# Volume of intersections of convex bodies with their symmetric images and efficient coverings 

Tomasz Tkocz

Carnegie Mellon University

joint work with
Han Huang Boaz Slomka Beatrice-Helen Vritsiou

10 February 2020

## Levi (1955), Hadwiger (1957), Gohberg-Markus (1960)

 covering/illumination conjectureLet $K$ be a convex body in $\mathbb{R}^{n}$.

$\triangle$
How many translates of int $K$ are needed to cover $K$ ?

$\triangle$
How many external light sources are needed to illuminate $\partial K$ ?

$$
N(K)=I(K)
$$

CONJECTURE. $N(K) \leq 2^{n}$ with equality iff $K$ is a cube (up to an affine map).
$N(K) \leq 2^{n} ?$
*Many partial results (but open for $n \geq 3$ )
$\star$ Asymptotic bounds: Rogers-Shephard-Zong

$$
N(K) \leq \frac{|K-K|}{|K|} \vartheta(K)
$$

$$
\begin{aligned}
\vartheta(K) & =\text { covering density of } \mathbb{R}^{n} \text { by translates of } K \\
& \leq n \log n+\log \log n+5 n+1
\end{aligned}
$$

If $K$ is symmetric

$$
N(K) \leq 2^{n}(n \log n+\log \log n+5 n+1)
$$

In general

$$
N(K) \leq\binom{ 2 n}{n}(n \log n+\log \log n+5 n+1)=\frac{1+o(1)}{\sqrt{\pi}} 4^{n} \sqrt{n} \log n
$$

$N(K) \leq 4^{n} \sqrt{n} \log n$
Our contribution
THM. $N(K) \leq C \cdot 4^{n} e^{-c \sqrt{n}}$

Artstein-Avidan-Slomka, Naszódi:

$$
N(K) \leq C . \underbrace{\inf _{x \in \mathbb{R}^{n}} \frac{|K|}{|K \cap(x-K)|}}_{\text {Kövner-Besicovitch measure of assymmetry }} \cdot 2^{n} n \log n
$$

THM. If $\operatorname{bar}(K)=0$, then $\frac{|K|}{|K \cap-K|} \leq 2^{n} e^{-c \sqrt{n}}$.

$$
\delta(K)=\inf _{x \in \mathbb{R}^{n}} \frac{|K|}{|K \cap(x-K)|} \quad \delta_{0}(K)=\frac{|K|}{|K \cap(2 \operatorname{bar}(K)-K)|}
$$

V. Milman-Pajor: $\delta_{0}(K) \leq 2^{n}$

THM. $\delta_{0}(K) \leq 2^{n} e^{-c \sqrt{n}}$.
CONJ. $\delta_{0}(K) \leq \delta_{0}($ simplex $)=\delta($ simplex $)=(1+o(1)) \frac{e \sqrt{3}}{2}\left(\frac{e}{2}\right)^{n}$.
Warm-up: $\delta(K) \leq 2^{n}$

- $|K|=1, f=\mathbf{1}_{K}$
- $\|f \star f\|_{\infty}=\sup _{x} \int \mathbf{1}_{K}(y) \mathbf{1}_{K}(x-y) \mathrm{d} y=\sup _{x}|K \cap(x-K)|$
- $|2 K|\|f \star f\|_{\infty} \geq \int_{2 K} f \star f=\int_{\mathbb{R}^{n}} f \star f=|K|^{2}$

Goal: $\delta_{0}(K) \leq 2^{n} e^{-c \sqrt{n}}$

Different proxy: entropy of a random vector $X$ with density $f$

$$
\mathcal{S}(X)=-\int_{\mathbb{R}^{n}} f \log f=\mathbb{E}[-\log f(X)]
$$

LM 1. If $X, Y$ i.i.d. $\operatorname{Unif}(K)$, then

$$
\log \delta_{0}(K) \leq \mathcal{S}(X+Y)-\mathcal{S}(X)
$$

Proof.

- $\operatorname{bar}(\mathrm{K})=0$, i.e. $\mathbb{E} X=0 ;|K|=1$, i.e. $\mathcal{S}(X)=\log |K|=0$
- Want: $\log \frac{1}{|K \cap-K|} \leq \mathcal{S}(X+Y)$
- $-\log f \star f$ is convex (Prékopa-Leindler)
- $\mathcal{S}(X+Y)=\mathbb{E}[-\log (f \star f)(X+Y)] \geq$
$-\log (f \star f)(\mathbb{E}(X+Y))=-\log (f \star f)(0)=-\log |K \cap-K|$

LM 1. $\log \delta_{0}(K) \leq \mathcal{S}(X+Y)-\mathcal{S}(X)$
LM 2. $\mathcal{S}(X) \leq \mathbb{E}[-\log h(X)]+\log \left(\int h\right), h: \mathbb{R}^{n} \rightarrow[0,+\infty)$
COR. $\delta_{0}(K) \leq \mathbb{E}[-\log h(X+Y)]+\log \left(\frac{1}{|K|} \int_{2 K} h\right)$
RMK. $h=1$ gives $\delta_{0}(K) \leq \log \left(2^{n}\right)$
How to improve?

- Let $\mathbb{E} X=0, \operatorname{Cov}(X)=l d(X$ is isotropic $)$
- Optimal $h=$ density of $X+Y$ which is "almost" Gaussian
- $h(x)=e^{-\lambda|x|^{2} / 4}, \lambda>0$
- $\mathbb{E}[-\log h(X+Y)]=\frac{\lambda}{4} \mathbb{E}|X+Y|^{2}=\frac{\lambda n}{2}$
- $\log \left(\frac{1}{|K|} \int_{2 K} h\right)=\log \left(\frac{2^{n}}{|K|} \int_{K} h(2 x)\right)=\log \left(2^{n}\right)+\log \mathbb{E} e^{-\lambda|X|^{2}}$
- $\log \delta_{0}(K) \leq \log \left(2^{n}\right)+\frac{\lambda n}{2}+\log \mathbb{E} e^{-\lambda|X|^{2}}$
$\log \delta_{0}(K) \leq \log \left(2^{n}\right)+\frac{\lambda n}{2}+\log \mathbb{E} e^{-\lambda|X|^{2}}$
LM 3. $\frac{\lambda n}{2}+\log \mathbb{E} e^{-\lambda|X|^{2}} \leq \log \left(C e^{-c \sqrt{n}}\right)$ for $\lambda=\frac{c^{\prime}}{\sqrt{n}}$
Proof. Thin-shell (Guédon and E. Milman):

$$
\mathbb{P}(||X|-\sqrt{n}|>t \sqrt{n}) \leq C e^{-c t^{3} \cdot \sqrt{n}}, \quad t \in(0,1)
$$

so

$$
\begin{aligned}
\mathbb{E} e^{-\lambda|X|^{2}} & =\mathbb{E} e^{-\lambda|X|^{2}} \mathbf{1}_{\{|X|<(1-t) \sqrt{n}\}}+\mathbb{E} e^{-\lambda|X|^{2}} \mathbf{1}_{\{|X| \geq(1-t) \sqrt{n}\}} \\
& \leq \mathbb{P}(|X|-\sqrt{n}<-t \sqrt{n})+e^{-\lambda(1-t)^{2} n} \\
& \leq C \underbrace{e^{-c t^{3} \cdot \sqrt{n}}}_{A}+\underbrace{e^{-\lambda(1-t)^{2} n}}_{B}
\end{aligned}
$$

Choose $\lambda$ such that $A=B$, i.e. $\lambda=\frac{c t^{3}}{(1-t)^{2}} \frac{1}{\sqrt{n}}$.
Choose $t=\frac{1}{2}$ such that $\frac{\lambda n}{2}=\frac{c t^{3}}{2(1-t)^{2}} \sqrt{n}$ is absorbed.

## FINAL REMARKS

- If we knew $\exists \lambda_{0}>0 \quad \frac{\lambda_{0} n}{2}+\log \mathbb{E} e^{-\lambda_{0}|X|^{2}} \leq \log \left(C e^{-c n}\right)$, then $\sup _{K} L_{K}=O\left((\log n)^{2}\right)$
- If $K$ is $\psi_{\alpha}$ with constant $b_{\alpha}$, then $\delta_{0}(K) \leq C \cdot 2^{n} e^{-c b_{\alpha}^{-\alpha} n^{\alpha / 2}}$
- Concentration due to Arias-De-Reyna, Ball, Villa and $h(x)=e^{-\lambda\|x\|_{K}}$ give exponential improvements for $K$ with positive modulus of convexity

$\triangle$$\max \{\mathcal{S}(X+Y)-\mathcal{S}(X): X, Y$ i.i.d. log-concave r.v.s $\}=$ ?

## THANK YOU

