No good dimension reduction in the trace class norm

Gideon Schechtman

BIRS, February 2020

Based on a joint result

No good dimension reduction in the trace class norm

Gideon Schechtman

BIRS, February 2020
Based on a joint result
with Assaf Naor and Gilles Pisier

Tight embeddings of metric spaces in normed spaces

$M=(M, d)$ a metric space. $X=(X,\|\cdot\|)$ a normed space.
say that M embeds into X with distortion C if there is a
$f: M \rightarrow X$ such that

The best C is denoted by $C_{X}(M)$.
We are interested in $k_{n}^{C}(X)$ - The smallest k such that for all $S \subset X$ with $|S|=n$ there is a subspace $Y \subset X$ of dimension k such that $C_{Y}(S) \leq C$.

For most of this talk think of $C=2$.

Tight embeddings of metric spaces in normed spaces

$M=(M, d)$ a metric space. $X=(X,\|\cdot\|)$ a normed space. We say that M embeds into X with distortion C if there is a $f: M \rightarrow X$ such that

$$
d(x, y) \leq\|x-y\| \leq C d(x, y), \text { for all } x, y \in M
$$

The best C is denoted by $C_{X}(M)$.

We are interested in $k_{n}^{C}(X)$ - The smallest k such that for all
$S \subset X$ with $|S|=n$ there is a subspace $Y \subset X$ of dimension k
such that $C_{Y}(S) \leq C$.
For most of this talk think of $C=2$.

Tight embeddings of metric spaces in normed spaces

$M=(M, d)$ a metric space. $X=(X,\|\cdot\|)$ a normed space. We say that M embeds into X with distortion C if there is a $f: M \rightarrow X$ such that

$$
d(x, y) \leq\|x-y\| \leq C d(x, y), \text { for all } x, y \in M
$$

The best C is denoted by $C_{X}(M)$.
We are interested in $k_{n}^{C}(X)$ - The smallest k such that for all $S \subset X$ with $|S|=n$ there is a subspace $Y \subset X$ of dimension k such that $C_{Y}(S) \leq C$.

For most of this talk think of $C=2$.

Tight embeddings of metric spaces in normed spaces

$M=(M, d)$ a metric space. $X=(X,\|\cdot\|)$ a normed space. We say that M embeds into X with distortion C if there is a $f: M \rightarrow X$ such that

$$
d(x, y) \leq\|x-y\| \leq C d(x, y), \text { for all } x, y \in M
$$

The best C is denoted by $C_{X}(M)$.
We are interested in $k_{n}^{C}(X)$ - The smallest k such that for all $S \subset X$ with $|S|=n$ there is a subspace $Y \subset X$ of dimension k such that $C_{Y}(S) \leq C$.

For most of this talk think of $C=2$.

Tight embeddings of metric spaces in normed spaces

There are very few results with some information on $k_{n}^{C}(X)$. the positive side:

- $X=\ell_{2}$: Johnson-Lindenstrauss (84): $k_{n}^{2}\left(\ell_{2}\right)=O(\log n)$.
(J-S and Larson -Nolson (2017): $k_{n}^{1+\epsilon}\left(\rho_{2}\right) \approx \log n / \epsilon^{2}$, as $\epsilon \rightarrow 0$.)
- Johnson-Naor (2009): There is another non-classical space (2-convexified Tsirelson space) for which we have $K_{n}^{2}(X)=O(\log n)$.

Tight embeddings of metric spaces in normed spaces

There are very few results with some information on $k_{n}^{C}(X)$. On the positive side:

- $X=\ell_{2}$: Johnson-Lindenstrauss (84): $k_{n}^{2}\left(\ell_{2}\right)=O(\log n)$. (J-S and Larsen -Nelson (2017): $k_{n}^{1+\epsilon}\left(\ell_{2}\right) \approx \log n / \epsilon^{2}$, as $\epsilon \rightarrow 0$.)
- Johnson-Naor (2009): There is another non-classical space (2-convexified Tsirelson space) for which we have $k_{n}^{2}(X)=O(\log n)$.

Tight embeddings of metric spaces in normed spaces

There are very few results with some information on $k_{n}^{C}(X)$. On the positive side:

- $X=\ell_{2}$: Johnson-Lindenstrauss (84): $k_{n}^{2}\left(\ell_{2}\right)=O(\log n)$.
(J-S and Larsen -Nelson (2017): $k_{n}^{1+\epsilon}\left(\ell_{2}\right) \approx \log n / \epsilon^{2}$, as $\epsilon \rightarrow 0$.)
- Johnson-Naor (2009): There is another non-classical space (2-convexified Tsirelson space) for which we have $k_{n}^{2}(X)=O(\log n)$.

Tight embeddings of metric spaces in normed spaces

There are very few results with some information on $k_{n}^{C}(X)$. On the positive side:

- $X=\ell_{2}$: Johnson-Lindenstrauss (84): $k_{n}^{2}\left(\ell_{2}\right)=O(\log n)$.
(J-S and Larsen -Nelson (2017): $k_{n}^{1+\epsilon}\left(\ell_{2}\right) \approx \log n / \epsilon^{2}$, as $\epsilon \rightarrow 0$.)
- Johnson-Naor (2009): There is another non-classical space (2-convexified Tsirelson space) for which we have $k_{n}^{2}(X)=O(\log n)$.

Tight embeddings of metric spaces in normed spaces

There are very few results with some information on $k_{n}^{C}(X)$. On the positive side:

- $X=\ell_{2}$: Johnson-Lindenstrauss (84): $k_{n}^{2}\left(\ell_{2}\right)=O(\log n)$.
(J-S and Larsen -Nelson (2017): $k_{n}^{1+\epsilon}\left(\ell_{2}\right) \approx \log n / \epsilon^{2}$, as $\epsilon \rightarrow 0$.)
- Johnson-Naor (2009): There is another non-classical space (2-convexified Tsirelson space) for which we have $k_{n}^{2}(X)=O(\log n)$.

Tight embeddings of metric spaces in normed spaces

On the negative side:

- Matoušek (96): For all n and C there is an n-point metric space M such that if M embeds into a normed space Y with distortion C, then $\operatorname{dim} Y \geq n^{\alpha / C} .(\alpha>0$ a universal constant). So

(Also, JLS (87): $k_{n}^{C}\left(\ell_{\infty}\right) \leq n^{O(1 / C)}$.)
- Brinkman-Charikar (2003): For some universal $\alpha>0$, $k_{n}^{2}\left(\ell_{1}\right) \geq n^{\alpha}$.
(Best known bounds:

The right hand side bound is due to Andoni,Naor,Neiman (2017).)

Tight embeddings of metric spaces in normed spaces

On the negative side:

- Matoušek (96): For all n and C there is an n-point metric space M such that if M embeds into a normed space Y with distortion C, then $\operatorname{dim} Y \geq n^{\alpha / C} .(\alpha>0$ a universal constant). So

$$
k_{n}^{C}\left(\ell_{\infty}\right) \geq n^{\alpha / C} .
$$

The right hand side bound is due to Andoni,Naor,Neiman (2017).)

Tight embeddings of metric spaces in normed spaces

On the negative side:

- Matoušek (96): For all n and C there is an n-point metric space M such that if M embeds into a normed space Y with distortion C, then $\operatorname{dim} Y \geq n^{\alpha / C} .(\alpha>0$ a universal constant). So

$$
k_{n}^{C}\left(\ell_{\infty}\right) \geq n^{\alpha / C}
$$

(Also, JLS (87): $k_{n}^{C}\left(\ell_{\infty}\right) \leq n^{O(1 / C)}$.)

- Brinkman-Charikar (2003): For some universal $\alpha>0$, $k_{n}^{2}\left(\ell_{1}\right) \geq n^{\alpha}$
'Best known bounds:

The right hand side bound is due to Andoni,Naor,Neiman

Tight embeddings of metric spaces in normed spaces

On the negative side:

- Matoušek (96): For all n and C there is an n-point metric space M such that if M embeds into a normed space Y with distortion C, then $\operatorname{dim} Y \geq n^{\alpha / C} .(\alpha>0$ a universal constant). So

$$
k_{n}^{C}\left(\ell_{\infty}\right) \geq n^{\alpha / C}
$$

(Also, JLS (87): $k_{n}^{C}\left(\ell_{\infty}\right) \leq n^{O(1 / C)}$.)

- Brinkman-Charikar (2003): For some universal $\alpha>0$, $k_{n}^{2}\left(\ell_{1}\right) \geq n^{\alpha}$.
(Best known bounds:

The right hand side bound is due to Andoni,Naor,Neiman

Tight embeddings of metric spaces in normed spaces

On the negative side:

- Matoušek (96): For all n and C there is an n-point metric space M such that if M embeds into a normed space Y with distortion C, then $\operatorname{dim} Y \geq n^{\alpha / C} .(\alpha>0$ a universal constant). So

$$
k_{n}^{C}\left(\ell_{\infty}\right) \geq n^{\alpha / C}
$$

(Also, JLS (87): $k_{n}^{C}\left(\ell_{\infty}\right) \leq n^{O(1 / C)}$.)

- Brinkman-Charikar (2003): For some universal $\alpha>0$, $k_{n}^{2}\left(\ell_{1}\right) \geq n^{\alpha}$.
(Best known bounds:

$$
n^{\alpha / C^{2}} \leq k_{n}^{C}\left(\ell_{1}\right) \leq O(n / c)
$$

The right hand side bound is due to Andoni,Naor,Neiman (2017).)

The trace class

The purpose of our result and this lecture is to add one more such example: The trace class (AKA Schatten-von-Neumann 1, Nuclear norm).

Given a linear operator $T: \ell_{2} \rightarrow \ell_{2}$ define

where $\sigma_{i}(T)$ are the singular values of T.

The trace class

The purpose of our result and this lecture is to add one more such example: The trace class (AKA Schatten-von-Neumann 1, Nuclear norm).

Given a linear operator $T: \ell_{2} \rightarrow \ell_{2}$ define

$$
\|T\|_{S_{p}}=\left(\operatorname{trace}\left(T^{*} T\right)^{p / 2}\right)^{1 / p}=\left(\sum\left(\sigma_{i}(T)\right)^{p}\right)^{1 / p}
$$

where $\sigma_{i}(T)$ are the singular values of T.
> $\|T\|_{s_{\infty}}=\max \sigma_{i}(T)=$ operator norm,
> $\|T\|_{S_{2}}=$ Hilbert-Schmidt norm,
> $T \|_{s_{1}}=$ Trace class or Nuclear norm.

The trace class

The purpose of our result and this lecture is to add one more such example: The trace class (AKA Schatten-von-Neumann 1, Nuclear norm).

Given a linear operator $T: \ell_{2} \rightarrow \ell_{2}$ define

$$
\|T\|_{S_{p}}=\left(\operatorname{trace}\left(T^{*} T\right)^{p / 2}\right)^{1 / p}=\left(\sum\left(\sigma_{i}(T)\right)^{p}\right)^{1 / p}
$$

where $\sigma_{i}(T)$ are the singular values of T.

$$
\|T\|_{S_{\infty}}=\max \sigma_{i}(T)=\text { operator norm }
$$

$\|T\|_{S_{2}}=$ Hilbert-Schmidt norm,
$\|T\|_{S_{1}}=$ Trace class or Nuclear norm.

The main result

Theorem

(Naor, Pisier, S. Just appeared online in DCG)

$$
k_{n}^{C}\left(S_{1}\right) \geq n^{\alpha / C^{2}} .
$$

($\alpha>0$ universal.)

Meaning: For all n there are n points in S_{1} such that if Y is a subspace of S_{1} of dimension k into which these n points embed with distortion C then $k>n^{\alpha /} C^{2}$
Note that ℓ_{1} embeds with distortion 1 into S_{1} (as the set of diagonal matrices). The bad sets we use are the same as those used by Brinkman and Charikar - the diamond graphs. (So our theorem is a strengthening of the Brinkman-Charikar result.)

The main result

Theorem

(Naor, Pisier, S. Just appeared online in DCG)

$$
k_{n}^{C}\left(S_{1}\right) \geq n^{\alpha / C^{2}}
$$

($\alpha>0$ universal.)

Meaning: For all n there are n points in S_{1} such that if Y is a subspace of S_{1} of dimension k into which these n points embed with distortion C then $k \geq n^{\alpha / C^{2}}$.
Note that ℓ_{1} embeds with distortion 1 into S_{1} (as the set of
diagonal matrices). The bad sets we use are the same as
those used by Brinkman and Charikar - the diamond graphs.
(So our theorem is a strengthening of the Brinkman-Charikar result.)

The main result

Theorem

(Naor, Pisier, S. Just appeared online in DCG)

$$
k_{n}^{C}\left(S_{1}\right) \geq n^{\alpha / C^{2}}
$$

($\alpha>0$ universal.)

Meaning: For all n there are n points in S_{1} such that if Y is a subspace of S_{1} of dimension k into which these n points embed with distortion C then $k \geq n^{\alpha / C^{2}}$. Note that ℓ_{1} embeds with distortion 1 into S_{1} (as the set of diagonal matrices).

The bad sets we use are the same as
those used by Brinkman and Charikar - the diamond graphs.
(So our theorem is a strengthening of the Brinkman-Charikar result.)

The main result

Theorem

(Naor, Pisier, S. Just appeared online in DCG)

$$
k_{n}^{C}\left(S_{1}\right) \geq n^{\alpha / C^{2}}
$$

($\alpha>0$ universal.)

Meaning: For all n there are n points in S_{1} such that if Y is a subspace of S_{1} of dimension k into which these n points embed with distortion C then $k \geq n^{\alpha / C^{2}}$. Note that ℓ_{1} embeds with distortion 1 into S_{1} (as the set of diagonal matrices). The bad sets we use are the same as those used by Brinkman and Charikar - the diamond graphs.
(So our theorem is a strengthening of the Brinkman-Charikar result.)

The main result

Theorem

(Naor, Pisier, S. Just appeared online in DCG)

$$
k_{n}^{C}\left(S_{1}\right) \geq n^{\alpha / C^{2}}
$$

($\alpha>0$ universal.)

Meaning: For all n there are n points in S_{1} such that if Y is a subspace of S_{1} of dimension k into which these n points embed with distortion C then $k \geq n^{\alpha / C^{2}}$. Note that ℓ_{1} embeds with distortion 1 into S_{1} (as the set of diagonal matrices). The bad sets we use are the same as those used by Brinkman and Charikar - the diamond graphs. (So our theorem is a strengthening of the Brinkman-Charikar result.)

Diamond

Figure: Diamonds D_{0}, D_{1}, D_{2}

Strategy of proof

The proof imitates a geometrical proof of the Brinkman-Charikar theorem (due essentially to Lee and Naor (2004)). It consists of two stages:

- D_{n} "doesn't well embed" in S_{p} for $p>1$. (With some precise quantitative estimates).
- A k dimensional subspace of S_{1} is close to a natural subspace of S_{p} and in particular "well embeds" in S_{p}. (Again with a precise quantitative estimate),

The proof of the first o is very similar to a the one for ℓ_{1} and uses the estimates of the uniform convexity modulus of S_{p}, $1<p<2$ (which are the same as for $\ell_{p}, 1<p<2$).

Strategy of proof

The proof imitates a geometrical proof of the Brinkman-Charikar theorem (due essentially to Lee and Naor (2004)). It consists of two stages:

- D_{n} "doesn't well embed" in S_{p} for $p>1$. (With some precise quantitative estimates).

Strategy of proof

The proof imitates a geometrical proof of the Brinkman-Charikar theorem (due essentially to Lee and Naor (2004)). It consists of two stages:

- D_{n} "doesn't well embed" in S_{p} for $p>1$. (With some precise quantitative estimates).
- A k dimensional subspace of S_{1} is close to a natural subspace of S_{p} and in particular "well embeds" in S_{p}. (Again with a precise quantitative estimate).

The proof of the first • is very similar to a the one for ℓ_{1} and uses the estimates of the uniform convexity modulus of S_{p},

Strategy of proof

The proof imitates a geometrical proof of the Brinkman-Charikar theorem (due essentially to Lee and Naor (2004)). It consists of two stages:

- D_{n} "doesn't well embed" in S_{p} for $p>1$. (With some precise quantitative estimates).
- A k dimensional subspace of S_{1} is close to a natural subspace of S_{p} and in particular "well embeds" in S_{p}. (Again with a precise quantitative estimate).

The proof of the first \bullet is very similar to a the one for ℓ_{1} and uses the estimates of the uniform convexity modulus of S_{p}, $1<p<2$ (which are the same as for $\ell_{p}, 1<p<2$).

uniform convexity

The uniform convexity modulus of a normed space X is the function

$$
\delta_{X}(\epsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\| ;\|x\|,\|y\| \leq 1,\|x-y\| \geq \epsilon\right\} .
$$

uniform convexity

The uniform convexity modulus of a normed space X is the function

$$
\delta_{X}(\epsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\| ;\|x\|,\|y\| \leq 1, \quad\|x-y\| \geq \epsilon\right\} .
$$

Figure: $\delta_{X}(\epsilon)$

uniform convexity

Lemma

$f: D_{1}: \rightarrow X$,

$$
d(x, y) \leq\|f(x)-f(y)\| \leq M d(x, y) .
$$

Then,

$$
2 \leq \| f(\text { top })-f(\text { bottom }) \| \leq 2 M(1-\delta(2 / M)) .
$$

uniform convexity

Proof:

uniform convexity

Proof:

uniform convexity

Proof:

$\|x-y\| \geq 2 / M$ so $\left\|\frac{x+y}{2}\right\| \leq 1-\delta(2 / M)$.
Similarly, $\| \frac{x+y}{2}-f($ top $) / M \| \leq 1-\delta(2 / M)$
so $\| f($ bottom $) / M-f($ top $) / M \| \leq 2\left(1-\delta\left(2 / / M_{2}\right)\right)$

uniform convexity

Proof:

$\|x-y\| \geq 2 / M$ so $\quad\left\|\frac{x+y}{2}\right\| \leq 1-\delta(2 / M)$.
Similarly, $\| \frac{x+y}{2}-f($ top $) / M \| \leq 1-\delta(2 / M)$

uniform convexity

Proof:

$\|x-y\| \geq 2 / M$ so $\left\|\frac{x+y}{2}\right\| \leq 1-\delta(2 / M)$.
Similarly, $\| \frac{x+y}{2}-f($ top $) / M \| \leq 1-\delta(2 / M)$
so $\| f($ bottom $) / M-f($ top $) / M \| \leq 2(1-\delta(2 / M))$.

non embedding of D_{n} in S_{p}

Corollary

Let M_{n} be the least M such that there is $f: D_{n} \rightarrow X$ with

$$
d(x, y) \leq\|f(x)-f(y)\| \leq M d(x, y) .
$$

Then

$$
M_{n-1} \leq M_{n}\left(1-\delta_{X}\left(2 / M_{n}\right)\right)
$$

From this one gets a lower bound on M_{n} in terms of δ_{x}

From this one gets, for $X=\ell_{p}, S_{p}$

Which is what we meant by " D_{n} doesn't well embed in S_{p} ".

non embedding of D_{n} in S_{p}

Corollary

Let M_{n} be the least M such that there is $f: D_{n} \rightarrow X$ with

$$
d(x, y) \leq\|f(x)-f(y)\| \leq M d(x, y)
$$

Then

$$
M_{n-1} \leq M_{n}\left(1-\delta_{X}\left(2 / M_{n}\right)\right)
$$

From this one gets a lower bound on M_{n} in terms of δ_{X}.

From this one gets, for $X=\ell_{p}, S_{p}$

Which is what we meant by " D_{n} doesn't well embed in S_{p} ".

non embedding of D_{n} in S_{p}

Corollary

Let M_{n} be the least M such that there is $f: D_{n} \rightarrow X$ with

$$
d(x, y) \leq\|f(x)-f(y)\| \leq M d(x, y)
$$

Then

$$
M_{n-1} \leq M_{n}\left(1-\delta_{X}\left(2 / M_{n}\right)\right)
$$

From this one gets a lower bound on M_{n} in terms of δ_{X}.

$$
\delta_{\ell_{p}}(\epsilon), \delta_{S_{p}}(\epsilon) \geq c(p-1) \epsilon^{2}, \quad 1<p \leq 2
$$

From this one gets, for $X=\ell_{p}, S_{p}$

Which is what we meant by " D_{n} doesn't well embed in S_{p} ".

non embedding of D_{n} in S_{p}

Corollary

Let M_{n} be the least M such that there is $f: D_{n} \rightarrow X$ with

$$
d(x, y) \leq\|f(x)-f(y)\| \leq M d(x, y)
$$

Then

$$
M_{n-1} \leq M_{n}\left(1-\delta_{X}\left(2 / M_{n}\right)\right)
$$

From this one gets a lower bound on M_{n} in terms of δ_{X}.

$$
\delta_{\ell_{p}}(\epsilon), \delta_{S_{p}}(\epsilon) \geq c(p-1) \epsilon^{2}, \quad 1<p \leq 2
$$

From this one gets, for $X=\ell_{p}, S_{p}$

$$
M_{n} \geq(c(p-1) n)^{1 / 2}
$$

Which is what we meant by " D_{n} doesn't well embed in S_{p} ".

diamonds and uniform convexity

A side issue:
It follows from the discussion above that the sequence $\left\{D_{i}\right\}$ do not embed with a uniform distortion in any uniformly convex normed space (and also not in any space isomorphic to a uniform convex space)

Johnson and I (2009): This characterize spaces isomorphic to uniformly convex spaces.

diamonds and uniform convexity

A side issue:
It follows from the discussion above that the sequence $\left\{D_{i}\right\}$ do not embed with a uniform distortion in any uniformly convex normed space (and also not in any space isomorphic to a uniform convex space)

Johnson and I (2009): This characterize spaces isomorphic to
uniformly convex spaces.

diamonds and uniform convexity

A side issue:
It follows from the discussion above that the sequence $\left\{D_{i}\right\}$ do not embed with a uniform distortion in any uniformly convex normed space (and also not in any space isomorphic to a uniform convex space)

Johnson and I (2009): This characterize spaces isomorphic to uniformly convex spaces.

embedding subspaces of S_{1} in S_{p}

We now deal with the second \bullet :

- A k-dimensional subspace of S_{1} (resp. ℓ_{1}) "well embeds" in $S_{p}\left(\right.$ resp. $\left.\ell_{p}\right)$.

Here there is a difference between the cases of ℓ_{p} and S_{p}. For ℓ_{p} a k-dimensional subspace of ℓ_{1} embeds in $\ell_{1}^{\bar{k}}$ with \bar{k} almost linear in k (polynomial dependence is enough for us), and thus embeds with distortion $\bar{k}^{1-\frac{1}{p}}$ in $\ell_{p}^{\bar{k}}$.

embedding subspaces of S_{1} in S_{p}

We now deal with the second \bullet :

- A k-dimensional subspace of $S_{1}\left(r e s p . ~ \ell_{1}\right)$ "well embeds" in $S_{p}\left(\right.$ resp. $\left.\ell_{p}\right)$.

Here there is a difference between the cases of ℓ_{p} and S_{p}. For ℓ_{p} a k-dimensional subspace of ℓ_{1} embeds in $\ell_{1}^{\bar{k}}$ with \bar{k} almost linear in k (polynomial dependence is enough for us),
embeds with distortion \bar{k}^{1}

embedding subspaces of S_{1} in S_{p}

We now deal with the second \bullet :

- A k-dimensional subspace of $S_{1}\left(r e s p . ~ \ell_{1}\right)$ "well embeds" in $S_{p}\left(\right.$ resp. $\left.\ell_{p}\right)$.

Here there is a difference between the cases of ℓ_{p} and S_{p}. For ℓ_{p} a k-dimensional subspace of ℓ_{1} embeds in $\ell_{1}^{\bar{k}}$ with \bar{k} almost linear in k (polynomial dependence is enough for us), and thus embeds with distortion $\bar{k}^{1-\frac{1}{p}}$ in $\ell_{p}^{\bar{k}}$.

embedding subspaces of S_{1} in S_{p}

Problem:

Given k what is the order of the smallest m such that every k-dimensional subspace of S_{1} 2-embeds into S_{1}^{m} ?

> No polynomial bound is known. I conjecture that there is no such bound. Some weak indication is in a recent result of Regev and Vidick:

[RV]:
 For some universal constant $c>0$ and for all k there are A_{1}, \ldots, A_{k} in S_{1}^{m} (with $m=2^{k / 2}$) such that if $\left\{A_{1}, \ldots, A_{k}\right\}$ embed in S_{1}^{d} with distortion $1+\frac{1}{k^{c}}$ then $d \geq m / 2$.

embedding subspaces of S_{1} in S_{p}

Problem:

Given k what is the order of the smallest m such that every k-dimensional subspace of S_{1} 2-embeds into S_{1}^{m} ?

No polynomial bound is known. I conjecture that there is no such bound. Some weak indication is in a recent result of Regev and Vidick:

embedding subspaces of S_{1} in S_{p}

Problem:

Given k what is the order of the smallest m such that every k-dimensional subspace of S_{1} 2-embeds into S_{1}^{m} ?

No polynomial bound is known. I conjecture that there is no such bound. Some weak indication is in a recent result of Regev and Vidick:

[RV]:

For some universal constant $c>0$ and for all k there are A_{1}, \ldots, A_{k} in S_{1}^{m} (with $m=2^{k / 2}$) such that if $\left\{A_{1}, \ldots, A_{k}\right\}$ embed in S_{1}^{d} with distortion $1+\frac{1}{k^{c}}$ then $d \geq m / 2$.

embedding subspaces of S_{1} in S_{p}

Theorem

For each k and $1<p \leq 2$, a k-dimensional subspace X of S_{1} embeds with distortion $k^{1-\frac{1}{p}}$ into S_{p}. i.e., $C_{S_{p}}(X) \leq k^{1-\frac{1}{p}}$.

The main tool is a

Non-commutative Lewis' lemma:
Let X be a k-dimensional subspace of S_{1}. Then it admits a basis T_{1}, \ldots, T_{k} satisfying

embedding subspaces of S_{1} in S_{p}

Theorem

For each k and $1<p \leq 2$, a k-dimensional subspace X of S_{1} embeds with distortion $k^{1-\frac{1}{p}}$ into S_{p}. i.e., $C_{S_{p}}(X) \leq k^{1-\frac{1}{p}}$.

The main tool is a

Non-commutative Lewis' lemma:

Let X be a k-dimensional subspace of S_{1}. Then it admits a basis T_{1}, \ldots, T_{k} satisfying

$$
\operatorname{trace}\left[\frac{1}{2}\left(T_{i}^{*} T_{j}+T_{j}^{*} T_{i}\right) M^{-1 / 2}\right]=\delta_{i, j}, \text { for all } i, j \in\{1, \ldots, k\}
$$

$M=\sum_{s} T_{s}^{*} T_{s}$.

Lewis' Lemma

The (commutative) Lemma of Dan Lewis (70-s) says that

Lewis:

If X is a k-dimensional subspace of $L_{p}(0,1)$ (or $\left.\ell_{p}\right)$, then it admits a basis f_{1}, \ldots, f_{k} satisfying

$$
\int f_{i} f_{j}\left(\sum_{s} f_{s}^{2}\right)^{-1 / 2}=\delta_{i, j}, \text { for all } i, j \in\{1, \ldots, k\} .
$$

> This means that X is isometric to a subspace X of an $L_{1}(\mu)$ for some probabiity μ, and \bar{X} admits an orthonormal basis $\left\{g_{i}\right\}$ with $\sum_{i} g_{i}^{2} \equiv k$. Then the identity map between \bar{X} with the $L_{1}(\mu)$ norm and \bar{X} with the $L_{p}(\mu)$ norm shows that $C_{L_{p}}(X) \leq k^{1-1 / p}$

Lewis' Lemma

The (commutative) Lemma of Dan Lewis (70-s) says that

Lewis:

If X is a k-dimensional subspace of $L_{p}(0,1)$ (or ℓ_{p}), then it admits a basis f_{1}, \ldots, f_{k} satisfying

$$
\int f_{i} f_{j}\left(\sum_{s} f_{s}^{2}\right)^{-1 / 2}=\delta_{i, j}, \quad \text { for all } i, j \in\{1, \ldots, k\}
$$

This means that X is isometric to a subspace \bar{X} of an $L_{1}(\mu)$ for some probabiity μ, and \bar{X} admits an orthonormal basis $\left\{g_{i}\right\}$ with $\sum_{i} g_{i}^{2} \equiv k$.
norm and \bar{X} with the $L_{p}(\mu)$ norm shows that $C_{L_{p}}(X) \leq k^{1-1 / p}$

Lewis' Lemma

The (commutative) Lemma of Dan Lewis (70-s) says that

Lewis:

If X is a k-dimensional subspace of $L_{p}(0,1)$ (or ℓ_{p}), then it admits a basis f_{1}, \ldots, f_{k} satisfying

$$
\int f_{i} f_{j}\left(\sum_{s} f_{s}^{2}\right)^{-1 / 2}=\delta_{i, j}, \text { for all } i, j \in\{1, \ldots, k\} .
$$

This means that X is isometric to a subspace \bar{X} of an $L_{1}(\mu)$ for some probabiity μ, and \bar{X} admits an orthonormal basis $\left\{g_{i}\right\}$ with $\sum_{i} g_{i}^{2} \equiv k$. Then the identity map between \bar{X} with the $L_{1}(\mu)$ norm and \bar{X} with the $L_{p}(\mu)$ norm shows that $C_{L_{p}}(X) \leq k^{1-1 / p}$.

Lewis' Lemma

$$
\int f_{i} f_{j}\left(\sum_{s} f_{s}^{2}\right)^{-1 / 2}=\int \frac{f_{i}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}} \frac{f_{j}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}}\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}=\delta_{i, j}
$$

The new measure and the isometry are given by "change of density": $d \mu=\frac{1}{k}\left(\sum_{i} f_{i}^{2}\right)^{1 / 2} d x$.
The isometry between X and \bar{X} is given by $f \rightarrow \frac{k f}{\left(\sum f_{f}^{2}\right)^{1 / 2}}$, and $g_{i}=\frac{k^{1 / 2} f_{i}}{\left(\sum f_{i}^{2}\right)^{1 / 2}} . \quad\left(\right.$ So $\left.\sum g_{i}^{2} \equiv k.\right)$

In S_{1} the situation is a bit different. The problem is that there is no proper "change of density": $\operatorname{trace}\left(T M^{1 / 2}\right)$ is not a norm isometric to the S_{1} norm.

It turns out however that the map $T \rightarrow T M^{\frac{p-1}{2 p}}$ gives a good embedding of X into S_{p}.

Lewis' Lemma

$$
\int f_{i} f_{j}\left(\sum_{s} f_{s}^{2}\right)^{-1 / 2}=\int \frac{f_{i}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}} \frac{f_{j}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}}\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}=\delta_{i, j}
$$

The new measure and the isometry are given by "change of density":
The isometry between X and \bar{X} is given by $f \rightarrow \frac{k f}{\left(\sum f_{i}^{2}\right)^{1 / 2}}$,

In S_{1} the situation is a bit different. The problem is that there is no proper "change of density": $\operatorname{trace}\left(T M^{1 / 2}\right)$ is not a norm isometric to the S_{1} norm.

It turns out however that the map $T \rightarrow T M^{\frac{p-1}{2 p}}$ gives a good embedding of X into S_{p}.

Lewis' Lemma

$$
\int f_{i} f_{j}\left(\sum_{s} f_{s}^{2}\right)^{-1 / 2}=\int \frac{f_{i}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}} \frac{f_{j}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}}\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}=\delta_{i, j}
$$

The new measure and the isometry are given by "change of density": $d \mu=\frac{1}{k}\left(\sum_{i} f_{i}^{2}\right)^{1 / 2} d x$.
The isometry between X and \bar{X} is given by $f \rightarrow \frac{k f}{\left(\sum f_{i}^{2}\right)^{1 / 2}}$,

(So $\left.\sum g_{i}^{2} \equiv k.\right)$

In S_{1} the situation is a bit different. The problem is that there is no proper "change of density": $\operatorname{trace}\left(T M^{1 / 2}\right)$ is not a norm isometric to the S_{1} norm.

It turns out however that the map $T \rightarrow T M^{\frac{p-1}{2 p}}$ gives a good embedding of X into S_{p}.

Lewis' Lemma

$$
\int f_{i} f_{j}\left(\sum_{s} f_{s}^{2}\right)^{-1 / 2}=\int \frac{f_{i}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}} \frac{f_{j}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}}\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}=\delta_{i, j}
$$

The new measure and the isometry are given by "change of density": $d \mu=\frac{1}{k}\left(\sum_{i} f_{i}^{2}\right)^{1 / 2} d x$.
The isometry between X and \bar{X} is given by $f \rightarrow \frac{k f}{\left(\sum f_{i}^{2}\right)^{1 / 2}}$,

In S_{1} the situation is a bit different. The problem is that there is no proper "change of density": $\operatorname{trace}\left(T M^{1 / 2}\right)$ is not a norm isometric to the S_{1} norm.

It turns out however that the map $T \rightarrow T M^{2 p}$ gives a good embedding of X into S_{p}.

Lewis' Lemma

$$
\int f_{i} f_{j}\left(\sum_{s} f_{s}^{2}\right)^{-1 / 2}=\int \frac{f_{i}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}} \frac{f_{j}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}}\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}=\delta_{i, j}
$$

The new measure and the isometry are given by "change of density": $d \mu=\frac{1}{k}\left(\sum_{i} f_{i}^{2}\right)^{1 / 2} d x$.
The isometry between X and \bar{X} is given by $f \rightarrow \frac{k f}{\left(\sum f_{f}^{2}\right)^{1 / 2}}$, and $g_{i}=\frac{\kappa^{1 / 2} f_{i}}{\left(\sum f_{i}^{2}\right)^{1 / 2}}$.

In S_{1} the situation is a bit different. The problem is that there is no proper "change of density": $\operatorname{trace}\left(T M^{1 / 2}\right)$ is not a norm isometric to the S_{1} norm.

It turns out however that the map $T \rightarrow T M^{2 p}$ gives a good embedding of X into S_{p}.

Lewis' Lemma

$$
\int f_{i} f_{j}\left(\sum_{s} f_{s}^{2}\right)^{-1 / 2}=\int \frac{f_{i}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}} \frac{f_{j}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}}\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}=\delta_{i, j}
$$

The new measure and the isometry are given by "change of density": $d \mu=\frac{1}{k}\left(\sum_{i} f_{i}^{2}\right)^{1 / 2} d x$.
The isometry between X and \bar{X} is given by $f \rightarrow \frac{k f}{\left(\sum f_{f}^{2}\right)^{1 / 2}}$, and $g_{i}=\frac{k^{1 / 2} f_{i}}{\left(\sum f_{1}^{2}\right)^{1 / 2}}$. (So $\sum g_{i}^{2} \equiv k$.)

In S_{1} the situation is a bit different. The problem is that there is no proper "change of density": trace $\left(T M^{1 / 2}\right)$ is not a norm isometric to the S_{1} norm.

Lewis' Lemma

$$
\int f_{i} f_{j}\left(\sum_{s} f_{s}^{2}\right)^{-1 / 2}=\int \frac{f_{i}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}} \frac{f_{j}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}}\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}=\delta_{i, j}
$$

The new measure and the isometry are given by "change of density": $d \mu=\frac{1}{k}\left(\sum_{i} f_{i}^{2}\right)^{1 / 2} d x$.
The isometry between X and \bar{X} is given by $f \rightarrow \frac{k f}{\left(\sum f_{i}^{\prime}\right)^{1 / 2}}$, and $g_{i}=\frac{k^{1 / 2} f_{i}}{\left(\sum f_{1}^{2}\right)^{1 / 2}}$. (So $\sum g_{i}^{2} \equiv k$.)

In S_{1} the situation is a bit different. The problem is that there is no proper "change of density":
isometric to the S_{1} norm.
It turns out however that the map $T \rightarrow T M^{2 p}$ gives a good embedding of X into S_{p}.

Lewis' Lemma

$$
\int f_{i} f_{j}\left(\sum_{s} f_{s}^{2}\right)^{-1 / 2}=\int \frac{f_{i}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}} \frac{f_{j}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}}\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}=\delta_{i, j}
$$

The new measure and the isometry are given by "change of density": $d \mu=\frac{1}{k}\left(\sum_{i} f_{i}^{2}\right)^{1 / 2} d x$.
The isometry between X and \bar{X} is given by $f \rightarrow \frac{k f}{\left(\sum f_{i}^{2}\right)^{1 / 2}}$,
and $g_{i}=\frac{k^{1 / 2} f_{i}}{\left(\sum f_{1}^{2}\right)^{1 / 2}}$. (So $\sum g_{i}^{2} \equiv k$.)
In S_{1} the situation is a bit different. The problem is that there is no proper "change of density": $\operatorname{trace}\left(T M^{1 / 2}\right)$ is not a norm isometric to the S_{1} norm.

It turns out however that the map $T \rightarrow T M^{{ }^{20}}$ gives a good embedding of X into S_{p}.

$$
\int f_{i} f_{j}\left(\sum_{s} f_{s}^{2}\right)^{-1 / 2}=\int \frac{f_{i}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}} \frac{f_{j}}{\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}}\left(\sum_{s} f_{s}^{2}\right)^{1 / 2}=\delta_{i, j}
$$

The new measure and the isometry are given by "change of density": $d \mu=\frac{1}{k}\left(\sum_{i} f_{i}^{2}\right)^{1 / 2} d x$.
The isometry between X and \bar{X} is given by $f \rightarrow \frac{k f}{\left(\sum f_{1}^{\prime}\right)^{1 / 2}}$,
and $g_{i}=\frac{k^{1 / 2} f_{i}}{\left(\sum f_{1}^{2}\right)^{1 / 2}}$. (So $\sum g_{i}^{2} \equiv k$.)
In S_{1} the situation is a bit different. The problem is that there is no proper "change of density": $\operatorname{trace}\left(T M^{1 / 2}\right)$ is not a norm isometric to the S_{1} norm.

It turns out however that the map $T \rightarrow T M^{\frac{p-1}{2 p}}$ gives a good embedding of X into S_{p}.

Stronger theorem

One can also use the less intuitive notion of "Markov convexity" instead of uniform convexity and get a bit more:
> "Improved Theorem" For each n there is a set of n points in S_{1} (even ℓ_{1}) which are "quotient of a subset" of a subspace X of S_{1} with distortion C only if $\operatorname{dim}(X)=n^{\alpha / C^{2}}$. ($\alpha>0$ universal.)

Stronger theorem

One can also use the less intuitive notion of "Markov convexity" instead of uniform convexity and get a bit more:

"Improved Theorem"

For each n there is a set of n points in S_{1} (even ℓ_{1}) which are "quotient of a subset" of a subspace X of S_{1} with distortion C only if $\operatorname{dim}(X)=n^{\alpha / C^{2}}$. ($\alpha>0$ universal.)

THE END

