\mathscr{V}}(K,\cdot)? \text{ (Xing-Ye, IUMJ, 2019)}$

Monge-Ampère type equation

- ∇h : gradient vector of h, w.r.t. an orthonormal frame on S^{n-1} ;
- $\nabla^2 h$: Hessian matrix of h w.r.t. an orthonormal frame on S^{n-1} ;
- ι : the identity map on S^{n-1} ;
- *I*: the identity matrix.

Monge-Ampère type equation

- ∇h : gradient vector of h, w.r.t. an orthonormal frame on S^{n-1} ;
- $\nabla^2 h$: Hessian matrix of h w.r.t. an orthonormal frame on S^{n-1} ;
- ι : the identity map on S^{n-1} ;
- I: the identity matrix.

The corresponding equivalent Monge-Ampère type equation for this general dual Orlicz-Minkowski problem states that for given G, ψ , and $f: S^{n-1} \to [0, \infty)$, an $h: S^{n-1} \to (0, \infty)$ and $\tau \in \mathbb{R}$,

$$f = \frac{\tau h}{\psi \circ h} P(\nabla h + h\iota) \det(\nabla^2 h + hI),$$
(2)

where $P(x) = |x|^{1-n}G_t(|x|, \bar{x}), \ \bar{x} = x/|x|.$

♦ Orlicz addition: For t\u03c6'(t) = \u03c6(t), \u03c6 \u2266 \u03c6'_{(o)}, g \u2266 C (S^{n-1}) and \u2266 > 0,
$$f_{\u03c6}(u) = \u03c6^{-1} (\u03c6(h_{\u03c6}(u)) + \u03c6g(u)) \quad \text{for all } u \in S^{n-1}.$$

- ♦ Orlicz addition: For t\u03c6'(t) = \u03c6(t), \u03c6 \u2266 \u03c6'(o), g \u2266 C (Sⁿ⁻¹) and \u2266 > 0, $f_{\epsilon}(u) = \u03c6^{-1} (\u03c6 (h_{\kappa}(u)) + \u03c6 g(u)) \quad \text{for all} \quad u \in S^{n-1}.$
- The general dual volume:

$$\widetilde{V}_G(K) = \int_{S^{n-1}} G(\rho_K(u), u) \, du.$$

- ♦ Orlicz addition: For t\u03c6'(t) = \u03c6(t), K \u2266 \u03c6'_{(o)}, g \u2266 C (Sⁿ⁻¹) and \u03c6 > 0, $f_{\epsilon}(u) = \u03c6^{-1} (\u03c6 (h_{K}(u)) + \u03c6 g(u)) \quad \text{for all} \quad u \in S^{n-1}.$
- The general dual volume:

$$\widetilde{V}_G(K) = \int_{S^{n-1}} G(\rho_K(u), u) \, du.$$

Variation formula

$$\lim_{\varepsilon \to 0} \frac{\widetilde{V}_{G}\left([f_{\varepsilon}]\right) - \widetilde{V}_{G}(K)}{\varepsilon} = n \int_{\Omega} g(u) d\widetilde{C}_{G,\psi}(K, u).$$

↔ μ: not concentrated on any closed hemisphere as $\mu = \tau \widetilde{C}_{G,\psi}(K, \cdot) \ll \tau S(K, \cdot)$.

◆ G and G_t are continuous and $G_t < 0$ on $(0, \infty) \times S^{n-1}$.

G and G_t are continuous and G_t < 0 on (0,∞) × Sⁿ⁻¹.
For 0 < ε₀ < 1, v ∈ Sⁿ⁻¹, 0 < ε ≤ ε₀, and Σ_ε(v) = {u ∈ Sⁿ⁻¹ : ⟨u, v⟩ > ε}.

$$\lim_{t\to 0+}\int_{\Sigma_\varepsilon(v)}G(t,u)\,du=\infty \ \, \text{and} \ \, \lim_{t\to\infty}\int_{S^{n-1}}G(t,u)\,du=0.$$

G and G_t are continuous and G_t < 0 on (0,∞) × Sⁿ⁻¹.
For 0 < ε₀ < 1, v ∈ Sⁿ⁻¹, 0 < ε ≤ ε₀, and Σ_ε(v) = {u ∈ Sⁿ⁻¹ : ⟨u, v⟩ ≥ ε},

$$\lim_{t\to 0+}\int_{\Sigma_\varepsilon(v)}G(t,u)\,du=\infty \ \text{ and } \ \lim_{t\to\infty}\int_{S^{n-1}}G(t,u)\,du=0.$$

♦ $\psi: (0,\infty) \to (0,\infty)$ is continuous and satisfies $\int_1^\infty \frac{\psi(s)}{s} ds = \infty$.

G and G_t are continuous and G_t < 0 on (0,∞) × Sⁿ⁻¹.
For 0 < ε₀ < 1, v ∈ Sⁿ⁻¹, 0 < ε ≤ ε₀, and Σ_ε(v) = {u ∈ Sⁿ⁻¹ : ⟨u, v⟩ ≥ ε},

$$\lim_{t\to 0+}\int_{\Sigma_\varepsilon(v)}G(t,u)\,du=\infty \ \text{ and } \ \lim_{t\to\infty}\int_{S^{n-1}}G(t,u)\,du=0.$$

♦
$$\psi: (0,\infty) \to (0,\infty)$$
 is continuous and satisfies $\int_1^\infty \frac{\psi(s)}{s} ds = \infty$.

Theorem

Under the conditions above, there exists a convex body $K \in \mathscr{K}_{(n)}^n$ such that

$$\frac{\mu}{\mu(S^{n-1})} = \frac{\widetilde{C}_{G,\psi}(K,\cdot)}{\widetilde{C}_{G,\psi}(K,S^{n-1})}.$$

$$\lim_{t\to 0+}\int_{\Sigma_\varepsilon(v)}G(t,u)\,du=\infty \ \text{ and } \ \lim_{t\to\infty}\int_{S^{n-1}}G(t,u)\,du=0.$$

♦
$$\psi: (0,\infty) \to (0,\infty)$$
 is continuous and satisfies $\int_1^\infty \frac{\psi(s)}{s} ds = \infty$.

Theorem

Under the conditions above, there exists a convex body $K \in \mathscr{K}_{(o)}^n$ such that

$$\frac{\mu}{\mu(S^{n-1})} = \frac{\widetilde{C}_{G,\psi}(K,\cdot)}{\widetilde{C}_{G,\psi}(K,S^{n-1})}.$$

♦ $\psi = t^p$, $G = t^q$: p = 0, q < 0, our results recover Zhao's result.

 \Rightarrow **Step 1**: (Condition for *G*)

For $\{K_i\}_{i=1}^{\infty} \subset \mathscr{K}_{(o)}^n$ satisfying $\widetilde{V}_G(K_i) = |\mu|$, there exists a constant R > 0 such that $K_i^* \subset RB^n$.

- Step 1: (Condition for G)
 For {K_i}[∞]_{i=1} ⊂ $\mathscr{K}^n_{(o)}$ satisfying $\widetilde{V}_G(K_i) = |\mu|$, there exists a constant R > 0 such that $K^*_i \subset RB^n$.
- ♦ **Step 2:** (Condition for μ and ψ (φ))

Based on Blaschke selection theorem, there exists a convex body $K_0 \in \mathscr{K}^n_{(o)}$ such that $\widetilde{V}_G(K_0) = |\mu|$ and

$$\int_{S^{n-1}} \varphi(h_{K_0}(u)) d\mu(u) = \sup\left\{\int_{S^{n-1}} \varphi(h_K(u)) d\mu(u) : \widetilde{V}_G(K) = |\mu|, K \in \mathscr{K}^n_{(o)}\right\}.$$

Step 1: (Condition for G)

For $\{K_i\}_{i=1}^{\infty} \subset \mathscr{K}_{(o)}^n$ satisfying $\widetilde{V}_G(K_i) = |\mu|$, there exists a constant R > 0 such that $K_i^* \subset RB^n$.

♦ **Step 2:** (Condition for μ and ψ (φ))

Based on Blaschke selection theorem, there exists a convex body $K_0 \in \mathscr{K}^n_{(o)}$ such that $\widetilde{V}_{\mathcal{G}}(K_0) = |\mu|$ and

$$\int_{S^{n-1}} \varphi(h_{K_0}(u)) d\mu(u) = \sup\left\{\int_{S^{n-1}} \varphi(h_K(u)) d\mu(u) : \widetilde{V}_G(K) = |\mu|, K \in \mathscr{K}^n_{(o)}\right\}.$$

Step 3: (Variation formula)

The convex body K_0 found in Step 2 is a solution of the dual Orlicz- Minkowski problem, i.e.,

$$\frac{\mu}{\mu(S^{n-1})} = \frac{\widetilde{C}_{G,\psi}(K_0,\cdot)}{\widetilde{C}_{G,\psi}(K_0,S^{n-1})}$$

♦ $\psi : [0,\infty) \rightarrow [0,\infty)$ is continuous with $\psi(t) > 0$ for t > 0,

♦ ψ: [0,∞) → [0,∞) is continuous with ψ(t) > 0 for t > 0,
♦ G(t, u): [0,∞) × Sⁿ⁻¹ → [0,∞) is continuous,

$$\psi: [0,\infty)
ightarrow [0,\infty)$$
 is continuous with $\psi(t) > 0$ for $t>$ 0,

♦
$$G(t, u) : [0, \infty) \times S^{n-1} \rightarrow [0, \infty)$$
 is continuous,

 $\Leftrightarrow \ G_t(t,u) = \partial G(t,u) / \partial t : [0,\infty) \times S^{n-1} \to \mathbb{R} \text{ is integrable on } S^{n-1}.$

The general dual Orlicz curvature measure (Gardner-Hug-Xing-Ye, CVPDE, 2020)

The general Orlicz curvature measure $\widetilde{C}_{G,\psi}(K,\cdot)$ for $K \in \mathscr{K}_o^n$ and any Borel set $E \subset S^{n-1}$ is defined by

$$\widetilde{C}_{\mathcal{G},\psi}(\mathcal{K}, \mathcal{E}) = \frac{1}{n} \int_{\boldsymbol{\alpha}_{\mathcal{K}}^{*}(\mathcal{E} \setminus \mathcal{N}(\mathcal{K}, \boldsymbol{o}))} \frac{\rho_{\mathcal{K}}(u) \, G_{t}(\rho_{\mathcal{K}}(u), u)}{\psi(h_{\mathcal{K}}(\alpha_{\mathcal{K}}(u)))} \, du.$$

$$\psi: [0,\infty)
ightarrow [0,\infty)$$
 is continuous with $\psi(t) > 0$ for $t>$ 0,

♦
$$G(t, u) : [0, \infty) \times S^{n-1} \rightarrow [0, \infty)$$
 is continuous,

 $\Leftrightarrow \ G_t(t,u) = \partial G(t,u) / \partial t : [0,\infty) \times S^{n-1} \to \mathbb{R} \text{ is integrable on } S^{n-1}.$

The general dual Orlicz curvature measure (Gardner-Hug-Xing-Ye, CVPDE, 2020)

The general Orlicz curvature measure $\widetilde{C}_{G,\psi}(K,\cdot)$ for $K \in \mathscr{K}_o^n$ and any Borel set $E \subset S^{n-1}$ is defined by

$$\widetilde{C}_{\mathcal{G},\psi}(\mathcal{K}, \mathcal{E}) = \frac{1}{n} \int_{\boldsymbol{\alpha}_{\mathcal{K}}^{*}(\mathcal{E} \setminus \mathcal{N}(\mathcal{K}, \boldsymbol{o}))} \frac{\rho_{\mathcal{K}}(u) \, G_{t}(\rho_{\mathcal{K}}(u), u)}{\psi(h_{\mathcal{K}}(\alpha_{\mathcal{K}}(u)))} \, du.$$

$$\psi: [0,\infty)
ightarrow [0,\infty)$$
 is continuous with $\psi(t) > 0$ for $t>$ 0,

♦
$$G(t, u) : [0, \infty) \times S^{n-1} \rightarrow [0, \infty)$$
 is continuous,

The general dual Orlicz curvature measure (Gardner-Hug-Xing-Ye, CVPDE, 2020)

The general Orlicz curvature measure $\widetilde{C}_{G,\psi}(K,\cdot)$ for $K \in \mathscr{K}_o^n$ and any Borel set $E \subset S^{n-1}$ is defined by

$$\widetilde{C}_{G,\psi}(K,E) = \frac{1}{n} \int_{\boldsymbol{\alpha}_{K}^{*}(\boldsymbol{E} \setminus \boldsymbol{N}(K,o))} \frac{\rho_{K}(u) \, G_{t}(\rho_{K}(u),u)}{\psi(h_{K}(\alpha_{K}(u)))} \, du.$$

◆ $\widetilde{C}_{G,\psi}(K,\cdot)$ for $K \in \mathscr{K}_o^n$ satisfies similar properties as $K \in \mathscr{K}_{(o)}^n$.

Normal cone

$$N(K, o) = \{y \in \mathbb{R}^n : \langle y, x \rangle \leq 0 \text{ for all } x \in K\}.$$

Normal cone

✤ Normal cone:

$$N(K, o) = \{y \in \mathbb{R}^n : \langle y, x \rangle \leq 0 \text{ for all } x \in K\}.$$

✦ Support cone:

$$\begin{split} \mathcal{N}(\mathcal{K},o)^* &= \{ x \in \mathbb{R}^n : \langle x,y \rangle \leq 0 \ \text{ for all } y \in \mathcal{N}(\mathcal{K},o) \} \\ &= c l \{ \lambda x : x \in \mathcal{K} \text{ and } \lambda \geq 0 \}. \end{split}$$

Normal cone

✤ Normal cone:

$$N(K, o) = \{y \in \mathbb{R}^n : \langle y, x \rangle \le 0 \text{ for all } x \in K\}.$$

✦ Support cone:

$$\begin{split} \mathsf{N}(\mathsf{K},o)^* &= \{ x \in \mathbb{R}^n : \langle x,y \rangle \leq 0 \ \text{ for all } y \in \mathsf{N}(\mathsf{K},o) \} \\ &= cl\{\lambda x : x \in \mathsf{K} \text{ and } \lambda \geq 0 \}. \end{split}$$

Figure: Normal cone and support cone of a convex body

Reverse radial Gauss image

• Radial function for K ($o \in \partial K$):

$$\rho_{\mathcal{K}}(u) \begin{cases} = 0 & \text{if } u \in S^{n-1} \setminus \mathcal{N}(\mathcal{K}, o)^*, \\ > 0 & \text{if } u \in S^{n-1} \cap \operatorname{int} \mathcal{N}(\mathcal{K}, o)^*. \end{cases}$$

Reverse radial Gauss image

• Radial function for K ($o \in \partial K$):

$$\rho_{\mathcal{K}}(u) \begin{cases} = 0 & \text{if } u \in S^{n-1} \setminus \mathcal{N}(\mathcal{K}, o)^*, \\ > 0 & \text{if } u \in S^{n-1} \cap \operatorname{int} \mathcal{N}(\mathcal{K}, o)^*. \end{cases}$$

• Reverse radial Gauss image:

$$\boldsymbol{lpha}_{K}^{*}\left(E\setminus \mathcal{N}(K,o)
ight) \ = \ \boldsymbol{lpha}_{K}^{*}\left(E
ight)\cap \mathcal{N}(K,o)^{*}.$$

Reverse radial Gauss image

• Radial function for K ($o \in \partial K$):

$$\rho_{\mathcal{K}}(u) \begin{cases} = 0 & \text{if } u \in S^{n-1} \setminus N(\mathcal{K}, o)^*, \\ > 0 & \text{if } u \in S^{n-1} \cap \operatorname{int} N(\mathcal{K}, o)^*. \end{cases}$$

• Reverse radial Gauss image:

$$\boldsymbol{lpha}_{K}^{*}\left(E\setminus \mathcal{N}(K,o)
ight) \ = \ \boldsymbol{lpha}_{K}^{*}\left(E
ight) \cap \mathcal{N}(K,o)^{*}.$$

♦ Steps 1 – 3 fail in the case when both G and ψ are increasing, since it is difficult to show $K \in \mathscr{K}^n_{(o)}$.

- ♦ Steps 1 3 fail in the case when both G and ψ are increasing, since it is difficult to show $K \in \mathscr{K}^n_{(o)}$.
- ♦ The proof is based on the approximation:

$$\mu \text{ (general)} \longleftarrow \mathcal{K} \in \mathscr{K}_o^n \text{ (convex body)}$$

$$\uparrow \qquad \uparrow$$
 $\mu_j \text{ (discrete)} \longleftarrow P_j \in \mathscr{K}_{(o)}^n \text{ (convex polytope)}$

- ♦ Steps 1 3 fail in the case when both G and ψ are increasing, since it is difficult to show $K \in \mathscr{K}^n_{(o)}$.
- The proof is based on the approximation:

$$\mu \text{ (general)} \longleftarrow \overset{}{\mathsf{K}} \in \mathscr{K}_o^n \text{ (convex body)}$$

$$\uparrow \qquad \uparrow$$

$$\mu_j \text{ (discrete)} \longleftarrow P_j \in \mathscr{K}_{(o)}^n \text{ (convex polytope)}$$

♦ Multivariable optimization problem: finding $z^0 = (z_1^0, \dots, z_m^0) \in M$ with

$$M = \left\{ (z_1, \dots, z_m) \in [0, \infty)^m : \sum_{i=1}^m \lambda_i \varphi(z_i) = \sum_{i=1}^m \lambda_i \varphi(1) \right\}$$

such that $\widetilde{V}_G(P(z^0)) = \max\left\{ \widetilde{V}_G(P(z)) : z \in M \right\}$, where
 $P(z) = \left\{ x \in \mathbb{R}^n : \langle x, u_i \rangle \le z_i, \text{ for } i = 1, \dots, m \right\}.$

Contradiction

Based on condition of G and φ , we have $P_2 \in M$ and

$$\begin{split} \widetilde{V}_G(P_2) &= \widetilde{V}_G(P_2 \setminus P_1) + \widetilde{V}_G(P_1) \\ &> \widetilde{V}_G(P_0 \setminus P_1) + \widetilde{V}_G(P_1) \\ &= \widetilde{V}_G(P_0) \quad (\text{assumed maximum}). \end{split}$$

Main point: Perturbation of height.

- $P_2 \setminus P_1$: with height $\varphi^{-1}(\varphi(z_i) \lambda \varphi(t));$
- $P_0 \setminus P_1$: with height *t*.

$$↔$$
 μ = $\sum_{i=1}^{m} \lambda_i \delta_{u_i}$: $\lambda_i > 0$, i = 1,..., m, and {u₁,..., u_m} ⊂ Sⁿ⁻¹ not contained in a closed hemisphere.

- ♦ $\mu = \sum_{i=1}^{m} \lambda_i \delta_{u_i}$: $\lambda_i > 0$, i = 1, ..., m, and $\{u_1, ..., u_m\} \subset S^{n-1}$ not contained in a closed hemisphere.
- $\diamond~G:[0,\infty) imes S^{n-1}
 ightarrow [0,\infty)$ is continuous satisfying

$$↔$$
 μ = $\sum_{i=1}^{m} \lambda_i \delta_{u_i}$: $\lambda_i > 0$, i = 1,..., m, and {u₁,..., u_m} ⊂ Sⁿ⁻¹ not contained in a closed hemisphere.

♦
$$G: [0,\infty) \times S^{n-1} \to [0,\infty)$$
 is continuous satisfying

◆
$$G_t > 0$$
 on $[0, \infty) \times S^{n-1}$,

◆ $tG_t(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $tG_t(t, u) = 0$ at t = 0 for $u \in S^{n-1}$.

 \int_{1}

↓ = ∑_{i=1}^m λ_iδ_{u_i}: λ_i > 0, i = 1,..., m, and {u₁,..., u_m} ⊂ Sⁿ⁻¹ not contained in a closed hemisphere.
 ↓
 G : [0,∞) × Sⁿ⁻¹ → [0,∞) is continuous satisfying
 ↓
 G_t > 0 on [0,∞) × Sⁿ⁻¹,
 ↓
 tG_t(t, u) is continuous on [0,∞) × Sⁿ⁻¹ where tG_t(t, u) = 0 at t = 0 for u ∈ Sⁿ⁻¹.
 ↓
 v : [0,∞) → [0,∞) is continuous satisfying

$$\int_{1}^{\infty} \frac{\psi(s)}{s} ds = \infty \text{ and } \lim_{t \to 0+} \psi(t)/t = 0.$$

Theorem

Then there exist a convex polytope $P \in \mathscr{K}^n_{(o)}$ and $\tau < 0$ such that

S

$$\mu = au \ \widetilde{\mathcal{C}}_{\mathcal{G},\psi}(\mathcal{P},\cdot) \hspace{10pt} ext{and} \hspace{10pt} \|h_{\mathcal{P}}\|_{\mu,arphi} = 1.$$

Theorem

Then there exist a convex polytope $P \in \mathscr{K}^n_{(o)}$ and $\tau < 0$ such that

S

$$\mu = au \ \widetilde{\mathcal{C}}_{\mathcal{G},\psi}(\mathcal{P},\cdot) \hspace{10pt} ext{and} \hspace{10pt} \|h_{\mathcal{P}}\|_{\mu,arphi} = 1.$$

$$\|h_{\mathcal{K}}\|_{\mu,arphi}:=\inf\left\{\lambda>0:rac{1}{arphi(1)\,\mu(S^{n-1})}\int_{S^{n-1}}arphi\left(rac{h_{\mathcal{K}}(u)}{\lambda}
ight)\,d\mu(u)\leq1
ight\}.$$

22 / 26

- $\diamond~~G:[0,\infty) imes S^{n-1}
 ightarrow [0,\infty)$ is continuous satisfying

- ♦ G: $[0, \infty) \times S^{n-1} \rightarrow [0, \infty)$ is continuous satisfying
 ♦ G_t > 0 on $[0, \infty) \times S^{n-1}$.

- $\diamond~~G:[0,\infty) imes S^{n-1}
 ightarrow [0,\infty)$ is continuous satisfying
 - ◆ $G_t > 0$ on $[0, \infty) \times S^{n-1}$,
 - ★ $tG_t(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $tG_t(t, u) = 0$ at t = 0 for $u \in S^{n-1}$.

- ♦ $G: [0,\infty) \times S^{n-1} \to [0,\infty)$ is continuous satisfying

$$\mathsf{G}_t > \mathsf{0}$$
 on $[0,\infty) imes S^{n-1}$,

★ $tG_t(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $tG_t(t, u) = 0$ at t = 0 for $u \in S^{n-1}$.

♦ $\psi : [0, \infty) \rightarrow [0, \infty)$ is continuous satisfying

$$\int_1^\infty rac{\psi(s)}{s}\,ds = \infty$$
 and $\lim_{t o 0+} \psi(t)/t = 0$

- ♦ $G: [0,\infty) \times S^{n-1} \to [0,\infty)$ is continuous satisfying

$${{old G}_t} > 0$$
 on $[0,\infty) imes {{\mathcal S}^{n-1}}$,

◆ $tG_t(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $tG_t(t, u) = 0$ at t = 0 for $u \in S^{n-1}$.

♦ $\psi : [0, \infty) \rightarrow [0, \infty)$ is continuous satisfying

$$\int_1^\infty rac{\psi(s)}{s}\,ds = \infty \;\; ext{and}\;\;\;\; \lim_{t o 0+} \psi(t)/t = 0.$$

Theorem

Under the conditions above, there exists a $K \in \mathscr{K}_o^n$ with $int K \neq \emptyset$ such that

$$(\psi(h_{\mathcal{K}}))\mu = \left(\int_{S^{n-1}} \psi(h_{\mathcal{K}}(u)) d\mu(u)\right) \frac{\widetilde{C}_{\mathcal{G}}(\mathcal{K},\cdot)}{\widetilde{C}_{\mathcal{G}}(\mathcal{K},S^{n-1})}$$

 \diamond Considering μ to be discrete has the following advantages: to transfer the optimization problem on functions into a multivariate optimization problem; and can obtain more information on the solutions must be polytopes, such as the origin lie in the interiors; etc.

- Considering μ to be discrete has the following advantages: to transfer the optimization problem on functions into a multivariate optimization problem; and can obtain more information on the solutions must be polytopes, such as the origin lie in the interiors; etc.
- ♦ $\psi = t^{p}$, $G = t^{q}$: p > 1, q < 0, our results recover the solution of Böröczky and Fodor's result.

- $\diamond~~G:[0,\infty) imes S^{n-1}
 ightarrow [0,\infty)$ is continuous satisfying

- ♦ G: $[0, \infty) \times S^{n-1} \rightarrow [0, \infty)$ is continuous satisfying
 ♦ G_t > 0 on $[0, \infty) \times S^{n-1}$,

- $\Rightarrow \mu$: a nonzero finite even Borel measure on S^{n-1} not concentrated on any closed hemisphere.
- ♦ $G: [0, \infty) \times S^{n-1} \to [0, \infty)$ is continuous satisfying

•
$$G_t > 0$$
 on $[0,\infty) imes S^{n-1}$

G_t > 0 on [0,∞) × Sⁿ⁻¹,
 G_t(t, u) = G_t(t, -u) for (t, u) ∈ (0,∞) × Sⁿ⁻¹

- $\diamond~G:[0,\infty) imes S^{n-1}
 ightarrow [0,\infty)$ is continuous satisfying
 - ◆ $G_t > 0$ on $[0, \infty) \times S^{n-1}$
 - ◆ $G_t(t, u) = G_t(t, -u)$ for $(t, u) \in (0, \infty) \times S^{n-1}$
 - ◆ $tG_t(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $tG_t(t, u) = 0$ at t = 0 for $u \in S^{n-1}$.

- $\diamond~G:[0,\infty) imes S^{n-1}
 ightarrow [0,\infty)$ is continuous satisfying

$${{{\it G}_t}> 0}$$
 on $[0,\infty) imes {{\it S}^{n-1}}$

•
$$G_t(t, u) = G_t(t, -u)$$
 for $(t, u) \in (0, \infty) \times S^{n-1}$

★ $tG_t(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $tG_t(t, u) = 0$ at t = 0 for $u \in S^{n-1}$.

♦ $\psi : [0, \infty) \rightarrow [0, \infty)$ is continuous satisfying

$$\int_1^\infty rac{\psi(s)}{s}\,ds = \infty$$
 and $\lim_{t o 0+} \psi(t)/t = 0$

- $\diamond~~G:[0,\infty) imes S^{n-1}
 ightarrow [0,\infty)$ is continuous satisfying

$$G_t > 0$$
 on $[0,\infty) \times S^{n-1}$

•
$$G_t(t,u) = G_t(t,-u)$$
 for $(t,u) \in (0,\infty) \times S^{n-1}$

◆ $tG_t(t, u)$ is continuous on $[0, \infty) \times S^{n-1}$ where $tG_t(t, u) = 0$ at t = 0 for $u \in S^{n-1}$.

♦ $\psi : [0, \infty) \rightarrow [0, \infty)$ is continuous satisfying

$$\int_1^\infty rac{\psi(s)}{s}\,ds = \infty$$
 and $\lim_{t o 0+} \psi(t)/t = 0.$

Theorem

Under the conditions above, there exists a $K \in \mathscr{K}^n_{(o)s}$ (symmetric convex bodies) with $int K \neq \emptyset$ such that

$$(\psi(h_{\mathcal{K}}))\mu = \left(\int_{S^{n-1}} \psi(h_{\mathcal{K}}(u)) d\mu(u)\right) \frac{\widetilde{C}_{G}(\mathcal{K},\cdot)}{\widetilde{C}_{G}(\mathcal{K},S^{n-1})}.$$

Thank you very much!!!