No good dimension reduction in the trace class norm

Gideon Schechtman

BIRS, February 2020

Based on a joint result

with Assaf Naor and Gilles Pisier

Gideon Schechtman No good dimension reduction in the trace class norm

- A E N

No good dimension reduction in the trace class norm

Gideon Schechtman

BIRS, February 2020

Based on a joint result

with Assaf Naor and Gilles Pisier

Gideon Schechtman No good dimension reduction in the trace class norm

M = (M, d) a metric space. $X = (X, \|\cdot\|)$ a normed space. We

say that *M* embeds into *X* with distortion *C* if there is a $f: M \to X$ such that

 $d(x,y) \le ||x-y|| \le Cd(x,y), \text{ for all } x, y \in M$

The best *C* is denoted by $C_X(M)$.

We are interested in $k_n^C(X)$ - The smallest k such that for all $S \subset X$ with |S| = n there is a subspace $Y \subset X$ of dimension k such that $C_Y(S) \leq C$.

For most of this talk think of C = 2.

イロト 不得 とくほ とくほ とうほ

M = (M, d) a metric space. $X = (X, \|\cdot\|)$ a normed space. We

say that *M* embeds into *X* with distortion *C* if there is a $f: M \to X$ such that

 $d(x,y) \le ||x-y|| \le Cd(x,y)$, for all $x, y \in M$

The best *C* is denoted by $C_X(M)$.

We are interested in $k_n^C(X)$ - The smallest k such that for all $S \subset X$ with |S| = n there is a subspace $Y \subset X$ of dimension k such that $C_Y(S) \leq C$.

For most of this talk think of C = 2.

M = (M, d) a metric space. $X = (X, \|\cdot\|)$ a normed space. We

say that *M* embeds into *X* with distortion *C* if there is a $f: M \to X$ such that

 $d(x,y) \le ||x-y|| \le Cd(x,y)$, for all $x, y \in M$

The best *C* is denoted by $C_X(M)$.

We are interested in $k_n^C(X)$ - The smallest k such that for all $S \subset X$ with |S| = n there is a subspace $Y \subset X$ of dimension k such that $C_Y(S) \leq C$.

For most of this talk think of C = 2.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

M = (M, d) a metric space. $X = (X, \|\cdot\|)$ a normed space. We

say that *M* embeds into *X* with distortion *C* if there is a $f: M \to X$ such that

 $d(x,y) \le ||x-y|| \le Cd(x,y)$, for all $x, y \in M$

The best *C* is denoted by $C_X(M)$.

We are interested in $k_n^C(X)$ - The smallest k such that for all $S \subset X$ with |S| = n there is a subspace $Y \subset X$ of dimension k such that $C_Y(S) \leq C$.

For most of this talk think of C = 2.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

• $X = \ell_2$: Johnson–Lindenstrauss (84): $k_n^2(\ell_2) = O(\log n)$.

(J–S and Larsen –Nelson (2017): $k_n^{1+\epsilon}(\ell_2) \approx \log n/\epsilon^2$, as $\epsilon \to 0$.)

• Johnson–Naor (2009): There is another non-classical space (2-convexified Tsirelson space) for which we have $k_n^2(X) = O(\log n)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• $X = \ell_2$: Johnson–Lindenstrauss (84): $k_n^2(\ell_2) = O(\log n)$.

(J–S and Larsen –Nelson (2017): $k_n^{1+\epsilon}(\ell_2) \approx \log n/\epsilon^2$, as $\epsilon \to 0$.)

• Johnson–Naor (2009): There is another non-classical space (2-convexified Tsirelson space) for which we have $k_n^2(X) = O(\log n)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• $X = \ell_2$: Johnson–Lindenstrauss (84): $k_n^2(\ell_2) = O(\log n)$.

(J–S and Larsen –Nelson (2017): $k_n^{1+\epsilon}(\ell_2) \approx \log n/\epsilon^2$, as $\epsilon \to 0$.)

• Johnson–Naor (2009): There is another non-classical space (2-convexified Tsirelson space) for which we have $k_n^2(X) = O(\log n)$.

• $X = \ell_2$: Johnson–Lindenstrauss (84): $k_n^2(\ell_2) = O(\log n)$.

(J–S and Larsen –Nelson (2017): $k_n^{1+\epsilon}(\ell_2) \approx \log n/\epsilon^2$, as $\epsilon \to 0.$)

• Johnson–Naor (2009): There is another non-classical space (2-convexified Tsirelson space) for which we have $k_n^2(X) = O(\log n)$.

• $X = \ell_2$: Johnson–Lindenstrauss (84): $k_n^2(\ell_2) = O(\log n)$.

(J–S and Larsen –Nelson (2017): $k_n^{1+\epsilon}(\ell_2) \approx \log n/\epsilon^2$, as $\epsilon \to 0.$)

• Johnson–Naor (2009): There is another non-classical space (2-convexified Tsirelson space) for which we have $k_n^2(X) = O(\log n)$.

On the negative side:

• Matoušek (96): For all *n* and *C* there is an *n*-point metric space *M* such that if *M* embeds into a normed space *Y* with distortion *C*, then dim $Y \ge n^{\alpha/C}$. ($\alpha > 0$ a universal constant). So

 $k_n^C(\ell_\infty) \geq n^{lpha/C}.$

(Also, JLS (87): $k_n^C(\ell_\infty) \le n^{O(1/C)}$.)

• Brinkman–Charikar (2003): For some universal $\alpha > 0$, $k_n^2(\ell_1) \ge n^{\alpha}$.

(Best known bounds:

$$n^{\alpha/C^2} \leq k_n^C(\ell_1) \leq O(n/c).$$

On the negative side:

• Matoušek (96): For all *n* and *C* there is an *n*-point metric space *M* such that if *M* embeds into a normed space *Y* with distortion *C*, then dim $Y \ge n^{\alpha/C}$. ($\alpha > 0$ a universal constant). So

 $k_n^C(\ell_\infty) \geq n^{\alpha/C}.$

(Also, JLS (87): $k_n^C(\ell_\infty) \le n^{O(1/C)}$.)

• Brinkman–Charikar (2003): For some universal $\alpha > 0$, $k_n^2(\ell_1) \ge n^{\alpha}$.

(Best known bounds:

$$n^{\alpha/C^2} \leq k_n^C(\ell_1) \leq O(n/c).$$

On the negative side:

• Matoušek (96): For all *n* and *C* there is an *n*-point metric space *M* such that if *M* embeds into a normed space *Y* with distortion *C*, then dim $Y \ge n^{\alpha/C}$. ($\alpha > 0$ a universal constant). So

$$k_n^C(\ell_\infty) \geq n^{lpha/C}.$$

(Also, JLS (87):
$$k_n^C(\ell_\infty) \le n^{O(1/C)}$$
.)

• Brinkman–Charikar (2003): For some universal $\alpha > 0$, $k_n^2(\ell_1) \ge n^{\alpha}$.

(Best known bounds:

$$n^{\alpha/C^2} \leq k_n^C(\ell_1) \leq O(n/c).$$

On the negative side:

• Matoušek (96): For all *n* and *C* there is an *n*-point metric space *M* such that if *M* embeds into a normed space *Y* with distortion *C*, then dim $Y \ge n^{\alpha/C}$. ($\alpha > 0$ a universal constant). So

$$k_n^C(\ell_\infty) \ge n^{lpha/C}.$$

(Also, JLS (87): $k_n^C(\ell_{\infty}) \le n^{O(1/C)}$.)

• Brinkman–Charikar (2003): For some universal $\alpha > 0$, $k_n^2(\ell_1) \ge n^{\alpha}$.

(Best known bounds:

$$n^{\alpha/C^2} \leq k_n^C(\ell_1) \leq O(n/c).$$

On the negative side:

• Matoušek (96): For all *n* and *C* there is an *n*-point metric space *M* such that if *M* embeds into a normed space *Y* with distortion *C*, then dim $Y \ge n^{\alpha/C}$. ($\alpha > 0$ a universal constant). So

$$k_n^C(\ell_\infty) \geq n^{lpha/C}.$$

(Also, JLS (87): $k_n^C(\ell_{\infty}) \le n^{O(1/C)}$.)

• Brinkman–Charikar (2003): For some universal $\alpha > 0$, $k_n^2(\ell_1) \ge n^{\alpha}$.

(Best known bounds:

$$n^{\alpha/C^2} \leq k_n^C(\ell_1) \leq O(n/c).$$

The trace class

The purpose of our result and this lecture is to add one more such example: The trace class (AKA Schatten–von-Neumann 1, Nuclear norm).

Given a linear operator $T: \ell_2 \rightarrow \ell_2$ define

$$||T||_{S_p} = (\operatorname{trace}(T^*T)^{p/2})^{1/p} = (\sum (\sigma_i(T))^p)^{1/p}$$

where $\sigma_i(T)$ are the singular values of *T*.

 $\|T\|_{S_{\infty}} = \max \sigma_i(T) = \text{operator norm},$

 $\|T\|_{S_2} = Hilbert-Schmidt norm,$

 $||T||_{S_1} =$ Trace class or Nuclear norm.

(個) (日) (日) (日)

The trace class

The purpose of our result and this lecture is to add one more such example: The trace class (AKA Schatten–von-Neumann 1, Nuclear norm).

Given a linear operator $T: \ell_2 \to \ell_2$ define

$$||T||_{S_p} = (\operatorname{trace}(T^*T)^{p/2})^{1/p} = (\sum (\sigma_i(T))^p)^{1/p}$$

where $\sigma_i(T)$ are the singular values of *T*.

 $\|T\|_{\mathcal{S}_{\infty}} = \max \sigma_i(T) = \text{operator norm},$

 $\|T\|_{S_2} = \text{Hilbert-Schmidt norm},$

 $||T||_{S_1} =$ Trace class or Nuclear norm.

< 🗇 🕨 🔺

ヨト イヨト ヨー わへで

The trace class

The purpose of our result and this lecture is to add one more such example: The trace class (AKA Schatten–von-Neumann 1, Nuclear norm).

Given a linear operator $T: \ell_2 \to \ell_2$ define

$$||T||_{S_p} = (\operatorname{trace}(T^*T)^{p/2})^{1/p} = (\sum (\sigma_i(T))^p)^{1/p}$$

where $\sigma_i(T)$ are the singular values of *T*.

$$\|T\|_{\mathcal{S}_{\infty}} = \max \sigma_i(T) = \text{operator norm},$$

$$\|T\|_{S_2} = Hilbert-Schmidt norm,$$

 $||T||_{S_1}$ = Trace class or Nuclear norm.

ヨト イヨト ヨー わえゆ

Theorem

(Naor, Pisier, S. Just appeared online in DCG)

$$k_n^C(S_1) \geq n^{\alpha/C^2}.$$

 $(\alpha > 0 \text{ universal.})$

Meaning: For all *n* there are *n* points in S_1 such that if *Y* is a subspace of S_1 of dimension *k* into which these *n* points embed with distortion *C* then $k \ge n^{\alpha/C^2}$. Note that ℓ_1 embeds with distortion 1 into S_1 (as the set of diagonal matrices). The bad sets we use are the same as those used by Brinkman and Charikar - the diamond graphs. (So our theorem is a strengthening of the Brinkman–Charikar result.)

イロト イポト イヨト イヨト

Theorem

(Naor, Pisier, S. Just appeared online in DCG)

 $k_n^C(S_1) \ge n^{\alpha/C^2}.$

 $(\alpha > 0 \text{ universal.})$

Meaning: For all *n* there are *n* points in S_1 such that if *Y* is a subspace of S_1 of dimension *k* into which these *n* points embed with distortion *C* then $k \ge n^{\alpha/C^2}$.

Note that ℓ_1 embeds with distortion 1 into S_1 (as the set of diagonal matrices). The bad sets we use are the same as those used by Brinkman and Charikar - the diamond graphs. (So our theorem is a strengthening of the Brinkman–Charikar result.)

ヘロト 人間 ト ヘヨト ヘヨト

Theorem

(Naor, Pisier, S. Just appeared online in DCG)

 $k_n^C(S_1) \geq n^{\alpha/C^2}.$

 $(\alpha > 0 \text{ universal.})$

Meaning: For all *n* there are *n* points in S_1 such that if *Y* is a subspace of S_1 of dimension *k* into which these *n* points embed with distortion *C* then $k \ge n^{\alpha/C^2}$. Note that ℓ_1 embeds with distortion 1 into S_1 (as the set of diagonal matrices). The bad sets we use are the same as those used by Brinkman and Charikar - the diamond graphs. (So our theorem is a strengthening of the Brinkman–Charikar result.)

ヘロト 人間 ト ヘヨト ヘヨト

Theorem

(Naor, Pisier, S. Just appeared online in DCG)

 $k_n^C(S_1) \geq n^{\alpha/C^2}.$

 $(\alpha > 0 \text{ universal.})$

Meaning: For all *n* there are *n* points in S_1 such that if *Y* is a subspace of S_1 of dimension *k* into which these *n* points embed with distortion *C* then $k \ge n^{\alpha/C^2}$. Note that ℓ_1 embeds with distortion 1 into S_1 (as the set of diagonal matrices). The bad sets we use are the same as those used by Brinkman and Charikar - the diamond graphs. (So our theorem is a strengthening of the Brinkman–Charikar result.)

ヘロト ヘアト ヘビト ヘビト

Theorem

(Naor, Pisier, S. Just appeared online in DCG)

 $k_n^C(S_1) \geq n^{\alpha/C^2}.$

 $(\alpha > 0 \text{ universal.})$

Meaning: For all *n* there are *n* points in S_1 such that if *Y* is a subspace of S_1 of dimension *k* into which these *n* points embed with distortion *C* then $k \ge n^{\alpha/C^2}$. Note that ℓ_1 embeds with distortion 1 into S_1 (as the set of diagonal matrices). The bad sets we use are the same as those used by Brinkman and Charikar - the diamond graphs. (So our theorem is a strengthening of the Brinkman–Charikar result.)

ヘロト ヘアト ヘビト ヘビト

Diamond

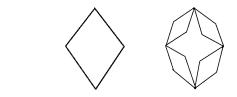


Figure: Diamonds D_0, D_1, D_2

イロン イロン イヨン イヨン

ъ

• D_n "doesn't well embed" in S_p for p > 1. (With some precise quantitative estimates).

• A k dimensional subspace of S_1 is close to a natural subspace of S_p and in particular "well embeds" in S_p . (Again with a precise quantitative estimate).

The proof of the first • is very similar to a the one for ℓ_1 and uses the estimates of the uniform convexity modulus of S_p , $1 (which are the same as for <math>\ell_p$, 1).

・ロト ・ 理 ト ・ ヨ ト ・

• D_n "doesn't well embed" in S_p for p > 1. (With some precise quantitative estimates).

• A k dimensional subspace of S_1 is close to a natural subspace of S_p and in particular "well embeds" in S_p . (Again with a precise quantitative estimate).

The proof of the first • is very similar to a the one for ℓ_1 and uses the estimates of the uniform convexity modulus of S_p , $1 (which are the same as for <math>\ell_p$, 1).

・ロト ・ 理 ト ・ ヨ ト ・

• D_n "doesn't well embed" in S_p for p > 1. (With some precise quantitative estimates).

• A *k* dimensional subspace of S_1 is close to a natural subspace of S_p and in particular "well embeds" in S_p . (Again with a precise quantitative estimate).

The proof of the first • is very similar to a the one for ℓ_1 and uses the estimates of the uniform convexity modulus of S_p , $1 (which are the same as for <math>\ell_p$, 1).

<ロ> <四> <四> <四> <三</td>

• D_n "doesn't well embed" in S_p for p > 1. (With some precise quantitative estimates).

• A *k* dimensional subspace of S_1 is close to a natural subspace of S_p and in particular "well embeds" in S_p . (Again with a precise quantitative estimate).

The proof of the first • is very similar to a the one for ℓ_1 and uses the estimates of the uniform convexity modulus of S_p , $1 (which are the same as for <math>\ell_p$, 1).

ヘロン 人間 とくほ とくほ とう

The uniform convexity modulus of a normed space X is the function

$$\delta_X(\epsilon) = \inf\{1 - \|\frac{x+y}{2}\|; \|x\|, \|y\| \le 1, \|x-y\| \ge \epsilon\}.$$

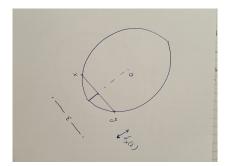


Figure: $\delta_X(\epsilon)$

Gideon Schechtman No good dimension reduction in the trace class norm

э

프 🖌 🛪 프 🕨

The uniform convexity modulus of a normed space X is the function

$$\delta_X(\epsilon) = \inf\{1 - \|\frac{x+y}{2}\|; \|x\|, \|y\| \le 1, \|x-y\| \ge \epsilon\}.$$

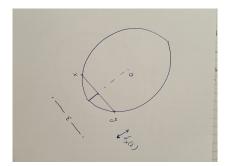


Figure: $\delta_X(\epsilon)$

э

э

Lemma

 $f: D_1 :\rightarrow X$,

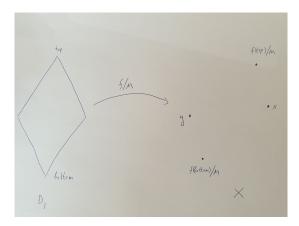
$$d(x,y) \leq \|f(x) - f(y)\| \leq Md(x,y).$$

Then,

$$2 \le ||f(top) - f(bottom)|| \le 2M(1 - \delta(2/M)).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

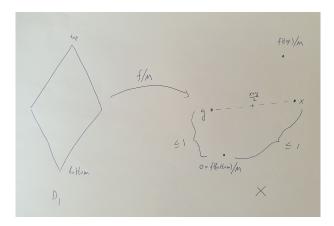
Proof:



イロン イロン イヨン イヨン

æ

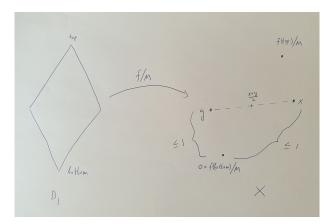
Proof:



イロン イロン イヨン イヨン

æ

Proof:

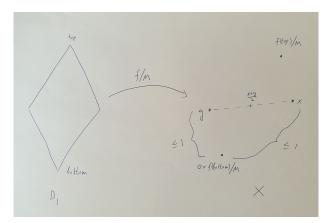


$\|x - y\| \ge 2/M$ so $\|\frac{x+y}{2}\| \le 1 - \delta(2/M)$. Similarly, $\|\frac{x+y}{2} - f(top)/M\| \le 1 - \delta(2/M)$ so $\|f(bottom)/M - f(top)/M\| \le 2(1 - \delta(2/M))$, as in the set of $\|f(bottom)/M - f(top)/M\| \le 2(1 - \delta(2/M))$.

Gideon Schechtman

No good dimension reduction in the trace class norm

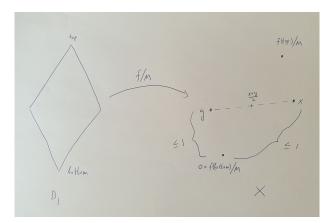
Proof:



 $||x - y|| \ge 2/M$ so $||\frac{x+y}{2}|| \le 1 - \delta(2/M)$. Similarly, $||\frac{x+y}{2} - f(top)/M|| \le 1 - \delta(2/M)$ so $||f(bottom)/M - f(top)/M|| \le 2(1 - \delta(2/M))$

uniform convexity

Proof:



 $\begin{aligned} \|x - y\| &\geq 2/M \text{ so } \|\frac{x + y}{2}\| \leq 1 - \delta(2/M).\\ \text{Similarly, } \|\frac{x + y}{2} - f(top)/M\| \leq 1 - \delta(2/M)\\ \text{so } \|f(bottom)/M - f(top)/M\| \leq 2(1 - \delta(2/M)). \end{aligned}$

Corollary

Let M_n be the least M such that there is $f : D_n \to X$ with

$$d(x,y) \leq \|f(x) - f(y)\| \leq Md(x,y).$$

Then

$$M_{n-1} \leq M_n(1 - \delta_X(2/M_n)).$$

From this one gets a lower bound on M_n in terms of δ_X .

$$\delta_{\ell_p}(\epsilon), \ \delta_{\mathcal{S}_p}(\epsilon) \geq c(p-1)\epsilon^2, \ 1$$

From this one gets, for $X = \ell_p, S_p$

$$M_n \geq (c(p-1)n)^{1/2}.$$

Which is what we meant by " D_n doesn't well embed in S_p ".

Corollary

Let M_n be the least M such that there is $f : D_n \to X$ with

$$d(x,y) \leq \|f(x) - f(y)\| \leq Md(x,y).$$

Then

$$M_{n-1} \leq M_n(1 - \delta_X(2/M_n)).$$

From this one gets a lower bound on M_n in terms of δ_X .

$$\delta_{\ell_p}(\epsilon), \ \delta_{S_p}(\epsilon) \ge c(p-1)\epsilon^2, \ 1$$

From this one gets, for $X = \ell_p$, S_p

$$M_n \geq (c(p-1)n)^{1/2}.$$

Which is what we meant by " D_n doesn't well embed in S_p "

Corollary

Let M_n be the least M such that there is $f : D_n \to X$ with

$$d(x,y) \leq \|f(x) - f(y)\| \leq Md(x,y).$$

Then

$$M_{n-1} \leq M_n(1 - \delta_X(2/M_n)).$$

From this one gets a lower bound on M_n in terms of δ_X .

$$\delta_{\ell_p}(\epsilon), \ \delta_{\mathcal{S}_p}(\epsilon) \geq c(p-1)\epsilon^2, \ \ 1$$

From this one gets, for $X = \ell_p, S_p$

$$M_n \geq (c(p-1)n)^{1/2}.$$

Which is what we meant by " D_n doesn't well embed in S_p "

Corollary

Let M_n be the least M such that there is $f : D_n \to X$ with

$$d(x,y) \leq \|f(x) - f(y)\| \leq Md(x,y).$$

Then

$$M_{n-1} \leq M_n(1 - \delta_X(2/M_n)).$$

From this one gets a lower bound on M_n in terms of δ_X .

$$\delta_{\ell_p}(\epsilon), \ \delta_{\mathcal{S}_p}(\epsilon) \geq c(p-1)\epsilon^2, \ \ 1$$

From this one gets, for $X = \ell_{\rho}, S_{\rho}$

$$M_n \geq (c(p-1)n)^{1/2}$$

Which is what we meant by " D_n doesn't well embed in S_p ".

A side issue:

It follows from the discussion above that the sequence $\{D_i\}$ do not embed with a uniform distortion in any uniformly convex normed space (and also not in any space isomorphic to a uniform convex space)

Johnson and I (2009): This characterize spaces isomorphic to uniformly convex spaces.

A side issue:

It follows from the discussion above that the sequence $\{D_i\}$ do not embed with a uniform distortion in any uniformly convex normed space (and also not in any space isomorphic to a uniform convex space)

Johnson and I (2009): This characterize spaces isomorphic to uniformly convex spaces.

A side issue:

It follows from the discussion above that the sequence $\{D_i\}$ do not embed with a uniform distortion in any uniformly convex normed space (and also not in any space isomorphic to a uniform convex space)

Johnson and I (2009): This characterize spaces isomorphic to uniformly convex spaces.

We now deal with the second •:

• A *k*-dimensional subspace of S_1 (resp. ℓ_1) "well embeds" in S_p (resp. ℓ_p).

Here there is a difference between the cases of ℓ_p and S_p . For ℓ_p a k-dimensional subspace of ℓ_1 embeds in $\ell_1^{\bar{k}}$ with \bar{k} almost linear in k (polynomial dependence is enough for us), and thus embeds with distortion $\bar{k}^{1-\frac{1}{p}}$ in $\ell_p^{\bar{k}}$.

We now deal with the second •:

• A *k*-dimensional subspace of S_1 (resp. ℓ_1) "well embeds" in S_p (resp. ℓ_p).

Here there is a difference between the cases of ℓ_p and S_p . For ℓ_p a k-dimensional subspace of ℓ_1 embeds in $\ell_1^{\bar{k}}$ with \bar{k} almost linear in *k* (polynomial dependence is enough for us), and thus embeds with distortion $\bar{k}^{1-\frac{1}{p}}$ in $\ell_p^{\bar{k}}$.

We now deal with the second •:

• A *k*-dimensional subspace of S_1 (resp. ℓ_1) "well embeds" in S_p (resp. ℓ_p).

Here there is a difference between the cases of ℓ_p and S_p . For ℓ_p a k-dimensional subspace of ℓ_1 embeds in $\ell_1^{\bar{k}}$ with \bar{k} almost linear in k (polynomial dependence is enough for us), and thus embeds with distortion $\bar{k}^{1-\frac{1}{p}}$ in $\ell_p^{\bar{k}}$.

Problem:

Given *k* what is the order of the smallest *m* such that every *k*-dimensional subspace of S_1 2-embeds into S_1^m ?

No polynomial bound is known. I conjecture that there is no such bound. Some weak indication is in a recent result of Regev and Vidick:

[RV]:

For some universal constant c > 0 and for all k there are A_1, \ldots, A_k in S_1^m (with $m = 2^{k/2}$) such that if $\{A_1, \ldots, A_k\}$ embed in S_1^d with distortion $1 + \frac{1}{k^c}$ then $d \ge m/2$.

・ロト ・回ト ・ヨト ・ヨト

Problem:

Given *k* what is the order of the smallest *m* such that every *k*-dimensional subspace of S_1 2-embeds into S_1^m ?

No polynomial bound is known. I conjecture that there is no such bound. Some weak indication is in a recent result of Regev and Vidick:

[RV]:

For some universal constant c > 0 and for all k there are A_1, \ldots, A_k in S_1^m (with $m = 2^{k/2}$) such that if $\{A_1, \ldots, A_k\}$ embed in S_1^d with distortion $1 + \frac{1}{k^c}$ then $d \ge m/2$.

ヘロン 人間 とくほとく ほとう

Problem:

Given *k* what is the order of the smallest *m* such that every *k*-dimensional subspace of S_1 2-embeds into S_1^m ?

No polynomial bound is known. I conjecture that there is no such bound. Some weak indication is in a recent result of Regev and Vidick:

[RV]:

For some universal constant c > 0 and for all k there are A_1, \ldots, A_k in S_1^m (with $m = 2^{k/2}$) such that if $\{A_1, \ldots, A_k\}$ embed in S_1^d with distortion $1 + \frac{1}{k^c}$ then $d \ge m/2$.

ヘロト ヘアト ヘビト ヘビト

Theorem

For each k and $1 , a k-dimensional subspace X of <math>S_1$ embeds with distortion $k^{1-\frac{1}{p}}$ into S_p . i.e., $C_{S_p}(X) \le k^{1-\frac{1}{p}}$.

The main tool is a

Non-commutative Lewis' lemma:

Let *X* be a *k*-dimensional subspace of S_1 . Then it admits a basis T_1, \ldots, T_k satisfying

trace
$$\left[\frac{1}{2}(T_i^*T_j + T_j^*T_i)M^{-1/2}\right] = \delta_{i,j}$$
, for all $i, j \in \{1, \dots, k\}$.
 $M = \sum_s T_s^*T_s$.

イロト イポト イヨト イヨト

э

Theorem

For each k and $1 , a k-dimensional subspace X of <math>S_1$ embeds with distortion $k^{1-\frac{1}{p}}$ into S_p . i.e., $C_{S_p}(X) \le k^{1-\frac{1}{p}}$.

The main tool is a

Non-commutative Lewis' lemma:

Let *X* be a *k*-dimensional subspace of S_1 . Then it admits a basis T_1, \ldots, T_k satisfying

trace
$$\left[\frac{1}{2}(T_i^*T_j + T_j^*T_i)M^{-1/2}\right] = \delta_{i,j}$$
, for all $i, j \in \{1, \dots, k\}$.
 $M = \sum_s T_s^*T_s$.

米間 とくほとくほど

The (commutative) Lemma of Dan Lewis (70-s) says that

Lewis:

If X is a k-dimensional subspace of $L_p(0, 1)$ (or ℓ_p), then it admits a basis f_1, \ldots, f_k satisfying

$$\int f_i f_j (\sum_s f_s^2)^{-1/2} = \delta_{i,j}, \text{ for all } i, j \in \{1, \dots, k\}.$$

This means that *X* is isometric to a subspace \overline{X} of an $L_1(\mu)$ for some probability μ , and \overline{X} admits an orthonormal basis $\{g_i\}$ with $\sum_i g_i^2 \equiv k$. Then the identity map between \overline{X} with the $L_1(\mu)$ norm and \overline{X} with the $L_p(\mu)$ norm shows that $C_{L_p}(X) \leq k^{1-1/p}$.

イロト イポト イヨト イヨト

The (commutative) Lemma of Dan Lewis (70-s) says that

Lewis:

If X is a k-dimensional subspace of $L_p(0, 1)$ (or ℓ_p), then it admits a basis f_1, \ldots, f_k satisfying

$$\int f_i f_j (\sum_{s} f_s^2)^{-1/2} = \delta_{i,j}, \text{ for all } i, j \in \{1, \dots, k\}.$$

This means that X is isometric to a subspace \bar{X} of an $L_1(\mu)$ for some probability μ , and \bar{X} admits an orthonormal basis $\{g_i\}$ with $\sum_i g_i^2 \equiv k$. Then the identity map between \bar{X} with the $L_1(\mu)$ norm and \bar{X} with the $L_p(\mu)$ norm shows that $C_{L_p}(X) \leq k^{1-1/p}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The (commutative) Lemma of Dan Lewis (70-s) says that

Lewis:

If X is a k-dimensional subspace of $L_p(0, 1)$ (or ℓ_p), then it admits a basis f_1, \ldots, f_k satisfying

$$\int f_i f_j (\sum_{s} f_s^2)^{-1/2} = \delta_{i,j}, \text{ for all } i, j \in \{1, \dots, k\}.$$

This means that *X* is isometric to a subspace \bar{X} of an $L_1(\mu)$ for some probability μ , and \bar{X} admits an orthonormal basis $\{g_i\}$ with $\sum_i g_i^2 \equiv k$. Then the identity map between \bar{X} with the $L_1(\mu)$ norm and \bar{X} with the $L_p(\mu)$ norm shows that $C_{L_p}(X) \leq k^{1-1/p}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\int f_i f_j (\sum_s f_s^2)^{-1/2} = \int \frac{f_i}{(\sum_s f_s^2)^{1/2}} \frac{f_j}{(\sum_s f_s^2)^{1/2}} (\sum_s f_s^2)^{1/2} = \delta_{i,j}$$

In S_1 the situation is a bit different. The problem is that there is no proper "change of density": trace($TM^{1/2}$) is not a norm isometric to the S_1 norm.

$$\int f_i f_j (\sum_s f_s^2)^{-1/2} = \int \frac{f_i}{(\sum_s f_s^2)^{1/2}} \frac{f_j}{(\sum_s f_s^2)^{1/2}} (\sum_s f_s^2)^{1/2} = \delta_{i,j}$$

In S_1 the situation is a bit different. The problem is that there is no proper "change of density": trace($TM^{1/2}$) is not a norm isometric to the S_1 norm.

$$\int f_i f_j (\sum_s f_s^2)^{-1/2} = \int \frac{f_i}{(\sum_s f_s^2)^{1/2}} \frac{f_j}{(\sum_s f_s^2)^{1/2}} (\sum_s f_s^2)^{1/2} = \delta_{i,j}$$

In S_1 the situation is a bit different. The problem is that there is no proper "change of density": trace($TM^{1/2}$) is not a norm isometric to the S_1 norm.

$$\int f_i f_j (\sum_s f_s^2)^{-1/2} = \int \frac{f_i}{(\sum_s f_s^2)^{1/2}} \frac{f_j}{(\sum_s f_s^2)^{1/2}} (\sum_s f_s^2)^{1/2} = \delta_{i,j}$$

In S_1 the situation is a bit different. The problem is that there is no proper "change of density": trace($TM^{1/2}$) is not a norm isometric to the S_1 norm.

$$\int f_i f_j (\sum_s f_s^2)^{-1/2} = \int \frac{f_i}{(\sum_s f_s^2)^{1/2}} \frac{f_j}{(\sum_s f_s^2)^{1/2}} (\sum_s f_s^2)^{1/2} = \delta_{i,j}$$

In S_1 the situation is a bit different. The problem is that there is no proper "change of density": trace($TM^{1/2}$) is not a norm isometric to the S_1 norm.

$$\int f_i f_j (\sum_s f_s^2)^{-1/2} = \int \frac{f_i}{(\sum_s f_s^2)^{1/2}} \frac{f_j}{(\sum_s f_s^2)^{1/2}} (\sum_s f_s^2)^{1/2} = \delta_{i,j}$$

In S_1 the situation is a bit different. The problem is that there is no proper "change of density": trace($TM^{1/2}$) is not a norm isometric to the S_1 norm.

$$\int f_i f_j (\sum_s f_s^2)^{-1/2} = \int \frac{f_i}{(\sum_s f_s^2)^{1/2}} \frac{f_j}{(\sum_s f_s^2)^{1/2}} (\sum_s f_s^2)^{1/2} = \delta_{i,j}$$

In S_1 the situation is a bit different. The problem is that there is no proper "change of density": trace($TM^{1/2}$) is not a norm isometric to the S_1 norm.

$$\int f_i f_j (\sum_s f_s^2)^{-1/2} = \int \frac{f_i}{(\sum_s f_s^2)^{1/2}} \frac{f_j}{(\sum_s f_s^2)^{1/2}} (\sum_s f_s^2)^{1/2} = \delta_{i,j}$$

In S_1 the situation is a bit different. The problem is that there is no proper "change of density": trace($TM^{1/2}$) is not a norm isometric to the S_1 norm.

$$\int f_i f_j (\sum_s f_s^2)^{-1/2} = \int \frac{f_i}{(\sum_s f_s^2)^{1/2}} \frac{f_j}{(\sum_s f_s^2)^{1/2}} (\sum_s f_s^2)^{1/2} = \delta_{i,j}$$

In S_1 the situation is a bit different. The problem is that there is no proper "change of density": trace($TM^{1/2}$) is not a norm isometric to the S_1 norm.

One can also use the less intuitive notion of "Markov convexity" instead of uniform convexity and get a bit more:

"Improved Theorem"

For each *n* there is a set of *n* points in S_1 (even ℓ_1) which are "quotient of a subset" of a subspace *X* of S_1 with distortion *C* only if dim(*X*) = n^{α/C^2} . ($\alpha > 0$ universal.)

・ 回 ト ・ ヨ ト ・ ヨ ト

One can also use the less intuitive notion of "Markov convexity" instead of uniform convexity and get a bit more:

"Improved Theorem"

For each *n* there is a set of *n* points in S_1 (even ℓ_1) which are "quotient of a subset" of a subspace *X* of S_1 with distortion *C* only if dim(*X*) = n^{α/C^2} . ($\alpha > 0$ universal.)

THE END

Gideon Schechtman No good dimension reduction in the trace class norm

イロン イロン イヨン イヨン