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Notation

I K , L ⊆ Rn will denote convex bodies (compact, non-empty
interior)

I |K | denotes the volume of K , but |x | denotes the Euclidean
norm of a vector x ∈ Rn.

I hK : Rn → R denotes the support function,

hK (y) = max
x∈K
〈x , y〉

.
I The Minkowski sum K + tL is defined implicitly by

hK+tL = hK + thL,

or explicitly by

K + tL = {x + ty : x ∈ K and y ∈ L} .



Surface area measures

Theorem
For every K there exists a unique Borel measure SK on the unit
sphere Sn−1 such that for every L we have

lim
t→0+

|K + tL| − |K |
t =

∫
Sn−1

hLdSK .

SK is called the surface area measure of K . It has an explicit
description: for A ⊆ Rn we have

SK (A) = Hn−1
(
ν−1K (A)

)
,

where Hn−1 is the (n-1)-dimensional Hausdorff measure and
νK : ∂K → Sn−1 is the Gauss map (defined Hn−1-a.e.). In other
words SK = (νK )]

(
Hn−1∣∣

∂K
)
.



Log-concave functions

I A function f : Rn → [0,∞) is log-concave if

f ((1− λ)x + λy) ≥ f (x)1−λf (y)λ

for all x , y ∈ Rn and 0 ≤ λ ≤ 1.
I We will always assume our log-concave functions are upper

semi-continuous and that 0 <
∫
f <∞.

I Examples: f = 1K for a convex body K , f (x) = e−|x |2/2.
I We want to consider log-concave functions as “generalized

convex bodies”. This proved to be extremely useful in the
past.

I For this we need “volume” (easy, take
∫
f ), “support

function” and “addition”.



Addition and Support functions

Theorem (R. ’13)
Assume we associate to every log-concave function f a convex
support function hf such that
1. f ≤ g if and only if hf ≤ hg .
2. h1K = hK .
3. hf⊕g = hf + hg for some addition ⊕.

Then hf (x) = 1
C · (− log f )∗ (Cx), where

φ∗(y) = sup
x∈Rn

(〈x , y〉 − φ(x))

is the Legendre transform. Also,

(f ⊕ g) (x) = (f ? g) (x) = sup
y∈Rn

f (y)g(x − y)

is the sup-convolution. The corresponding scalar multiplication is
(t · f ) (x) = f

( x
t
)t .



Functional surface area measure

Definition
For a log-concave function f = e−φ : Rn → R, it surface area
measure Sf is a Borel measure on Rn defined by

Sf = (∇φ)] (f dx)

This is well defined, since φ is differentiable f dx -a.e.
Examples
If f = e−|x |2/2 then ∇φ = Id , so Sf = f dx .
If f = e−max{〈x ,v1〉,〈x ,v2〉,...,〈x ,vm〉} then Sf =

∑m
i=1 ciδvi , where

ck =
∫
1{

f =e−〈x,vk〉
}f dx .

If f = 1K then Sf = |K | · δ0.
Also note that Sf (Rn) =

∫
f , which is the “volume” of f , not its

“surface area”.



First variation

Why should we think of Sf as a surface area measure? Because
“sometimes”

lim
t→0+

∫
(f ? (t · g))−

∫
f

t =
∫

hgdSf .

Theorem (Colesanti-Fragalà)
This holds for f = e−φ, g = e−β if
I φ, β : Rn → R are finite and C2

+.
I lim|x |→∞ φ(x)

|x | = lim|x |→∞ β(x)
|x | = +∞.

I φ∗ − cβ∗ is convex for small enough c > 0.

Theorem (R.)
This holds for f = e−|x |2/2 (and all g).



Sub-differential may be easier

Klartag and Cordero-Erausquin proved a very related result. To
explain it we define two functionals on convex functions:
I F (ψ) = − log

∫
e−ψ∗ .

The Prékopa–Leindler inequality is exactly the statement that
F is convex.

I `f (ψ) =
∫
ψdSf , where f is a fixed log-concave function.

Obviously ` is linear.
The identity

lim
t→0+

∫
(f ? (t · g))−

∫
f

t =
∫

hgdSf

can be written compactly as ∇F (hf ) = − `f∫
f .

Since F is convex we can ask an easier question: Is it true that
− `f∫

f ∈ ∂F (hf ) ?



Essential Continuity

Definition
A log-concave function f is called essentially continuous if

Hn−1 ({x ∈ Rn : f is not continuous at x}) = 0.

Write K = support (f ) = {x : f (x) > 0}. f is always continuous
outside of ∂K , and for x ∈ ∂K we have by upper semi-continuity

limy→x
y∈K

f (y) = f (x).

Therefore f is essentially continuous if and only f ≡ 0 Hn−1-a.e.
on ∂K .

Theorem (Klartag–Cordero)
− `f∫

f ∈ ∂F (hf ) if and only if f is essentially continuous.



Main Theorem

The Klartag-Cordero result is not comparable to Colesanti-Fragalà.
The assumptions are much weaker (and optimal!), but the
conclusion is also weaker.

Theorem (R.)
Assume f is essentially continuous. Then for all g

lim
t→0+

∫
(f ? (t · g))−

∫
f

t =
∫

hgdSf .

Moreover, this equality for g = 1Bn
2
also implies that f is

essentially continuous.
This theorem is stronger than both Klartag-Cordero and
Colesanti-Fragalà and implies both.
Perhaps more importantly, it gives a nice explanation for the
importance of essential continuity.



Proof Sketch

Unraveling notation, we have convex functions ψ = hf , α = hg
and we want to show

d
dt

∣∣∣∣
t=0+

∫
e−(ψ+tα)∗

=
∫
α (∇φ) e−φ,

where φ = ψ∗ = − log f . We follow the following steps, which
doesn’t use essential continuity:
1. Show that

d
dt

∣∣∣∣
t=0+

e−(ψ+tα)∗(x) = α (∇φ(x)) e−φ(x)

if φ is finite and differentiable at x (so e−φdx -a.e.). This is
fairly standard.

After step 1 we “just” need to differentiate under the integral.
Surprisingly, this is the interesting part.



Proof Sketch – Contd.

d
dt

∣∣∣∣
t=0+

∫
e−(ψ+tα)∗

=
∫
α (∇φ) e−φ

1. Show that

d
dt

∣∣∣∣
t=0+

e−(ψ+tα)∗(x) = α (∇φ(x)) e−φ(x)

if φ is finite and differentiable at x (so e−φdx -a.e.). This is
fairly standard.

2. Reduce to the case that α(x) ≤ m |x |+ c for some m, c > 0.
This is done by clever approximation and uses
Prékopa–Leindler.

3. Reduce to the case α(x) = m |x |+ c. This is a simple
measure theoretic argument. For this talk take m = 1, c = 0.



The Case α(x) = |x |

d
dt

∣∣∣∣
t=0+

∫
e−(ψ+t|x |)∗

=
∫
|∇φ| e−φ

Write f = e−φ so ψ = φ∗ = hf . On the RHS we have
∫
|∇f |.

On the LHS we have

ft(x) = e−(ψ+t|x |)∗(x) =
[
f ?

(
t · 1Bn

2

)]
(x) = sup

y : |y−x |≤t
f (y).

By layer cake decomposition∫
ft =

∫ ∞
0
|[ft > s]|ds =

∫ ∞
0
|[f > s] + tBn

2 |ds,

so
d
dt

∣∣∣∣
t=0+

∫
ft =

∫ ∞
0

( d
dt

∣∣∣∣
t=0+

|[f > s] + tBn
2 |
)

ds

=
∫ ∞
0
Hn−1 ([f = s]) ds



The Punch Line

The whole theorem reduced to the case α(x) = |x |. We computed
that the required result in this case is exactly∫ ∞

0
Hn−1 ([f = s]) ds =

∫
|∇f | ,

i.e. the co-area formula!

Theorem
For every log-concave function f : Rn → [0,∞) one has∫ ∞

0
Hn−1 ([f = s]) ds =

∫
|∇f |+

∫
∂(support(f ))

f dHn−1.

The proof uses the divergence theorem for Lipschitz domains and
the co-area formula for BV functions.
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Alexandrov Bodies and Functions

I Given ψ : Sn−1 → (−∞,∞], the Alexandrov body of ψ is the
largest convex body K with hK ≤ ψ. Explicitly

K =
{
x : 〈x , θ〉 ≤ ψ(θ) for all θ ∈ Sn−1

}
.

I Similarly, given ψ : Rn → (−∞,∞] we define its Alexandrov
function f = [ψ] to be the largest log-concave function with
hf ≤ ψ. Explicitly f = e−ψ∗

.

Fact
Let ψ : Rn → (−∞,∞] be lower semi-continuous and f = [ψ] be
its Alexandrov function. Then hf = ψ at Sf -almost every point.



Lp-addition

I Fix 0 < p < 1. For bodies K and L containing the origin,
K +p t · L is the Alexandrov body of

(
hp

K + thp
L
)1/p.

I We then have

lim
t→0+

|K +p t · L| − |K |
t = 1

p

∫
hp

Lh
1−p
K dSK .

I For log-concave functionsf , g with hf , hg ≥ 0 we define
f ?p t · g to be the Alexandrov function of

(
hp

f + thp
g
)1/p

.

I Under technical conditions we then have

lim
t→0+

∫
(f ?p (t · g))−

∫
f

t = 1
p

∫
hp

gh
1−p
f dSf



p-surface area measures

Definition
The p-surface area measure SK ,p of a convex body K containing
the origin is dSK ,p = h1−p

K dSK .

Definition
The p-surface area measure Sf ,p of a log-concave function f with
hf ≥ 0 is dSf ,p = h1−p

f dSf .

We are interested in the p-Minkowski existence theorem: Given
0 < p ≤ 1 and a measure µ, find a log-concave function f with
Sf ,p = µ.



Lp-Minkowski theorem for symmetric bodies

Theorem (Lutwak)
Let µ be an even finite Borel measure on Sn−1 which is not
supported on any hyperplane. Then for every 0 < p 6= n there
exists a symmetric convex body K with SK ,p = µ. For p = n there
exists a symmetric convex body K with SK ,p = c · µ for some
c > 0.
I Uniqueness is much harder and is related to the

Lp-Brunn-Minkowski inequality.
I The non-even case is also much harder.

Sketch of the proof.
Let K be the minimizer of I(K ) = |K |−

p
n ·
∫

Sn−1 hp
K dµ. The

condition ∇I(K ) = 0 is exactly SK ,p = c · µ. For p 6= n we can use
homogeneity to make c = 1.



Minkowski theorem for log-concave functions (p = 1)

Theorem (Cordero-Klartag)
Let µ be a centered probability Borel measure which is not
supported on any hyperplane. Then there exists a unique
essentially continuous log-concave function f with Sf = µ.

Sketch of the proof of existence.
Let f be the minimizer of

I(f ) =
∫

Sn−1
hf dµ− log

∫
f .

The condition ∇I(f ) = 0 is exactly Sf = c · µ.
Since Scf = c · Sf we can again make c = 1.



Lp-Minkowski Theorem for Log-Concave Functions

Theorem (R.)
Fix 0 < p < 1. Let µ be an even finite Borel measure with finite
first moment that is not supported on any hyperplane. Then there
exists an even log-concave function f with hf ≥ 0 such that
Sf ,p = c · µ for some c > 0.
I The main issue is lack of invariance: In general Sc·f ,p is not

proportional to Sf ,p for any notion of dilation.
I Therefore f cannot be found by solving an unconstrained

optimization problem.
I Instead, we solve the constrained problem

min
∫

hp
f dµ subject to

∫
f = a

and use “Lagrange multipliers”.



Some more details

Define
D =

{
f : f is even, log-concave

and hf ≥ 0

}
.

And define I(f ) =
∫
hp

f dµ and J(f ) =
∫
f . Then we:

1. Show that I attains a minimum under the constraint J = a.
2. Show that if a is large enough the minimizer f belongs to the

interior of D, i.e. hf (0) > 0.
3. Prove the “Lagrange multiplier” condition ∇I = c · ∇J .
4. Compute both sides and deduce that Sf ,p = c · µ.



Thank you
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