Constraint convex bodies with maximal affine surface area

(based on joint work with O. Giladi, H. Huang and C. Schütt)

BACKGROUND I

Let K be a convex body in \mathbb{R}^{n}

BACKGROUND I

Let K be a convex body in \mathbb{R}^{n}
L_{p}-affine surface area
$p \neq-n$,

$$
a s_{p}(K)=\int_{\partial K} \frac{\kappa(x)^{\frac{p}{n+p}}}{\langle x, N(x))\rangle^{\frac{n(p-1)}{n+p}}} d \mu_{K}(x)
$$

BACKGROUND I

Let K be a convex body in \mathbb{R}^{n}
L_{p}-affine surface area
$p \neq-n$,

$$
a s_{p}(K)=\int_{\partial K} \frac{\kappa(x)^{\frac{p}{n+p}}}{\langle x, N(x))\rangle^{\frac{n(p-1)}{n+p}}} d \mu_{K}(x)
$$

- affine (linear) invariance, affine isoperimetric inequality, upper- resp. lower-semicontinuity,

BACKGROUND I

Let K be a convex body in \mathbb{R}^{n}
L_{p}-affine surface area
$p \neq-n$,

$$
a s_{p}(K)=\int_{\partial K} \frac{\kappa(x)^{\frac{p}{n+p}}}{\langle x, N(x))\rangle^{\frac{n(p-1)}{n+p}}} d \mu_{K}(x)
$$

- affine (linear) invariance, affine isoperimetric inequality, upper- resp. lower-semicontinuity,

Question: Can we get continuous affine invariants?
$-\infty \leq p \leq \infty, p \neq-n$,
inner and outer maximal affine surface areas

$$
I S_{p}(K)=\sup _{C \subset K}\left(\operatorname{as} s_{p}(C)\right), \quad O S_{p}(K)=\sup _{C \supset K}(\operatorname{as}(C))
$$

$-\infty \leq p \leq \infty, p \neq-n$,
inner and outer maximal affine surface areas

$$
I S_{p}(K)=\sup _{C \subset K}\left(a s_{p}(C)\right), \quad O S_{p}(K)=\sup _{C \supset K}\left(a s_{p}(C)\right)
$$

inner and outer minimal affine surface areas

$$
\operatorname{is}_{p}(K)=\inf _{C \subset K}\left(a s_{p}(C)\right), \quad o s_{p}(K)=\inf _{C \supset K}\left(a s_{p}(C)\right)
$$

1. Not all relevant

1. Not all relevant

- $\quad i s_{p}(K)=0$ for all K, for all p

1. Not all relevant

- $\quad i s_{p}(K)=0$ for all K, for all p

For $0<p \leq \infty$ or $-\infty \leq p<-n$, we get for polytopes P,

$$
i s_{p}(K) \leq \inf _{P \subset K} a s_{p}(P)=0
$$

1. Not all relevant

- $\quad i s_{p}(K)=0$ for all K, for all p

For $0<p \leq \infty$ or $-\infty \leq p<-n$, we get for polytopes P,

$$
i s_{p}(K) \leq \inf _{P \subset K} a s_{p}(P)=0
$$

For $-n<p \leq 0$,

$$
i s_{p}(K) \leq \inf _{\varepsilon B_{2}^{n} \subset K}\left(a s_{p}\left(\varepsilon B_{2}^{n}\right)\right)=n\left|B_{2}^{n}\right| \inf _{\varepsilon} \varepsilon^{n \frac{n-p}{n+p}}=0
$$

1. Not all relevant

- $\quad i s_{p}(K)=0$ for all K, for all p

For $0<p \leq \infty$ or $-\infty \leq p<-n$, we get for polytopes P,

$$
i s_{p}(K) \leq \inf _{P \subset K} a s_{p}(P)=0
$$

For $-n<p \leq 0$,

$$
i s_{p}(K) \leq \inf _{\varepsilon B_{2}^{n} \subset K}\left(a s_{p}\left(\varepsilon B_{2}^{n}\right)\right)=n\left|B_{2}^{n}\right| \inf _{\varepsilon} \varepsilon^{n \frac{n-p}{n+p}}=0
$$

Similarly: the only interesting p-range is

$$
I S_{p}:[0, n] \quad O S_{p}:[n, \infty] \quad o s_{p}:(-n, 0]
$$

1. Not all relevant

- $\quad i s_{p}(K)=0$ for all K, for all p

For $0<p \leq \infty$ or $-\infty \leq p<-n$, we get for polytopes P,

$$
i s_{p}(K) \leq \inf _{P \subset K} a s_{p}(P)=0
$$

For $-n<p \leq 0$,

$$
i s_{p}(K) \leq \inf _{\varepsilon B_{2}^{n} \subset K}\left(a s_{p}\left(\varepsilon B_{2}^{n}\right)\right)=n\left|B_{2}^{n}\right| \inf _{\varepsilon} \varepsilon^{n \frac{n-p}{n+p}}=0
$$

Similarly: the only interesting p-range is

$$
I S_{p}:[0, n] \quad O S_{p}:[n, \infty] \quad o s_{p}:(-n, 0]
$$

$$
I S_{0}(K)=o s_{0}(K)=n|K|, \quad I S_{n}(K)=O S_{n}(K)=n\left|B_{2}^{n}\right|
$$

2. Properties

2. Properties

- Affine Invariance

2. Properties

- Affine Invariance
- Affine-isoperimetric inequalities

2. Properties

- Affine Invariance

Affine-isoperimetric inequalities

Lemma

- For $0 \leq p \leq n, K \rightarrow I S_{p}(K)$ is continuous in the Hausdorff metric
- For $n \leq p \leq \infty, K \rightarrow O S_{p}(K)$ is continuous in the Hausdorff metric
- For $-n \leq p \leq 0, K \rightarrow o s_{p}(K)$ is continuous in the Hausdorff metric

For the relevant p-ranges inner and outer maximal affine surface areas

$$
I S_{p}(K)=\sup _{C \subset K}\left(a s_{p}(C)\right)=
$$

For the relevant p-ranges inner and outer maximal affine surface areas

$$
I S_{p}(K)=\sup _{C \subset K}\left(a s_{p}(C)\right)=\max _{C \subset K}\left(a s_{p}(C)\right)=a s_{p}\left(K_{0}\right)
$$

For the relevant p-ranges inner and outer maximal affine surface areas

$$
\begin{aligned}
& I S_{p}(K)=\sup _{C \subset K}\left(a s_{p}(C)\right)=\max _{C \subset K}\left(a s_{p}(C)\right)=a s_{p}\left(K_{0}\right) \\
& O S_{p}(K)=\sup _{C \supset K}\left(a s_{p}(C)\right)=\max _{C \supset K}\left(a s_{p}(C)\right)=a s_{p}\left(K_{0}\right)
\end{aligned}
$$

outer minimal affine surface areas

$$
o s_{p}(K)=\inf _{C \supset K}\left(a s_{p}(C)\right)=\min _{C \supset K}\left(a s_{p}(C)\right)=a s_{p}\left(K_{0}\right)
$$

For the relevant p-ranges inner and outer maximal affine surface areas

$$
\begin{aligned}
& I S_{p}(K)=\sup _{C \subset K}\left(a s_{p}(C)\right)=\max _{C \subset K}\left(a s_{p}(C)\right)=a s_{p}\left(K_{0}\right) \\
& O S_{p}(K)=\sup _{C \supset K}\left(a s_{p}(C)\right)=\max _{C \supset K}\left(a s_{p}(C)\right)=a s_{p}\left(K_{0}\right)
\end{aligned}
$$

outer minimal affine surface areas

$$
o s_{p}(K)=\inf _{C \supset K}\left(a s_{p}(C)\right)=\min _{C \supset K}\left(a s_{p}(C)\right)=a s_{p}\left(K_{0}\right)
$$

What can be said about K_{0} ?

BACKGROUND II (The case $n=2$ and $p=1$)

BACKGROUND II (The case $n=2$ and $p=1$)

Theorem (Baranyi)
Let K be a convex body in \mathbb{R}^{2}. Then there is a unique convex body $K_{0} \subset K$ such that

$$
I S_{1}(K)=\max _{C \subset K, C \text { convex }} a s_{1}(C)=a s_{1}\left(K_{0}\right)
$$

BACKGROUND II (The case $n=2$ and $p=1$)

Theorem (Baranyi)
Let K be a convex body in \mathbb{R}^{2}. Then there is a unique convex body $K_{0} \subset K$ such that

$$
I S_{1}(K)=\max _{C \subset K, C \text { convex }} a s_{1}(C)=a s_{1}\left(K_{0}\right)
$$

1. K_{0} related to parabolic arcs

Let $\mathcal{P}_{N}(K)$ be the set of all convex polygones contained in K with vertices from the lattice

$$
\frac{1}{N} \mathbb{Z}^{2}
$$

Let $\mathcal{P}_{N}(K)$ be the set of all convex polygones contained in K with vertices from the lattice

$$
\frac{1}{N} \mathbb{Z}^{2}
$$

Question (Vershik): Is there a limit shape?

Let $\mathcal{P}_{N}(K)$ be the set of all convex polygones contained in K with vertices from the lattice

$$
\frac{1}{N} \mathbb{Z}^{2}
$$

Question (Vershik): Is there a limit shape?

Theorem (Baranyi)
For every convex body K in \mathbb{R}^{2} and every $\varepsilon>0$

$$
\lim _{N \rightarrow \infty} \frac{\left|\left\{P \in \mathcal{P}_{N}(K): d_{H}\left(P, K_{0}\right)<\varepsilon\right\}\right|}{\left|\mathcal{P}_{N}(K)\right|}=1
$$

Let $\mathcal{P}_{N}(K)$ be the set of all convex polygones contained in K with vertices from the lattice

$$
\frac{1}{N} \mathbb{Z}^{2}
$$

Question (Vershik): Is there a limit shape?
Theorem (Baranyi)
For every convex body K in \mathbb{R}^{2} and every $\varepsilon>0$

$$
\lim _{N \rightarrow \infty} \frac{\left|\left\{P \in \mathcal{P}_{N}(K): d_{H}\left(P, K_{0}\right)<\varepsilon\right\}\right|}{\left|\mathcal{P}_{N}(K)\right|}=1
$$

2. K_{0} is the limit shape of lattice polygones

Goal: Give estimates on the "size" of $I S_{p}(K), O S_{p}(K), o s_{p}(K)$ in all dimensions, for all relevant p

Goal: Give estimates on the "size" of $I S_{p}(K), O S_{p}(K), o s_{p}(K)$ in all dimensions, for all relevant p
isotropy constant L_{K}

$$
n L_{K}^{2}=\min \left\{\frac{1}{|T K|^{1+\frac{2}{n}}} \int_{a+T K}\|x\|^{2} d x: a \in \mathbb{R}^{n}, T \in G L(n)\right\}
$$

Goal: Give estimates on the "size" of $I S_{p}(K), O S_{p}(K), o s_{p}(K)$ in all dimensions, for all relevant p isotropy constant L_{K}

$$
n L_{K}^{2}=\min \left\{\frac{1}{|T K|^{1+\frac{2}{n}}} \int_{a+T K}\|x\|^{2} d x: a \in \mathbb{R}^{n}, T \in G L(n)\right\}
$$

Theorem (Giladi+Huang+Schütt+W)
There is a constant $c>0$ such that for all $n \in \mathbb{N}$, all $0 \leq p \leq n$ and all convex bodies $K \subseteq \mathbb{R}^{n}$,

$$
\frac{1}{n^{5 / 6}}\left(\frac{c}{L_{K}}\right)^{\frac{2 n p}{n+p}} \frac{I S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}} \leq \frac{I S_{p}(K)}{|K|^{\frac{n-p}{n+p}}} \leq \frac{I S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}}
$$

Goal: Give estimates on the "size" of $I S_{p}(K), O S_{p}(K)$, os (K) in all dimensions, for all relevant p isotropy constant L_{K}

$$
n L_{K}^{2}=\min \left\{\frac{1}{|T K|^{1+\frac{2}{n}}} \int_{a+T K}\|x\|^{2} d x: a \in \mathbb{R}^{n}, T \in G L(n)\right\}
$$

Theorem (Giladi+Huang+Schütt+W)

There is a constant $c>0$ such that for all $n \in \mathbb{N}$, all $0 \leq p \leq n$ and all convex bodies $K \subseteq \mathbb{R}^{n}$,

$$
\frac{1}{n^{5 / 6}}\left(\frac{c}{L_{K}}\right)^{\frac{2 n p}{n+p}} \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}(K)}{|K|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}}
$$

Equality holds trivially in the right inequality if $p=0, n$. If $p \neq 0, n$, equality holds in the right inequality iff K is a centered ellipsoid.

$$
\frac{1}{n^{5 / 6}}\left(\frac{c}{L_{K}}\right)^{\frac{2 n p}{n+p}} \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}(K)}{|K|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}}
$$

$$
\frac{1}{n^{5 / 6}}\left(\frac{c}{L_{K}}\right)^{\frac{2 n p}{n+p}} \frac{I S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}} \leq \frac{I S_{p}(K)}{|K|^{\frac{n-p}{n+p}}} \leq \frac{I S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}}
$$

$$
\frac{I S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}}=n\left|B_{2}^{n}\right|^{\frac{2 p}{n+p}} \sim \frac{c^{\frac{n p}{n+p}}}{n^{\frac{n(p-1)-p}{n+p}}}=c(n, p)
$$

$$
\frac{1}{n^{5 / 6}}\left(\frac{c}{L_{K}}\right)^{\frac{2 n p}{n+p}} \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}(K)}{|K|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left\lvert\, B_{2^{n}}^{n-\frac{n-p}{n+p}}\right.}
$$

$$
\frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n}{n+p}}}=n\left|B_{2}^{n}\right|^{\frac{2 p}{n+p}} \sim \frac{\frac{n+p}{n+p}}{n^{\frac{n(p-p)-1-p}{n+p}}}=c(n, p)
$$

$$
\begin{aligned}
& \frac{1}{n^{5 / 6}}\left(\frac{1}{L_{K}}\right)^{\frac{2 n p}{n+p}} c(n, p)|K|^{\frac{n-p}{n+p}} \\
& \quad \leq I S_{p}(K)=a S_{p}\left(K_{0}\right) \leq c(n, p)|K|^{\frac{n-p}{n+p}}
\end{aligned}
$$

$$
\frac{1}{n^{5 / 6}}\left(\frac{c}{L_{K}}\right)^{\frac{2 n p}{n+p}} \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}(K)}{|K|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left\lvert\, B_{2^{n}}^{n-\frac{n-p}{n+p}}\right.}
$$

$$
\frac{\mid S_{\rho}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n}{n+p}}}=n\left|B_{2}^{n}\right|^{\frac{2 p}{n+p}} \sim \frac{c^{\frac{n}{n+p}}}{n^{\frac{n(n-p)-1-p}{n+p}}}=c(n, p)
$$

$$
\begin{aligned}
& \frac{1}{n^{5 / 6}}\left(\frac{1}{L_{K}}\right)^{\frac{2 n p}{n+p}} c(n, p)|K|^{\frac{n-p}{n+p}} \\
& \leq I S_{p}(K)=a S_{p}\left(K_{0}\right) \leq c(n, p)|K|^{\frac{n-p}{n+p}}
\end{aligned}
$$

In particular for $p=1, c(n, 1)=c n^{\frac{1}{n}}$,

$$
\frac{c n^{\frac{1}{n}}}{n^{5 / 6}} \frac{1}{L_{K}}|K|^{\frac{n-1}{n+1}} \leq\left.\left|S_{1}(K)=a s_{1}\left(K_{0}\right) \leq c n^{\frac{1}{n}}\right| K\right|^{\frac{n-1}{n+1}}
$$

$$
\frac{1}{n^{5 / 6}}\left(\frac{c}{L_{K}}\right)^{\frac{2 n p}{n+p}} \frac{I S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}} \leq \frac{I S_{p}(K)}{|K|^{\frac{n-p}{n+p}}} \leq \frac{I S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}}
$$

$$
\frac{1}{n^{5 / 6}}\left(\frac{c}{L_{K}}\right)^{\frac{2 n p}{n+p}} \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}(K)}{|K|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left\lvert\, B_{2}^{n} \frac{n-p}{n+p}\right.}
$$

Proof of RHS: L_{p} affine isoperimetric inequality
(Lutwak, Hug, Deping Ye+W)

$$
a s_{p}(K) \leq a s_{p}\left(B_{2}^{n}\right) \frac{|K|^{\frac{n-p}{n+p}}}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}}
$$

with equality iff K is an ellipsoid

$$
\frac{1}{n^{5 / 6}}\left(\frac{c}{L_{K}}\right)^{\frac{2 n p}{n+p}} \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}(K)}{|K|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}}
$$

Proof of RHS: L_{p} affine isoperimetric inequality
(Lutwak, Hug, Deping Ye+W)

$$
a s_{p}(K) \leq a s_{p}\left(B_{2}^{n}\right) \frac{|K|^{\frac{n-p}{n+p}}}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}}
$$

with equality iff K is an ellipsoid

$$
I S_{p}(K)=\max _{C \subset K} a s_{p}(C) \leq \frac{a s_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}} \max _{C \subset K}|C|^{\frac{n-p}{n+p}}
$$

$$
\frac{1}{n^{5 / 6}}\left(\frac{c}{L_{K}}\right)^{\frac{2 n p}{n+p}} \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}(K)}{|K|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}}
$$

$$
\frac{1}{n^{5 / 6}}\left(\frac{c}{L_{K}}\right)^{\frac{2 n p}{n+p}} \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}} \leq \frac{\mid S_{p}(K)}{|K|^{\frac{n-p}{n-p}}} \leq \frac{\mid S_{p}\left(B_{2}^{n}\right)}{\left|B_{2}^{n}\right|^{\frac{n-p}{n+p}}}
$$

Proof of LHS: We use

Thin Shell Theorem (Paouris; Guédon+E.Milman)
There are constants $0<c_{1}<c_{2}<1$ such that for all convex bodies K in \mathbb{R}^{n} in isotropic position

$$
\left|\left\{x \in K: c_{1} L_{K} \sqrt{n} \leq\|x\| \leq c_{2} L_{K} \sqrt{n}\right\}\right| \geq \frac{1}{2}
$$

