Functional surface area measures

Liran Rotem

Technion - Israel Institute of Technology

Geometric Tomography, Banff, February 2020

Outline

• Surface area measures

Surface area measures for convex bodies Surface area measures for log-concave functions Proof Sketch

L^p-Minkowski theorem, 0
 L^p surface area measures
 Our Theorem and Proof Sketch

Outline

• Surface area measures

Surface area measures for convex bodies Surface area measures for log-concave functions Proof Sketch

• L^p -Minkowski theorem, 0 $<math>L^p$ surface area measures Our Theorem and Proof Sketch

Notation

- K, L ⊆ ℝⁿ will denote convex bodies (compact, non-empty interior)
- ▶ |K| denotes the volume of K, but |x| denotes the Euclidean norm of a vector $x \in \mathbb{R}^n$.
- ▶ $h_{\mathcal{K}} : \mathbb{R}^n \to \mathbb{R}$ denotes the support function,

$$h_{\mathcal{K}}(y) = \max_{x \in \mathcal{K}} \langle x, y \rangle$$

• The Minkowski sum K + tL is defined implicitly by

$$h_{K+tL} = h_K + th_L,$$

or explicitly by

$$K + tL = \{x + ty : x \in K \text{ and } y \in L\}.$$

Surface area measures

Theorem

For every K there exists a unique Borel measure S_K on the unit sphere S^{n-1} such that for every L we have

$$\lim_{t\to 0^+}\frac{|\mathcal{K}+t\mathcal{L}|-|\mathcal{K}|}{t}=\int_{\mathcal{S}^{n-1}}h_{\mathcal{L}}\mathrm{d}\mathcal{S}_{\mathcal{K}}.$$

 S_K is called the surface area measure of K. It has an explicit description: for $A \subseteq \mathbb{R}^n$ we have

$$S_{\mathcal{K}}(A) = \mathcal{H}^{n-1}\left(\nu_{\mathcal{K}}^{-1}(A)\right),$$

where \mathcal{H}^{n-1} is the (n-1)-dimensional Hausdorff measure and $\nu_{\mathcal{K}} : \partial \mathcal{K} \to S^{n-1}$ is the Gauss map (defined \mathcal{H}^{n-1} -a.e.). In other words $S_{\mathcal{K}} = (\nu_{\mathcal{K}})_{\sharp} (\mathcal{H}^{n-1}|_{\partial \mathcal{K}})$.

Log-concave functions

▶ A function $f : \mathbb{R}^n \to [0, \infty)$ is log-concave if

$$f((1-\lambda)x + \lambda y) \ge f(x)^{1-\lambda}f(y)^{\lambda}$$

for all $x, y \in \mathbb{R}^n$ and $0 \le \lambda \le 1$.

- We will always assume our log-concave functions are upper semi-continuous and that 0 < ∫ f < ∞.</p>
- Examples: $f = \mathbb{1}_K$ for a convex body K, $f(x) = e^{-|x|^2/2}$.
- We want to consider log-concave functions as "generalized convex bodies". This proved to be extremely useful in the past.
- For this we need "volume" (easy, take $\int f$), "support function" and "addition".

Addition and Support functions

Theorem (R. '13)

Assume we associate to every log-concave function f a convex support function h_f such that

1.
$$f \leq g$$
 if and only if $h_f \leq h_g$.
2. $h_{\mathbb{I}_K} = h_K$.
3. $h_{f \oplus g} = h_f + h_g$ for some addition \oplus .
Then $h_f(x) = \frac{1}{C} \cdot (-\log f)^* (Cx)$, where
 $\phi^*(y) = \sup_{x \in \mathbb{R}^n} (\langle x, y \rangle - \phi(x))$

is the Legendre transform. Also,

$$(f\oplus g)(x) = (f\star g)(x) = \sup_{y\in\mathbb{R}^n} f(y)g(x-y)$$

is the sup-convolution. The corresponding scalar multiplication is $(t \cdot f)(x) = f\left(\frac{x}{t}\right)^t$.

Functional surface area measure

Definition

For a log-concave function $f = e^{-\phi} : \mathbb{R}^n \to \mathbb{R}$, it surface area measure S_f is a Borel measure on \mathbb{R}^n defined by

$$S_f = (\nabla \phi)_{\sharp} (f \mathrm{d} x)$$

This is well defined, since ϕ is differentiable f dx-a.e.

Examples

If $f = e^{-|x|^2/2}$ then $\nabla \phi = Id$, so $S_f = f dx$. If $f = e^{-\max\{\langle x, v_1 \rangle, \langle x, v_2 \rangle, ..., \langle x, v_m \rangle\}}$ then $S_f = \sum_{i=1}^m c_i \delta_{v_i}$, where

$$c_k = \int \mathbb{1}_{\left\{f=e^{-\langle x, v_k \rangle}\right\}} f \mathrm{d}x.$$

If $f = \mathbb{1}_K$ then $S_f = |K| \cdot \delta_0$. Also note that $S_f(\mathbb{R}^n) = \int f$, which is the "volume" of f, not its "surface area".

First variation

Why should we think of S_f as a surface area measure? Because "sometimes"

$$\lim_{t\to 0^+}\frac{\int (f\star(t\cdot g))-\int f}{t}=\int h_g \mathrm{d}S_f.$$

Theorem (Colesanti-Fragalà) This holds for $f = e^{-\phi}$, $g = e^{-\beta}$ if $\blacklozenge \phi, \beta : \mathbb{R}^n \to \mathbb{R}$ are finite and C^2_+ . $\blacklozenge \lim_{|x|\to\infty} \frac{\phi(x)}{|x|} = \lim_{|x|\to\infty} \frac{\beta(x)}{|x|} = +\infty$. $\blacklozenge \phi^* - c\beta^*$ is convex for small enough c > 0.

Theorem (R.) This holds for $f = e^{-|x|^2/2}$ (and all g).

Sub-differential may be easier

Klartag and Cordero-Erausquin proved a very related result. To explain it we define two functionals on convex functions:

- F(ψ) = − log ∫ e^{-ψ*}. The Prékopa-Leindler inequality is *exactly* the statement that F is convex.
- ℓ_f(ψ) = ∫ ψdS_f, where f is a fixed log-concave function. Obviously ℓ is linear.

The identity

$$\lim_{t\to 0^+} \frac{\int (f \star (t \cdot g)) - \int f}{t} = \int h_g \mathrm{d}S_f$$

can be written compactly as $\nabla F(h_f) = -\frac{\ell_f}{\int f}$.

Since *F* is convex we can ask an easier question: Is it true that $-\frac{\ell_f}{\int f} \in \partial F(h_f)$?

Essential Continuity

Definition

A log-concave function f is called essentially continuous if

$$\mathcal{H}^{n-1}\left(\{x\in\mathbb{R}^n:\;f\; ext{is not continuous at }x\}
ight)=0.$$

Write $K = \text{support}(f) = \overline{\{x : f(x) > 0\}}$. *f* is always continuous outside of ∂K , and for $x \in \partial K$ we have by upper semi-continuity

$$\lim_{\substack{y \to x \\ y \in K}} f(y) = f(x).$$

Therefore f is essentially continuous if and only $f \equiv 0 \mathcal{H}^{n-1}$ -a.e. on ∂K .

Theorem (Klartag–Cordero)

 $-\frac{\ell_f}{\int f} \in \partial F(h_f)$ if and only if f is essentially continuous.

Main Theorem

The Klartag-Cordero result is not comparable to Colesanti-Fragalà. The assumptions are much weaker (and optimal!), but the conclusion is also weaker.

Theorem (R.)

Assume f is essentially continuous. Then for all g

$$\lim_{t\to 0^+}\frac{\int (f\star(t\cdot g))-\int f}{t}=\int h_g \mathrm{d}S_f.$$

Moreover, this equality for $g = \mathbb{1}_{B_2^n}$ also implies that f is essentially continuous.

This theorem is stronger than both Klartag-Cordero and Colesanti-Fragalà and implies both. Perhaps more importantly, it gives a nice explanation for the

importance of essential continuity.

Proof Sketch

Unraveling notation, we have convex functions $\psi=h_{\rm f},\,\alpha=h_{\rm g}$ and we want to show

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0^+}\int e^{-(\psi+t\alpha)^*} = \int \alpha \left(\nabla\phi\right) e^{-\phi},$$

where $\phi = \psi^* = -\log f$. We follow the following steps, which doesn't use essential continuity:

1. Show that

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0^+} e^{-(\psi+t\alpha)^*(x)} = \alpha \left(\nabla \phi(x)\right) e^{-\phi(x)}$$

if ϕ is finite and differentiable at x (so $e^{-\phi} dx$ -a.e.). This is fairly standard.

After step 1 we "just" need to differentiate under the integral. Surprisingly, this is the interesting part.

Proof Sketch – Contd.

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0^{+}}\int e^{-\left(\psi+t\alpha\right)^{*}}=\int \alpha\left(\nabla\phi\right)e^{-\phi}$$

1. Show that

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0^+} e^{-(\psi+t\alpha)^*(x)} = \alpha \left(\nabla \phi(x)\right) e^{-\phi(x)}$$

if ϕ is finite and differentiable at x (so $e^{-\phi}dx$ -a.e.). This is fairly standard.

- 2. Reduce to the case that $\alpha(x) \le m |x| + c$ for some m, c > 0. This is done by clever approximation and uses Prékopa-Leindler.
- 3. Reduce to the case $\alpha(x) = m |x| + c$. This is a simple measure theoretic argument. For this talk take m = 1, c = 0.

The Case $\alpha(x) = |x|$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0^+}\int e^{-(\psi+t|x|)^*} = \int |\nabla\phi| \, e^{-\phi}$$

Write $f = e^{-\phi}$ so $\psi = \phi^* = h_f$. On the RHS we have $\int |\nabla f|$. On the LHS we have

$$f_t(x) = e^{-(\psi+t|x|)^*(x)} = \left[f \star \left(t \cdot \mathbb{1}_{B_2^n}\right)\right](x) = \sup_{y: \ |y-x| \leq t} f(y).$$

By layer cake decomposition

$$\int f_t = \int_0^\infty |[f_t > s]| \, \mathrm{d}s = \int_0^\infty |[f > s] + tB_2^n| \, \mathrm{d}s,$$

SO

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0^+} \int f_t &= \int_0^\infty \left(\left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0^+} |[f > s] + tB_2^n| \right) \mathrm{d}s \\ &= \int_0^\infty \mathcal{H}^{n-1} \left([f = s] \right) \mathrm{d}s \end{split}$$

The Punch Line

The whole theorem reduced to the case $\alpha(x) = |x|$. We computed that the required result in this case is exactly

$$\int_0^\infty \mathcal{H}^{n-1}\left([f=s]\right)\mathrm{d}s = \int |\nabla f|\,,$$

i.e. the co-area formula!

Theorem

For every log-concave function $f:\mathbb{R}^n\to [0,\infty)$ one has

$$\int_0^\infty \mathcal{H}^{n-1}\left([f=s]\right) \mathrm{d}s = \int |\nabla f| + \int_{\partial(support(f))} f \mathrm{d}\mathcal{H}^{n-1}.$$

The proof uses the divergence theorem for Lipschitz domains and the co-area formula for BV functions.

• Surface area measures

Surface area measures for convex bodies Surface area measures for log-concave functions Proof Sketch

L^p-Minkowski theorem, 0
 L^p surface area measures
 Our Theorem and Proof Sketch

Alexandrov Bodies and Functions

Given ψ : Sⁿ⁻¹ → (-∞,∞], the Alexandrov body of ψ is the largest convex body K with h_K ≤ ψ. Explicitly

$$\mathcal{K} = \left\{ x: \ \langle x, heta
angle \leq \psi(heta) ext{ for all } heta \in S^{n-1}
ight\}$$

Similarly, given ψ : ℝⁿ → (-∞, ∞] we define its Alexandrov function f = [ψ] to be the largest log-concave function with h_f ≤ ψ. Explicitly f = e^{-ψ*}.

Fact

Let $\psi : \mathbb{R}^n \to (-\infty, \infty]$ be lower semi-continuous and $f = [\psi]$ be its Alexandrov function. Then $h_f = \psi$ at S_f -almost every point.

L^p-addition

- Fix 0 K +_p t ⋅ L is the Alexandrov body of (h^p_K + th^p_L)^{1/p}.
- We then have

$$\lim_{t\to 0^+}\frac{|\mathcal{K}+_pt\cdot L|-|\mathcal{K}|}{t}=\frac{1}{p}\int h_L^p h_K^{1-p}\mathrm{d}S_K.$$

For log-concave functions f, g with h_f, h_g ≥ 0 we define f *_p t ⋅ g to be the Alexandrov function of (h^p_f + th^p_g)^{1/p}.
 Under technical conditions we then have

$$\lim_{t\to 0^+} \frac{\int \left(f \star_p \left(t \cdot g\right)\right) - \int f}{t} = \frac{1}{p} \int h_g^p h_f^{1-p} \mathrm{d}S_f$$

Definition

The *p*-surface area measure $S_{K,p}$ of a convex body *K* containing the origin is $dS_{K,p} = h_K^{1-p} dS_K$.

Definition

The *p*-surface area measure $S_{f,p}$ of a log-concave function f with $h_f \ge 0$ is $\mathrm{d}S_{f,p} = h_f^{1-p} \mathrm{d}S_f$.

We are interested in the *p*-Minkowski existence theorem: Given $0 and a measure <math>\mu$, find a log-concave function *f* with $S_{f,p} = \mu$.

L^p-Minkowski theorem for symmetric bodies

Theorem (Lutwak)

Let μ be an even finite Borel measure on S^{n-1} which is not supported on any hyperplane. Then for every 0 there $exists a symmetric convex body K with <math>S_{K,p} = \mu$. For p = n there exists a symmetric convex body K with $S_{K,p} = c \cdot \mu$ for some c > 0.

- Uniqueness is much harder and is related to the L^p-Brunn-Minkowski inequality.
- The non-even case is also much harder.

Sketch of the proof.

Let *K* be the minimizer of $I(K) = |K|^{-\frac{p}{n}} \cdot \int_{S^{n-1}} h_K^p d\mu$. The condition $\nabla I(K) = 0$ is exactly $S_{K,p} = c \cdot \mu$. For $p \neq n$ we can use homogeneity to make c = 1.

Theorem (Cordero-Klartag)

Let μ be a centered probability Borel measure which is not supported on any hyperplane. Then there exists a unique essentially continuous log-concave function f with $S_f = \mu$.

Sketch of the proof of existence.

Let f be the minimizer of

$$I(f) = \int_{S^{n-1}} h_f \mathrm{d}\mu - \log \int f.$$

The condition $\nabla I(f) = 0$ is exactly $S_f = c \cdot \mu$. Since $S_{cf} = c \cdot S_f$ we can again make c = 1.

L^p-Minkowski Theorem for Log-Concave Functions

Theorem (R.)

Fix $0 . Let <math>\mu$ be an even finite Borel measure with finite first moment that is not supported on any hyperplane. Then there exists an even log-concave function f with $h_f \ge 0$ such that $S_{f,p} = c \cdot \mu$ for some c > 0.

- ▶ The main issue is lack of invariance: In general $S_{c \cdot f,p}$ is not proportional to $S_{f,p}$ for any notion of dilation.
- Therefore f cannot be found by solving an unconstrained optimization problem.
- Instead, we solve the constrained problem

$$\min \int h_f^p \mathrm{d}\mu$$
 subject to $\int f = a$

and use "Lagrange multipliers".

Some more details

Define

$$D = \left\{ f: \begin{array}{ll} f \text{ is even, log-concave} \\ \text{and } h_f \ge 0 \end{array} \right\}$$

And define $I(f) = \int h_f^p d\mu$ and $J(f) = \int f$. Then we:

- 1. Show that I attains a minimum under the constraint J = a.
- 2. Show that if a is large enough the minimizer f belongs to the *interior* of D, i.e. $h_f(0) > 0$.
- 3. Prove the "Lagrange multiplier" condition $\nabla I = c \cdot \nabla J$.
- 4. Compute both sides and deduce that $S_{f,p} = c \cdot \mu$.

Thank you