The convex hull of random points on the boundary of a simple polytope

Matthias Reitzner Carsten Schütt Elisabeth Werner

Mathematisches Seminar
CAU Kiel

Dept. Mathematics
CWRU

February 2020

Notions and Definitions

Let K be a convex body in \mathbb{R}^{n}.

Notions and Definitions

Let K be a convex body in \mathbb{R}^{n}.
Choose N random points x_{1}, \ldots, x_{N} in K, and denote by

$$
K_{N}=\left[x_{1}, \ldots, x_{N}\right]
$$

the convex hull of these points. We call K_{N} a random polytope of K.

Notions and Definitions

Let K be a convex body in \mathbb{R}^{n}.
Choose N random points x_{1}, \ldots, x_{N} in K, and denote by

$$
K_{N}=\left[x_{1}, \ldots, x_{N}\right]
$$

the convex hull of these points. We call K_{N} a random polytope of K.
We are interested in

Notions and Definitions

Let K be a convex body in \mathbb{R}^{n}.
Choose N random points x_{1}, \ldots, x_{N} in K, and denote by

$$
K_{N}=\left[x_{1}, \ldots, x_{N}\right]
$$

the convex hull of these points. We call K_{N} a random polytope of K.
We are interested in

- the expected number of vertices $\mathbb{E} f_{0}\left(K_{N}\right)$,

Notions and Definitions

Let K be a convex body in \mathbb{R}^{n}.
Choose N random points x_{1}, \ldots, x_{N} in K, and denote by

$$
K_{N}=\left[x_{1}, \ldots, x_{N}\right]
$$

the convex hull of these points. We call K_{N} a random polytope of K.
We are interested in

- the expected number of vertices $\mathbb{E} f_{0}\left(K_{N}\right)$,
- the expected number of facets $\mathbb{E} f_{n-1}\left(K_{N}\right)$,

Notions and Definitions

Let K be a convex body in \mathbb{R}^{n}.
Choose N random points x_{1}, \ldots, x_{N} in K, and denote by

$$
K_{N}=\left[x_{1}, \ldots, x_{N}\right]
$$

the convex hull of these points. We call K_{N} a random polytope of K.
We are interested in

- the expected number of vertices $\mathbb{E} f_{0}\left(K_{N}\right)$,
- the expected number of facets $\mathbb{E} f_{n-1}\left(K_{N}\right)$,
- the expectation of the volume difference

$$
\operatorname{vol}_{n}(K)-\mathbb{E} \operatorname{vol}_{n}\left(K_{N}\right)
$$

of K and K_{N}.

Notions and Definitions

Since explicit results for fixed N cannot be expected we investigate the asymptotics as $N \rightarrow \infty$.

Introduction

For all convex bodies K in \mathbb{R}^{n}

$$
c(n) \lim _{N \rightarrow \infty} \frac{\operatorname{vol}_{n}(K)-\mathbb{E}(K, N)}{\left(\frac{v o l_{n}(K)}{N}\right)^{\frac{2}{n+1}}}=\int_{\partial K} \kappa(x)^{\frac{1}{n+1}} d \mu(x)
$$

where $\kappa(x)$ denotes the generalized Gauß-Kronecker curvature.

Introduction

For all convex bodies K in \mathbb{R}^{n}

$$
c(n) \lim _{N \rightarrow \infty} \frac{\operatorname{vol}_{n}(K)-\mathbb{E}(K, N)}{\left(\frac{v o l_{n}(K)}{N}\right)^{\frac{2}{n+1}}}=\int_{\partial K} \kappa(x)^{\frac{1}{n+1}} d \mu(x)
$$

where $\kappa(x)$ denotes the generalized Gauß-Kronecker curvature.
For a polytope P the formula gives 0 , since the curvature of a polytope is 0 almost everywhere.

Introduction

- This formula was first shown by Renyi and Sulanke in dimension 2 and for C^{2}-boundary.

Introduction

- This formula was first shown by Renyi and Sulanke in dimension 2 and for C^{2}-boundary.
- Wieacker showed the formula for the Euclidean ball.

Introduction

- This formula was first shown by Renyi and Sulanke in dimension 2 and for C^{2}-boundary.
- Wieacker showed the formula for the Euclidean ball.
- Bárány showed this formula for convex bodies with C^{3} boundary and everywhere positive curvature.

Introduction

- This formula was first shown by Renyi and Sulanke in dimension 2 and for C^{2}-boundary.
- Wieacker showed the formula for the Euclidean ball.
- Bárány showed this formula for convex bodies with C^{3} boundary and everywhere positive curvature.
- S. showed this formula in full generality.

Introduction

- This formula was first shown by Renyi and Sulanke in dimension 2 and for C^{2}-boundary.
- Wieacker showed the formula for the Euclidean ball.
- Bárány showed this formula for convex bodies with C^{3} boundary and everywhere positive curvature.
- S. showed this formula in full generality.
- Böröczky and Hug corrected a mistake in the proof of S..

Introduction

- This formula was first shown by Renyi and Sulanke in dimension 2 and for C^{2}-boundary.
- Wieacker showed the formula for the Euclidean ball.
- Bárány showed this formula for convex bodies with C^{3} boundary and everywhere positive curvature.
- S. showed this formula in full generality.
- Böröczky and Hug corrected a mistake in the proof of S..
- The integral

$$
\int_{\partial K} \kappa(x)^{\frac{1}{n+1}} d \mu(x)
$$

is called affine surface area.

Introduction

Let P be a polytope in \mathbb{R}^{n}. A n-tuple

$$
\left(f_{0}(P), f_{1}(P), \ldots, f_{n-1}(P)\right)
$$

Introduction

Let P be a polytope in \mathbb{R}^{n}. A n-tuple

$$
\left(f_{0}(P), f_{1}(P), \ldots, f_{n-1}(P)\right)
$$

of k-dimensional facets of P

Introduction

Let P be a polytope in \mathbb{R}^{n}. A n-tuple

$$
\left(f_{0}(P), f_{1}(P), \ldots, f_{n-1}(P)\right)
$$

of k-dimensional facets of P with

$$
f_{0}(P) \subset f_{1}(P) \subset \cdots \subset f_{n-1}(P)
$$

is called a flag of P.

Introduction

Let P be a polytope in \mathbb{R}^{n}. A n-tuple

$$
\left(f_{0}(P), f_{1}(P), \ldots, f_{n-1}(P)\right)
$$

of k-dimensional facets of P with

$$
f_{0}(P) \subset f_{1}(P) \subset \cdots \subset f_{n-1}(P)
$$

is called a flag of P. The number of all flags of P is denoted by flag (P).

Introduction

We have for polytopes P in \mathbb{R}^{n}

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{vol}_{n}(P)-\mathbb{E}(P, N)}{\frac{1}{N}(\ln N)^{n-1}}=\frac{\operatorname{flag}(P) \operatorname{vol}_{n}(P)}{(n+1)^{n-1}(n-1)!}
$$

Introduction

We have for polytopes P in \mathbb{R}^{n}

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{vol}_{n}(P)-\mathbb{E}(P, N)}{\frac{1}{N}(\ln N)^{n-1}}=\frac{\operatorname{flag}(P) \operatorname{vol}_{n}(P)}{(n+1)^{n-1}(n-1)!}
$$

- This formula was shown in dimension 2 by Renyi and Sulanke.

Introduction

We have for polytopes P in \mathbb{R}^{n}

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{vol}_{n}(P)-\mathbb{E}(P, N)}{\frac{1}{N}(\ln N)^{n-1}}=\frac{\operatorname{flag}(P) \operatorname{vol}_{n}(P)}{(n+1)^{n-1}(n-1)!}
$$

- This formula was shown in dimension 2 by Renyi and Sulanke.
- This formula was shown by Barany and Buchta in arbitrary dimension.

Introduction

We have for polytopes P in \mathbb{R}^{n}

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{vol}_{n}(P)-\mathbb{E}(P, N)}{\frac{1}{N}(\ln N)^{n-1}}=\frac{\operatorname{flag}(P) \operatorname{vol}_{n}(P)}{(n+1)^{n-1}(n-1)!}
$$

- This formula was shown in dimension 2 by Renyi and Sulanke.
- This formula was shown by Barany and Buchta in arbitrary dimension.
- The phenomenon that flag (P) shows up in such formulae were first shown for the floating body by S..

Introduction

Barany and Larman: Let K be a convex body. Then there is N_{0} such that for all $N \geq N_{0}$

$$
\left.\left.\begin{array}{rl}
c_{1}\left(\operatorname{vol}_{n}(K)-\operatorname{vol}_{n}\left(K_{\frac{1}{N}} \operatorname{vol}_{n}(K)\right.\right.
\end{array}\right)\right) \leq \operatorname{vol}_{n}(K)-\mathbb{E}(K, N) .
$$

Introduction

Let K be a convex body in \mathbb{R}^{n} and let $f: \partial K \rightarrow \mathbb{R}_{+}$be a continuous, positive function with $\int_{\partial K} f(x) d \mu_{\partial K}(x)=1$ where $\mu_{\partial K}$ is the surface measure on ∂K. Let \mathbb{P}_{f} be the probability measure on ∂K given by $\mathbb{P}_{f}(x)=f(x) d \mu_{\partial K}(x)$.

Introduction

Let K be a convex body in \mathbb{R}^{n} and let $f: \partial K \rightarrow \mathbb{R}_{+}$be a continuous, positive function with $\int_{\partial K} f(x) d \mu_{\partial K}(x)=1$ where $\mu_{\partial K}$ is the surface measure on ∂K. Let \mathbb{P}_{f} be the probability measure on ∂K given by $\mathbb{P}_{f}(x)=f(x) d \mu_{\partial K}(x)$.

Choose N random points x_{1}, \ldots, x_{N} on the boundary ∂K of K, and denote by $K_{N}=\left[x_{1}, \ldots, x_{N}\right]$ the convex hull of these points.

Introduction

Let κ be the (generalized) Gauß-Kronecker curvature and $\mathbb{E}(f, N)$ the expected volume of the convex hull of N points chosen randomly on ∂K with respect to \mathbb{P}_{f}. Then, under some regularity conditions on the boundary of K

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{vol}_{n}(K)-\mathbb{E}(f, N)}{\left(\frac{1}{N}\right)^{\frac{2}{n-1}}}=c_{n} \int_{\partial K} \frac{\kappa(x)^{\frac{1}{n-1}}}{f(x)^{\frac{2}{n-1}}} d \mu_{\partial K}(x)
$$

where c_{n} is a constant depending on the dimension n only.

Introduction

Let κ be the (generalized) Gauß-Kronecker curvature and $\mathbb{E}(f, N)$ the expected volume of the convex hull of N points chosen randomly on ∂K with respect to \mathbb{P}_{f}. Then, under some regularity conditions on the boundary of K

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{vol}_{n}(K)-\mathbb{E}(f, N)}{\left(\frac{1}{N}\right)^{\frac{2}{n-1}}}=c_{n} \int_{\partial K} \frac{\kappa(x)^{\frac{1}{n-1}}}{f(x)^{\frac{2}{n-1}}} d \mu_{\partial K}(x)
$$

where c_{n} is a constant depending on the dimension n only.

- This formula was shown by S. and Werner for convex bodies in which a small Euclidean ball rolls freely and which rolls freely in a big Euclidean ball.

Introduction

Let κ be the (generalized) Gauß-Kronecker curvature and $\mathbb{E}(f, N)$ the expected volume of the convex hull of N points chosen randomly on ∂K with respect to \mathbb{P}_{f}. Then, under some regularity conditions on the boundary of K

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{vol}_{n}(K)-\mathbb{E}(f, N)}{\left(\frac{1}{N}\right)^{\frac{2}{n-1}}}=c_{n} \int_{\partial K} \frac{\kappa(x)^{\frac{1}{n-1}}}{f(x)^{\frac{2}{n-1}}} d \mu_{\partial K}(x)
$$

where c_{n} is a constant depending on the dimension n only.

- This formula was shown by S. and Werner for convex bodies in which a small Euclidean ball rolls freely and which rolls freely in a big Euclidean ball.
- At the same time Reitzner showed this formula for convex bodies with C_{+}^{2}-boundary.

Introduction

The general results for the number of ℓ-dimensional faces $f_{\ell}\left(K_{N}\right)$ are due to Wieacker, Bárány and Buchta, and Reitzner: if K is a smooth convex body and $\ell \in\{0, \ldots, n-1\}$, then

$$
\begin{equation*}
\mathbb{E} f_{\ell}\left(K_{N}\right)=c(n, \ell) \text { as }(K) N^{\frac{n-1}{n+1}}(1+o(1)), \tag{1}
\end{equation*}
$$

and if P is a polytope, then

$$
\begin{equation*}
\mathbb{E} f_{\ell}\left(P_{N}\right)=c(n, \ell) \text { flag }(P)(\ln N)^{n-1}(1+o(1)) \tag{2}
\end{equation*}
$$

Our main results

We studied the question how the formulae would look like if we choose N random points on the boundary of a polytope?

Our main results

We studied the question how the formulae would look like if we choose N random points on the boundary of a polytope?

Theorem (REitzner, S. And Werner)

Choose N random points uniformly on the boundary of a simple polytope P. For the expected number of facets of the random polytope P_{N}, we have

$$
\left.\mathbb{E}\left(f_{n-1}\left(P_{N}\right)\right)=c_{n, n-1} f_{0}(P)\right)(\ln N)^{n-2}\left(1+O\left((\ln N)^{-1}\right)\right.
$$

with some $c_{n, n-1}>0$.

Our main results

We studied the question how the formulae would look like if we choose N random points on the boundary of a polytope?

Theorem (Reitzner, S. And Werner)

Choose N random points uniformly on the boundary of a simple polytope P. For the expected number of facets of the random polytope P_{N}, we have

$$
\left.\mathbb{E}\left(f_{n-1}\left(P_{N}\right)\right)=c_{n, n-1} f_{0}(P)\right)(\ln N)^{n-2}\left(1+O\left((\ln N)^{-1}\right)\right.
$$

with some $c_{n, n-1}>0$.

Our proof shows that the crucial contribution to the number of faces of P_{N} comes from those faces that are not contained in the boundary of P and whose vertices are from exactly two facets of P.

Our main results

Theorem (Reitzner, S. And Werner)

For the expected volume difference between a simple polytope $P \subset \mathbb{R}^{n}$ and the random polytope P_{N} with vertices chosen from the boundary of P, we have

$$
\operatorname{vol}_{n}(P)-\mathbb{E} \operatorname{vol}_{n}\left(P_{N}\right)=c_{n, P} N^{-\frac{n}{n-1}}\left(1+O\left(N^{-\frac{1}{(n-1)(n-2)}}\right)\right)
$$

Our main results

Theorem (Reitzner, S. And Werner)

For the expected volume difference between a simple polytope $P \subset \mathbb{R}^{n}$ and the random polytope P_{N} with vertices chosen from the boundary of P, we have

$$
\operatorname{vol}_{n}(P)-\mathbb{E} \operatorname{vol}_{n}\left(P_{N}\right)=c_{n, P} N^{-\frac{n}{n-1}}\left(1+O\left(N^{-\frac{1}{(n-1)(n-2)}}\right)\right)
$$

We expect for arbitrary polytopes P

$$
\left.\operatorname{vol}_{n}(P)-\mathbb{E} \operatorname{vol}_{n}\left(P_{N}\right)\right)=c_{n} \frac{\operatorname{flag}^{(P) \operatorname{vol}_{n}(P)}}{N^{\frac{n}{n-1}}}\left(1+O\left(N^{-\frac{1}{(n-1)(n-2)}}\right)\right)
$$

Proof.

Those facets of P_{N} that are contained in a facet of P do not contribute to the difference volume

$$
\operatorname{vol}_{n}(P)-\operatorname{vol}_{n}\left(P_{N}\right)
$$

Proof.

Those facets of P_{N} that are contained in a facet of P do not contribute to the difference volume

$$
\operatorname{vol}_{n}(P)-\operatorname{vol}_{n}\left(P_{N}\right)
$$

With probability 1 a random polytope has the following property:

Proof.

Those facets of P_{N} that are contained in a facet of P do not contribute to the difference volume

$$
\operatorname{vol}_{n}(P)-\operatorname{vol}_{n}\left(P_{N}\right)
$$

With probability 1 a random polytope has the following property: For each n-1-dimensional facet F of P_{N} that is not contained in a facet of P there exists a unique vertex v of P, such that the outer unit normal vector u_{F} of F is contained in the normal cone $\mathcal{N}(v, P)$.

Proof.

Those facets of P_{N} that are contained in a facet of P do not contribute to the difference volume

$$
\operatorname{vol}_{n}(P)-\operatorname{vol}_{n}\left(P_{N}\right)
$$

With probability 1 a random polytope has the following property:
For each n-1-dimensional facet F of P_{N} that is not contained in a facet of P there exists a unique vertex v of P, such that the outer unit normal vector u_{F} of F is contained in the normal cone $\mathcal{N}(v, P)$. All sets $[v, F]$ are contained in $P \backslash P_{N}$ and their pairwise intersections are nullsets.

We put

$$
\begin{equation*}
A_{N}=\bigcup_{v \in \mathcal{F}_{0}(P)} \bigcup_{\substack{N_{F} \in \mathcal{N}(v, P) \\ F \nsubseteq P P}}[F, v] \quad \text { and } \quad D_{N}=P \backslash\left(P_{N} \cup A_{N}\right) \tag{3}
\end{equation*}
$$

where D_{N} is the subset of $P \backslash P_{N}$ not covered by one of the simplices [F, v].

We put

$$
A_{N}=\bigcup_{v \in \mathcal{F}_{0}(P)} \bigcup_{\substack{N_{F} \in \mathcal{N}(v, P) \\ F \nsubseteq \nexists P}}[F, v] \quad \text { and } \quad D_{N}=P \backslash\left(P_{N} \cup A_{N}\right)
$$

where D_{N} is the subset of $P \backslash P_{N}$ not covered by one of the simplices $[F, v]$. It follows

$$
\operatorname{vol}_{n}\left(A_{N}\right)=\sum_{F \nsubseteq \partial P} \operatorname{vol}_{n}([v(F), F])=\frac{1}{n} \sum_{F \nsubseteq \partial P} \operatorname{vol}_{n-1}(F) d(F, v(F))
$$

where $d(F, v(F))$ is the distance of the vertex $v(F)$ to the hyperplane spanned by F.

$$
\text { Let } P_{N}=\left[x_{1}, \ldots, x_{N}\right] \text {. Then }
$$

$$
\begin{array}{r}
\operatorname{vol}_{n}\left(A_{N}\right)=\frac{1}{n} \sum_{i_{1}, \ldots, i_{n}=1}^{N} \operatorname{vol}_{n-1}\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]\right) d\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right], v\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]\right)\right) \\
\chi\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right] \text { is a facet of } P_{N}\right) \chi\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right] \nsubseteq \partial P\right)
\end{array}
$$

where $v\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]\right)$ is the vertex whose normal cone contains the normal to the hyperplane spanned by x_{1}, \ldots, x_{n}.

Let $P_{N}=\left[x_{1}, \ldots, x_{N}\right]$. Then

$$
\begin{array}{r}
\operatorname{vol}_{n}\left(A_{N}\right)=\frac{1}{n} \sum_{i_{1}, \ldots, i_{n}=1}^{N} \operatorname{vol}_{n-1}\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]\right) d\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right], v\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]\right)\right) \\
\chi\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right] \text { is a facet of } P_{N}\right) \chi\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right] \nsubseteq \partial P\right)
\end{array}
$$

where $v\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]\right)$ is the vertex whose normal cone contains the normal to the hyperplane spanned by x_{1}, \ldots, x_{n}. Therefore

$$
\begin{aligned}
& \quad \operatorname{vol}_{n}(P)-\operatorname{vol}_{n}\left(P_{N}\right)=\operatorname{vol}_{n}\left(A_{N}\right)+\operatorname{vol}_{n}\left(D_{N}\right) \\
& =\frac{1}{n} \sum_{i_{i_{1}}, \ldots, i_{n}=1}^{N} \operatorname{vol}_{n-1}\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]\right) d\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right], v\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]\right)\right) \\
& \quad \chi\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right] \text { is a facet of } P_{N}\right) \chi\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right] \nsubseteq \partial P\right)+\operatorname{vol}_{n}\left(D_{N}\right) .
\end{aligned}
$$

Since $\operatorname{vol}_{n-1}(\partial P)=1$

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{vol}_{n}(P)-\operatorname{vol}_{n}\left(P_{N}\right)\right) \\
= & \frac{1}{n} \int_{\partial P} \ldots \int_{\partial P} \sum_{i_{1}, \ldots, i_{n}=1}^{N} \operatorname{vol}_{n-1}\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]\right) d\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right], v\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]\right)\right) \\
& \chi\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right] \text { is a facet of } P_{N}\right) \chi\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right] \nsubseteq \partial P\right)+\operatorname{vol}_{n}\left(D_{N}\right) d x_{1} \cdots d x_{N}
\end{aligned}
$$

Since $\operatorname{vol}_{n-1}(\partial P)=1$

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{vol}_{n}(P)-\operatorname{vol}_{n}\left(P_{N}\right)\right) \\
= & \frac{1}{n} \int_{\partial P} \ldots \int_{\partial P} \sum_{i_{1}, \ldots, i_{n}=1}^{N} \operatorname{vol}_{n-1}\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]\right) d\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right], v\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right]\right)\right) \\
& \chi\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right] \text { is a facet of } P_{N}\right) \chi\left(\left[x_{i_{1}}, \ldots, x_{i_{n}}\right] \nsubseteq \partial P\right)+\operatorname{vol}_{n}\left(D_{N}\right) d x_{1} \cdots d x_{N} \\
= & \frac{1}{n}\binom{N}{n} \int_{\partial P} \ldots \int_{\partial P} \operatorname{vol}_{n-1}\left(\left[x_{1}, \ldots, x_{n}\right]\right) d\left(\left[x_{1}, \ldots, x_{n}\right], v\left(\left[x_{1}, \ldots, x_{n}\right]\right)\right) \\
& \chi\left(\left[x_{1}, \ldots, x_{n}\right] \text { is a facet of } P_{N}\right) \chi\left(\left[x_{1}, \ldots, x_{n}\right] \nsubseteq \partial P\right)+\operatorname{vol}_{n}\left(D_{N}\right) d x_{1} \cdots d x_{N} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \int_{\partial P} \cdots \int_{\partial P} \chi\left(\left[x_{1}, \ldots, x_{n}\right] \text { is a facet of } P_{N}\right) d x_{n+1} \cdots d x_{N} \\
& =\mathbb{P}\left(\left[x_{1}, \ldots, x_{n}\right] \text { is a facet of } P_{N}\right) \\
& =\operatorname{vol}_{n-1}\left(\partial P \cap H^{-}\right)^{N-n}+\operatorname{vol}_{n-1}\left(\partial P \cap H^{+}\right)^{N-n}
\end{aligned}
$$

where H is the hyperplane spanned by x_{1}, \ldots, x_{n}.

We have

$$
\begin{aligned}
& \int_{\partial P} \cdots \int_{\partial P} \chi\left(\left[x_{1}, \ldots, x_{n}\right] \text { is a facet of } P_{N}\right) d x_{n+1} \cdots d x_{N} \\
& =\mathbb{P}\left(\left[x_{1}, \ldots, x_{n}\right] \text { is a facet of } P_{N}\right) \\
& =\operatorname{vol}_{n-1}\left(\partial P \cap H^{-}\right)^{N-n}+\operatorname{vol}_{n-1}\left(\partial P \cap H^{+}\right)^{N-n}
\end{aligned}
$$

where H is the hyperplane spanned by x_{1}, \ldots, x_{n}.
We are choosing H^{-}to be the halfspace with H^{-}is the halfspace with $\operatorname{vol}_{n}\left(P \cap H^{-}\right) \geq \operatorname{vol}_{n}\left(P \cap H^{+}\right)$.

Therefore

$$
\begin{aligned}
& \quad \mathbb{E}\left(\operatorname{vol}_{n}(P)-\operatorname{vol}_{n}\left(P_{N}\right)\right) \\
& =\frac{1}{n}\binom{N}{n} \int_{\partial P} \ldots \int_{\partial P}\left(\operatorname{vol}_{n-1}\left(\partial P \cap H^{-}\left(x_{1}, \ldots, x_{n}\right)\right)^{N-n}\right. \\
& \left.\quad+\operatorname{vol}_{n-1}\left(\partial P \cap H^{+}\left(x_{1}, \ldots, x_{n}\right)\right)^{N-n}\right) \operatorname{vol}_{n-1}\left(\left[x_{1}, \ldots, x_{n}\right]\right) \\
& \quad d\left(\left[x_{1}, \ldots, x_{n}\right], v\left(x_{1}, \ldots, x_{n}\right)\right) \chi\left(\left[x_{1}, \ldots, x_{n}\right] \nsubseteq \partial P\right) d x_{1} \cdots d x_{n}+O\left(2^{-N}\right) \\
& \quad+\int_{\partial P} \ldots \int_{\partial P} \operatorname{vol}_{n}\left(D_{N}\right) d x_{1} \cdots d x_{N}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{vol}_{n}(P)-\operatorname{vol}_{n}\left(P_{N}\right)\right) \\
&=\frac{1}{n}\binom{N}{n} \int_{\partial P} \ldots \int_{\partial P}\left(\operatorname{vol}_{n-1}\left(\partial P \cap H^{-}\left(x_{1}, \ldots, x_{n}\right)\right)^{N-n}\right. \\
&\left.+\operatorname{vol}_{n-1}\left(\partial P \cap H^{+}\left(x_{1}, \ldots, x_{n}\right)\right)^{N-n}\right) \operatorname{vol}_{n-1}\left(\left[x_{1}, \ldots, x_{n}\right]\right) \\
& d\left(\left[x_{1}, \ldots, x_{n}\right], v\left(x_{1}, \ldots, x_{n}\right)\right) \chi\left(\left[x_{1}, \ldots, x_{n}\right] \nsubseteq \partial P\right) d x_{1} \cdots d x_{n}+O\left(2^{-N}\right) \\
&+\int_{\partial P} \ldots \int_{\partial P} \operatorname{vol}_{n}\left(D_{N}\right) d x_{1} \cdots d x_{N} \\
&=\frac{1}{n}\binom{N}{n} \int_{\partial P} \ldots \int_{\partial P}\left(\operatorname{vol}_{n-1}\left(\partial P \cap H^{-}\left(x_{1}, \ldots, x_{n}\right)\right)^{N-n} \operatorname{vol}_{n-1}\left(\left[x_{1}, \ldots, x_{n}\right]\right)\right. \\
& d\left(\left[x_{1}, \ldots, x_{n}\right], v\left(x_{1}, \ldots, x_{n}\right)\right) \chi\left(\left[x_{1}, \ldots, x_{n}\right] \nsubseteq \partial P\right) d x_{1} \cdots d x_{n}+O\left(2^{-N}\right) \\
&+\int_{\partial P} \ldots \int_{\partial P} \operatorname{vol}_{n}\left(D_{N}\right) d x_{1} \cdots d x_{N}
\end{aligned}
$$

where $v\left(x_{1}, \ldots, x_{n}\right)$ is the vertex such that the normal to the hyperplane spanned by x_{1}, \ldots, x_{n} is an element of the normal cone of v.

Lemma (Zähle)

Let ∂K be a rectifiable manifold and let $g\left(x_{1}, \ldots, x_{n}\right)$ be a continuous function. Then there is a constant β such that

$$
\int_{\partial K} \cdots \int_{\partial K} \chi\left(x_{1}, \ldots, x_{n} \text { in general position }\right) g\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

Lemma (Zähle)

Let ∂K be a rectifiable manifold and let $g\left(x_{1}, \ldots, x_{n}\right)$ be a continuous function. Then there is a constant β such that

$$
\begin{array}{r}
\int_{\partial K} \cdots \int_{\partial K} \chi\left(x_{1}, \ldots, x_{n} \text { in general position }\right) g\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n} \\
=\frac{(n-1)!}{\beta} \int_{S^{n-1}} \int_{\mathbb{R}} \int_{\partial K \cap H} \cdots \int_{\partial K \cap H} g\left(x_{1}, \ldots, x_{n}\right) \\
\quad \chi_{n-1}\left(\left[x_{1}, \ldots, x_{n}\right]\right) \prod_{j=1}^{n} J\left(T_{x_{j}}, H\right)^{-1} d x_{1} \cdots d x_{n} d h d u
\end{array}
$$

with $d x, d u, d h$ denoting integration with respect to the Hausdorff measure on the respective range of integration, and $J\left(T_{x_{j}}, H\right)$ is the sine of the angle between H and $T_{x_{j}}$.

Now we apply the Lemma of Zähle

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{vol}_{n}(P)-\operatorname{vol}_{n}\left(P_{N}\right)\right) \\
& =\frac{1}{n}\binom{N}{n} \frac{(n-1)!}{\beta} \int_{S^{n-1}} \int_{\mathbb{R}} \int_{\partial P \cap H(u, h)} \cdots \int_{\partial P \cap H(u, h)}\left(\operatorname{vol}_{n-1}\left(\partial P \cap H^{-}(u, h)\right)^{N-n}\right. \\
& \operatorname{vol}_{n-1}\left(\left[x_{1}, \ldots, x_{n}\right]\right)^{2} d(H(u, h), v(u)) \prod_{j=1}^{n} J\left(T_{x_{j}}, H(u, h)\right)^{-1} \\
& \quad \chi\left(\left[x_{1}, \ldots, x_{n}\right] \nsubseteq \partial P\right) d x_{1} \cdots d x_{n} d h d u \\
& \quad+\int_{\partial P} \cdots \int_{\partial P} \operatorname{vol}_{n}\left(D_{N}\right) d x_{1} \cdots d x_{N}+O\left(2^{-N}\right),
\end{aligned}
$$

where $v(u)$ is the unique vertex with $u \in \mathcal{N}(v(u), P)$.

Up to nullsets the normal cones $\mathcal{N}(v, P), v \in \mathcal{F}_{0}(P)$ are disjoint

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{vol}_{n}(P)-\operatorname{vol}_{n}\left(P_{N}\right)\right) \\
&= \frac{1}{n}\binom{N}{n} \frac{(n-1)!}{\beta} \sum_{v \in \mathcal{F}_{0}(P)} \int_{S^{n-1} \cap-\mathcal{N}(v, P)} \int_{\mathbb{R}} \int_{\partial P \cap H(u, h)} \cdots \int_{\partial P \cap H(u, h)} \\
& \operatorname{vol}_{n-1}\left(\partial P \cap H^{-}(u, h)\right)^{N-n} \operatorname{vol}_{n-1}\left(\left[x_{1}, \ldots, x_{n}\right]\right)^{2} d(H(u, h), v) \\
& \prod_{j=1}^{n} J\left(T_{x_{j}}, H(u, h)\right)^{-1} \chi\left(\left[x_{1}, \ldots, x_{n}\right] \nsubseteq \partial P\right) d x_{1} \cdots d x_{n} d h d u \\
&+\int_{\partial P} \cdots \int_{\partial P} \operatorname{vol}_{n}\left(D_{N}\right) d x_{1} \cdots d x_{N}+O\left(2^{-N}\right) .
\end{aligned}
$$

Now we remove the assumption $\operatorname{vol}_{n-1}(\partial P)=1$.

Then we get

$$
\begin{aligned}
& \frac{1}{n}\binom{N}{n} \frac{(n-1)!}{\beta} \operatorname{vol}_{n-1}(\partial P)^{-2-\frac{n(n-2)}{n-1}} \\
& \sum_{w \in \mathcal{F}_{0}(P)} \int_{S^{n-1} \cap-\mathcal{N}(w, P)} \int_{\mathbb{R}} \int_{\partial P \cap H(u, h)} \cdots \int_{\partial P \cap H(u, h)} \\
& \left(\frac{\operatorname{vol}_{n-1}\left(\partial P \cap H^{-}(u, h)\right)}{\operatorname{vol}_{n-1}(\partial P)}\right)^{N-n} \operatorname{vol}_{n-1}\left(\left[y_{1}, \ldots, y_{n}\right]\right)^{2} d(H(u, k), w) \\
& \quad \prod_{j=1}^{n} J\left(T_{x_{j}}, H(u, h)\right)^{-1} \chi\left(\left[y_{1}, \ldots, y_{n}\right] \nsubseteq \partial P\right) d y_{1} \cdots d y_{n} d k d u \\
& \quad+\int_{\partial P} \cdots \int_{\partial P} \operatorname{vol}_{n}\left(D_{N}\right) d y_{1} \cdots d y_{N}+O\left(2^{-N}\right) .
\end{aligned}
$$

