# The log-Brunn-Minkowski inequality and its local version

Eli Putterman Tel Aviv University

Banff, 10 February 2020

Eli Putterman Tel Aviv University The log-Brunn-Minkowski inequality and its local version

# Outline



- 2 Alternative formulations and applications
- 3 The local log-Brunn-Minkowski inequality

4 E 5 4

#### The Brunn-Minkowski inequality

 $K, L \subset \mathbb{R}^n$  convex bodies

$$\operatorname{vol}(K+L)^{\frac{1}{n}} \ge \operatorname{vol}(K)^{\frac{1}{n}} + \operatorname{vol}(L)^{\frac{1}{n}}$$

→ < Ξ → <</p>

#### The Brunn-Minkowski inequality

 $\mathcal{K}, \mathcal{L} \subset \mathbb{R}^n$  convex bodies,  $\lambda \in [0, 1]$ 

$$\operatorname{vol}((1-\lambda)K+\lambda L)^{rac{1}{n}} \geq (1-\lambda)\operatorname{vol}(K)^{rac{1}{n}}+\lambda\operatorname{vol}(L)^{rac{1}{n}}$$

→ < Ξ → <</p>

#### The Brunn-Minkowski inequality

 $\mathcal{K}, \mathcal{L} \subset \mathbb{R}^n$  convex bodies,  $\lambda \in [0,1]$ 

$$\operatorname{vol}((1-\lambda)K+\lambda L)^{rac{1}{n}} \geq (1-\lambda)\operatorname{vol}(K)^{rac{1}{n}}+\lambda\operatorname{vol}(L)^{rac{1}{n}}$$

#### where

$$(1-\lambda)K + \lambda L = \{x : \langle x, u \rangle \leq (1-\lambda)h_{K}(u) + \lambda h_{L}(u) \, \forall u \in S^{n-1}\}$$

. . . . . . .

#### The Brunn-Minkowski inequality

 $K, L \subset \mathbb{R}^n$  convex bodies,  $\lambda \in [0, 1]$  $\operatorname{vol}((1 - \lambda)K + \lambda L)^{\frac{1}{n}} \ge (1 - \lambda)\operatorname{vol}(K)^{\frac{1}{n}} + \lambda \operatorname{vol}(L)^{\frac{1}{n}}$ 

#### where

$$(1-\lambda)K + \lambda L = \{x : \langle x, u \rangle \leq (1-\lambda)h_K(u) + \lambda h_L(u) \, \forall u \in S^{n-1}\}$$

with equality iff K, L are homothetic.

伺 ト イヨ ト イヨト

#### The Brunn-Minkowski-Firey inequality (Firey, 1962)

 $K, L \subset \mathbb{R}^n$  convex bodies,  $\lambda \in [0, 1]$ 

$$\operatorname{vol}((1-\lambda)K +_{p} \lambda L)^{\frac{p}{n}} \geq (1-\lambda)\operatorname{vol}(K)^{\frac{p}{n}} + \lambda\operatorname{vol}(L)^{\frac{p}{n}}$$

. . . . . . .

#### The Brunn-Minkowski-Firey inequality (Firey, 1962)

$$K, L \subset \mathbb{R}^n$$
 convex bodies,  $\lambda \in [0, 1]$ 

$$\operatorname{vol}((1-\lambda)K +_p \lambda L)^{\frac{p}{n}} \ge (1-\lambda)\operatorname{vol}(K)^{\frac{p}{n}} + \lambda\operatorname{vol}(L)^{\frac{p}{n}}$$

where

$$(1-\lambda)\mathcal{K}+_{p}\lambda L = \{x: \langle x, u \rangle \leq ((1-\lambda)h_{\mathcal{K}}(u)^{p}+\lambda h_{L}(u)^{p})^{\frac{1}{p}} \forall u \in S^{n-1}\}$$

with equality iff K, L are homothetic.

4 3 6 4 3

#### The Brunn-Minkowski-Firey inequality (Firey, 1962)

 $K, L \subset \mathbb{R}^n$  convex bodies,  $\lambda \in [0, 1]$ 

$$\operatorname{vol}((1-\lambda)K +_p \lambda L)^{\frac{p}{n}} \ge (1-\lambda)\operatorname{vol}(K)^{\frac{p}{n}} + \lambda\operatorname{vol}(L)^{\frac{p}{n}}$$

where

$$(1-\lambda)\mathcal{K}+_{p}\lambda L = \{x: \langle x, u \rangle \leq ((1-\lambda)h_{\mathcal{K}}(u)^{p}+\lambda h_{L}(u)^{p})^{\frac{1}{p}} \forall u \in S^{n-1}\}$$

with equality iff K, L are homothetic.

... if  $p \ge 1$ .

-

# The conjectured $L^{p}$ -BM inequality (BLYZ, 2012)

 $K, L \subset \mathbb{R}^n$  centrally symmetric convex bodies,  $\lambda \in [0, 1]$ ,  $p \in (0, 1]$ 

$$\mathsf{vol}((1-\lambda)\mathcal{K}+_p\lambda L)^{rac{p}{n}}\geq (1-\lambda)\,\mathsf{vol}(\mathcal{K})^{rac{p}{n}}+\lambda\,\mathsf{vol}(L)^{rac{p}{n}}$$

where

$$(1-\lambda)\mathcal{K}+_{p}\lambda L = \{x: \langle x, u \rangle \leq ((1-\lambda)h_{\mathcal{K}}(u)^{p}+\lambda h_{L}(u)^{p})^{\frac{1}{p}} \forall u \in S^{n-1}\}$$

with equality iff K, L are homothetic.

-1

# The conjectured $L^{p}$ -BM inequality (BLYZ, 2012)

 $K, L \subset \mathbb{R}^n$  centrally symmetric convex bodies,  $\lambda \in [0, 1]$ ,  $p \in (0, 1]$ 

$$\mathsf{vol}((1-\lambda)\mathcal{K}+_p\lambda L)^{rac{p}{n}}\geq (1-\lambda)\,\mathsf{vol}(\mathcal{K})^{rac{p}{n}}+\lambda\,\mathsf{vol}(L)^{rac{p}{n}}$$

where

$$(1-\lambda)\mathcal{K}+_{p}\lambda L = \{x: \langle x, u \rangle \leq ((1-\lambda)h_{\mathcal{K}}(u)^{p}+\lambda h_{L}(u)^{p})^{\frac{1}{p}} \forall u \in S^{n-1}\}$$

with equality iff K, L are homothetic.

$$h_{(1-\lambda)K+_p\lambda L} 
eq ((1-\lambda)h_K(u)^p + \lambda h_L(u)^p)^{\frac{1}{p}}$$
 in general!

#### The conjectured log-BM inequality (BLYZ, 2012)

 $K, L \subset \mathbb{R}^n$  centrally symmetric convex bodies,  $\lambda \in [0, 1]$ 

$$\mathsf{vol}((1-\lambda)\mathcal{K}+_o\lambda L)^{rac{1}{n}}\geq\mathsf{vol}(\mathcal{K})^{1-\lambda}\,\mathsf{vol}(L)^\lambda$$

where

$$(1-\lambda)K+_o\lambda L=\{x:\langle x,u
angle\leq h_{\mathcal{K}}(u)^{1-\lambda}h_L(u)^\lambda\,\forall u\in S^{n-1}\}$$

with equality iff K, L are similar.

• • = = • • = =

#### The conjectured log-BM inequality (BLYZ, 2012)

 $K, L \subset \mathbb{R}^n$  centrally symmetric convex bodies,  $\lambda \in [0, 1]$ 

$$\mathsf{vol}((1-\lambda)\mathcal{K}+_o\lambda L)^{rac{1}{n}}\geq\mathsf{vol}(\mathcal{K})^{1-\lambda}\,\mathsf{vol}(L)^\lambda$$

where

$$(1-\lambda)K +_o \lambda L = \{x : \langle x, u \rangle \le h_K(u)^{1-\lambda}h_L(u)^\lambda \, \forall u \in S^{n-1}\}$$

with equality iff K, L are similar.

Again, 
$$h_{(1-\lambda)K+_o\lambda L} 
eq h_K^{1-\lambda} h_L^{\lambda}$$
 in general.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# The (B)-conjecture for uniform measures

#### Conjecture

For all c.s. convex bodies K, L and diagonal matrices  $\Lambda$ , the function

$$t\mapsto \mathsf{vol}(K\cap e^{\Lambda t}L)$$

is log-concave.

伺 ト イヨト イヨト

# The (B)-conjecture for uniform measures

#### Conjecture

For all c.s. convex bodies K, L and diagonal matrices  $\Lambda$ , the function

$$t \mapsto \operatorname{vol}(K \cap e^{\Lambda t}L)$$

is log-concave.

Weak (B)-conjecture: consider only matrices of the form  $\Lambda = \lambda I$ .

# The (B)-conjecture for uniform measures

#### Conjecture

For all c.s. convex bodies K, L and diagonal matrices  $\Lambda$ , the function

$$t \mapsto \mathsf{vol}(K \cap e^{\Lambda t}L)$$

is log-concave.

Weak (B)-conjecture: consider only matrices of the form  $\Lambda = \lambda I$ . Saroglou:

- Log-BM in dimension  $n \Rightarrow$  Weak (B)-conjecture in dimension n.
- (B)-conjecture in all dimensions for K = B<sup>n</sup><sub>∞</sub> ⇒ Log-BM in all dimensions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# The (B)-conjecture for uniform measures

#### Conjecture

For all c.s. convex bodies K, L and diagonal matrices  $\Lambda$ , the function

$$t \mapsto \mathsf{vol}(K \cap e^{\Lambda t}L)$$

is log-concave.

Weak (B)-conjecture: consider only matrices of the form  $\Lambda = \lambda I$ . Saroglou:

- Log-BM in dimension  $n \Rightarrow$  Weak (B)-conjecture in dimension n.
- (B)-conjecture in all dimensions for K = B<sup>n</sup><sub>∞</sub> ⇒ Log-BM in all dimensions.

Nayar-Tkocz: (B)-conjecture holds for  $K = B_1^n, B_2^n$ .

ロト (得) (ヨ) (ヨ)

#### The Minkowski and log-Minkowski inequalities

#### The Minkowski inequality

 $\operatorname{vol}(K)^{\frac{n-1}{n}}\operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n}\int h_L \, dS_K$ , equality iff K, L are homothetic.

< 回 > < 回 > < 回 >

# The Minkowski and log-Minkowski inequalities

#### The Minkowski inequality

 $\operatorname{vol}(K)^{\frac{n-1}{n}}\operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n}\int h_L \, dS_K$ , equality iff K, L are homothetic.

Follows from computing the derivative of  $vol((1 - \lambda)K + \lambda L)^{\frac{1}{n}}$  at 0 and Brunn-Minkowski.

伺 ト イヨト イヨト

### The Minkowski and log-Minkowski inequalities

#### The Minkowski inequality

 $\operatorname{vol}(K)^{\frac{n-1}{n}}\operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n}\int h_L \, dS_K$ , equality iff K, L are homothetic.

Follows from computing the derivative of  $vol((1 - \lambda)K + \lambda L)^{\frac{1}{n}}$  at 0 and Brunn-Minkowski.

#### The log-Minkowski inequality (conjectured)

 $\frac{\operatorname{vol}(K)}{n}\log\frac{\operatorname{vol}(L)}{\operatorname{vol}(K)} \leq \int h_K \log \frac{h_L}{h_K} \, dS_K, \text{ equality iff } K, L \text{ are similar.}$ 

# The Minkowski and log-Minkowski inequalities

#### The Minkowski inequality

 $\operatorname{vol}(K)^{\frac{n-1}{n}}\operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n}\int h_L \, dS_K$ , equality iff K, L are homothetic.

Follows from computing the derivative of vol $((1 - \lambda)K + \lambda L)^{\frac{1}{n}}$  at 0 and Brunn-Minkowski.

#### The log-Minkowski inequality (conjectured)

 $\frac{\operatorname{vol}(K)}{n}\log\frac{\operatorname{vol}(L)}{\operatorname{vol}(K)} \leq \int h_K \log \frac{h_L}{h_K} \, dS_K, \text{ equality iff } K, L \text{ are similar.}$ 

Follows from computing the derivative of vol $((1 - \lambda)K +_o \lambda L)^{\frac{1}{n}}$  at 0 and log-BM.

イロト イポト イヨト イヨト ニヨー

#### Minkowski uniqueness

The Minkowski inequality (1)

 $K, L \subset \mathbb{R}^n$  convex bodies  $\Rightarrow \operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_L \, dS_K$ , with equality iff K, L are homothetic.

• • • • • • •

#### Minkowski uniqueness

The Minkowski inequality (1)

 $K, L \subset \mathbb{R}^n$  convex bodies  $\Rightarrow \operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_L \, dS_K$ , with equality iff K, L are homothetic.

#### Minkowski uniqueness (2)

If two convex bodies K, L have the same surface area measure, they are translates.

### Minkowski uniqueness

The Minkowski inequality (1)

 $K, L \subset \mathbb{R}^n$  convex bodies  $\Rightarrow \operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_L \, dS_K$ , with equality iff K, L are homothetic.

#### Minkowski uniqueness (2)

If two convex bodies K, L have the same surface area measure, they are translates.

(1)  $\Rightarrow$  (2): Multiply  $dS_K = dS_L$  by  $h_K$  and integrate; use (1) to show that that  $vol(K) \le vol(L)$ . By the same argument,  $vol(L) \le vol(K)$ , so  $vol(K) = vol(L) = \frac{1}{n} \int h_L dS_K$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

### Minkowski uniqueness

The Minkowski inequality (1)

 $K, L \subset \mathbb{R}^n$  convex bodies  $\Rightarrow \operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_L \, dS_K$ , with equality iff K, L are homothetic.

#### Minkowski uniqueness (2)

If two convex bodies K, L have the same surface area measure, they are translates.

(2)  $\Rightarrow$  (1): For given K, let  $K_0$  minimize the functional  $f(h_L) = \operatorname{vol}(L)^{-\frac{1}{n}} \int h_L dS_K$ ; wlog  $\operatorname{vol}(K_0) = \operatorname{vol}(K)$ . We claim  $K_0$  is homothetic to K.

・ 同 ト ・ ヨ ト ・ ヨ ト

### Minkowski uniqueness

#### The Minkowski inequality (1)

 $K, L \subset \mathbb{R}^n$  convex bodies  $\Rightarrow \operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_L \, dS_K$ , with equality iff K, L are homothetic.

#### Minkowski uniqueness (2)

If two convex bodies K, L have the same surface area measure, they are translates.

(2)  $\Rightarrow$  (1): For given K, let  $K_0$  minimize the functional  $f(h_L) = \operatorname{vol}(L)^{-\frac{1}{n}} \int h_L dS_K$ ; wlog  $\operatorname{vol}(K_0) = \operatorname{vol}(K)$ . We claim  $K_0$  is homothetic to K.

For any  $\varphi \in C(S^{n-1})$ , let  $g(t) = f(h_{K_0} + t\varphi)$ ; we must have g'(0) = 0, giving  $\int \varphi \, dS_{K_0} = \int \varphi \, dS_K \Rightarrow S_K = S_{K_0}$ . Now use (2).

#### Log-Minkowski uniqueness

#### The conjectured log-Minkowski inequality

 $K, L \text{ c.s. convex bodies} \Rightarrow \frac{1}{n} \frac{\operatorname{vol}(L)}{\operatorname{vol}(K)} \leq \int h_K \log \frac{h_L}{h_K} dS_K$  with equality iff K, L are similar: that is, there exist c.s. convex bodies  $K_1, \ldots, K_m, \alpha_i > 0, T \in GL_n$  such that  $K = T(K_1 \times \cdots \times K_m)$  and  $L = T(\alpha_1 K_1 \times \cdots \otimes \alpha_m K_m)$ .

伺 ト イヨ ト イヨ ト

### Log-Minkowski uniqueness

#### The conjectured log-Minkowski inequality

 $K, L \text{ c.s. convex bodies} \Rightarrow \frac{1}{n} \frac{\operatorname{vol}(L)}{\operatorname{vol}(K)} \leq \int h_K \log \frac{h_L}{h_K} dS_K$  with equality iff K, L are similar: that is, there exist c.s. convex bodies  $K_1, \ldots, K_m, \alpha_i > 0, T \in GL_n$  such that  $K = T(K_1 \times \cdots \times K_m)$  and  $L = T(\alpha_1 K_1 \times \cdots \otimes \alpha_m K_m)$ .

#### Log-Minkowski uniqueness

If two c.s. convex bodies K, L have the same cone-volume measure -  $h_K dS_K = h_L dS_L$  - then K and L are similar.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

# Log-Minkowski uniqueness

#### The conjectured log-Minkowski inequality

 $K, L \text{ c.s. convex bodies} \Rightarrow \frac{1}{n} \frac{\operatorname{vol}(L)}{\operatorname{vol}(K)} \leq \int h_K \log \frac{h_L}{h_K} dS_K$  with equality iff K, L are similar: that is, there exist c.s. convex bodies  $K_1, \ldots, K_m, \alpha_i > 0, T \in GL_n$  such that  $K = T(K_1 \times \cdots \times K_m)$  and  $L = T(\alpha_1 K_1 \times \cdots \otimes \alpha_m K_m)$ .

#### Log-Minkowski uniqueness

If two c.s. convex bodies K, L have the same cone-volume measure -  $h_K dS_K = h_L dS_L$  - then K and L are similar.

In dimension 2, K and L are similar iff they are homothetic, or parallelograms with parallel sides (BLYZ 2012).

イロト 不得 トイヨト イヨト 二日

# Log-Minkowski uniqueness

#### The conjectured log-Minkowski inequality

K, L c.s. convex bodies  $\Rightarrow \frac{1}{n} \frac{\operatorname{vol}(L)}{\operatorname{vol}(K)} \leq \int h_K \log \frac{h_L}{h_K} dS_K$  with equality iff K, L are similar: that is, there exist c.s. convex bodies  $K_1, \ldots, K_m, \alpha_i > 0, T \in GL_n$  such that  $K = T(K_1 \times \cdots \times K_m)$  and  $L = T(\alpha_1 K_1 \times \cdots \otimes \alpha_m K_m)$ .

#### Log-Minkowski uniqueness

If two c.s. convex bodies K, L have the same cone-volume measure -  $h_K dS_K = h_L dS_L$  - then K and L are similar.

In dimension 2, K and L are similar iff they are homothetic, or parallelograms with parallel sides (BLYZ 2012). There are also  $L^p$ -Minkowski inequalities and corresponding p-Minkowski uniqueness statements for all  $p \in (0, 1]$ .

### Differentiating the log-BM inequality

Set  $K_{\lambda} = (1 - \lambda)K +_o \lambda L$  for  $\lambda \in [0, 1]$ . Log-BM  $\Leftrightarrow f(\lambda) = \log \operatorname{vol}(K_{\lambda})$  is concave on [0, 1].

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# Differentiating the log-BM inequality

Set 
$$K_{\lambda} = (1 - \lambda)K +_o \lambda L$$
 for  $\lambda \in [0, 1]$ .  
Log-BM  $\Leftrightarrow f(\lambda) = \log \operatorname{vol}(K_{\lambda})$  is concave on  $[0, 1]$ .

A natural question: what do you get when you take the second derivative of *f*?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# Differentiating the log-BM inequality

Set 
$$K_{\lambda} = (1 - \lambda)K +_o \lambda L$$
 for  $\lambda \in [0, 1]$ .  
Log-BM  $\Leftrightarrow f(\lambda) = \log \operatorname{vol}(K_{\lambda})$  is concave on  $[0, 1]$ .

A natural question: what do you get when you take the second derivative of *f*?

Studied by Colesanti-Livshyts-Marsiglietti and by Kolesnikov-Milman in the class of smooth and strongly convex bodies, and by P. in the class of strongly isomorphic polytopes.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Local log-BM and local *p*-BM

#### Theorem (Colesanti-Livshyts-Marsiglietti)

Set  $K = B_2^n$ . Then for  $L \in \mathcal{K}_{+,e}^n$  close enough to K, the log-Brunn-Minkowski inequality holds for K, L.

Write  $h_L = e^{\varphi}$ ,  $K_{\lambda} = (1 - \lambda)K +_o \lambda L$ . Then  $h_{K_{\lambda}} = e^{\lambda \varphi}$  for all  $\lambda \in [0, 1]$ . Substitute in

$$\operatorname{vol}(K_{\lambda}) = \frac{1}{n} \int_{S^{n-1}} h_{K_{\lambda}} dS_{K_{\lambda}} = \frac{1}{n} \int_{S^{n-1}} h_{K_{\lambda}} \det[D^2 h_{K_{\lambda}}] d\sigma.$$

Using some linear algebra, we compute that  $n^2 \kappa_n \log \operatorname{vol}(K_\lambda)''(0)$  equals

$$n\int \varphi^2 \, d\sigma - \int_{S^{n-1}} |\nabla \varphi|^2 \, d\sigma - \frac{1}{\kappa_n} \left( \int_{S^{n-1}} \varphi \, d\sigma \right)^2$$

Decomposing into spherical harmonics shows this is nonpositive!

#### Local L<sup>p</sup>-Brunn-Minkowski

Kolesnikov-Milman generalized in two directions:

• Work with  $L^p$ -Brunn-Minkowski for any  $p \in [0, 1]$ .

伺 ト イヨト イヨト

#### Local L<sup>p</sup>-Brunn-Minkowski

Kolesnikov-Milman generalized in two directions:

- Work with  $L^{p}$ -Brunn-Minkowski for any  $p \in [0, 1]$ .
- Consider local behavior near any  $K \in \mathcal{K}^n_{+,e}$ , not just  $B^n_2$ .

< 同 > < 三 > < 三 >

#### Local L<sup>p</sup>-Brunn-Minkowski

Kolesnikov-Milman generalized in two directions:

- Work with  $L^p$ -Brunn-Minkowski for any  $p \in [0, 1]$ .
- Consider local behavior near any  $K \in \mathcal{K}^n_{+,e}$ , not just  $B^n_2$ .

They showed that  $(\operatorname{vol}(K_{\lambda})^{\frac{p}{n}})''(0) \leq 0$  implies that for all  $\varphi \in C^{2}(S^{n-1})$ ,

$$\frac{n-1}{n-p}V(\varphi h_{\mathcal{K}}[2],\mathcal{K}[n-2]) + \frac{1-p}{n-p}V(\varphi^2 h_{\mathcal{K}}[1],\mathcal{K}[n-1]) - \frac{V(\varphi h_{\mathcal{K}}[1],\mathcal{K}[n-1])^2}{\operatorname{vol}(\mathcal{K})} \leq 0$$

Using spectral methods, they proved this inequality for  $p \in [p_0(n), 1]$ .

• (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (1) • (

#### Why local-to-global is nontrivial

Whenever  $h_{K_{\lambda}} = (1 - \lambda)h_{K} +_{p} \lambda h_{L}$  on some neighborhood, vol $(K_{\lambda})^{\frac{p}{n}}$  is twice differentiable with second derivative given by the LHS of the local  $L^{p}$ -BM inequality.

(四) (日) (日)

# Why local-to-global is nontrivial

Whenever  $h_{K_{\lambda}} = (1 - \lambda)h_{K} +_{p} \lambda h_{L}$  on some neighborhood, vol $(K_{\lambda})^{\frac{p}{n}}$  is twice differentiable with second derivative given by the LHS of the local  $L^{p}$ -BM inequality.

In particular, this is true for any  $K, L \in \mathcal{K}^n_{+,e}$  and small enough  $\lambda$ , so global  $L^p$ -BM implies the local version.

# Why local-to-global is nontrivial

Whenever  $h_{K_{\lambda}} = (1 - \lambda)h_{K} +_{p} \lambda h_{L}$  on some neighborhood, vol $(K_{\lambda})^{\frac{p}{n}}$  is twice differentiable with second derivative given by the LHS of the local  $L^{p}$ -BM inequality.

In particular, this is true for any  $K, L \in \mathcal{K}^n_{+,e}$  and small enough  $\lambda$ , so global  $L^p$ -BM implies the local version.

But in general,  $h_{K_{\lambda}} \neq (1 - \lambda)h_{K} +_{p} \lambda h_{L}$ , because the RHS isn't necessarily convex for  $p \in [0, 1)$ .

• A B • • B • • B •

# Why local-to-global is nontrivial

Whenever  $h_{K_{\lambda}} = (1 - \lambda)h_{K} +_{p} \lambda h_{L}$  on some neighborhood, vol $(K_{\lambda})^{\frac{p}{n}}$  is twice differentiable with second derivative given by the LHS of the local  $L^{p}$ -BM inequality.

In particular, this is true for any  $K, L \in \mathcal{K}^n_{+,e}$  and small enough  $\lambda$ , so global  $L^p$ -BM implies the local version.

But in general,  $h_{K_{\lambda}} \neq (1 - \lambda)h_{K} +_{p} \lambda h_{L}$ , because the RHS isn't necessarily convex for  $p \in [0, 1)$ .

It turns out that the first derivative of  $vol(K_{\lambda})$  can be computed despite this problem (Alexandrov's lemma), but the second derivative seems out of reach in general.

### Local L<sup>p</sup>-Brunn-Minkowski and Minkowski uniqueness

Recall:

L<sup>p</sup>-BM inequality (with equality condition) ⇔ L<sup>p</sup>-Minkowski inequality (with equality condition).

# Local L<sup>p</sup>-Brunn-Minkowski and Minkowski uniqueness

Recall:

- L<sup>p</sup>-BM inequality (with equality condition) ⇔ L<sup>p</sup>-Minkowski inequality (with equality condition).
- L<sup>p</sup>-Minkowski inequality with equality condition ⇔ p-Minkowski uniqueness.

### Local L<sup>p</sup>-Brunn-Minkowski and Minkowski uniqueness

Recall:

- L<sup>p</sup>-BM inequality (with equality condition) ⇔ L<sup>p</sup>-Minkowski inequality (with equality condition).
- L<sup>p</sup>-Minkowski inequality with equality condition ⇔ p-Minkowski uniqueness.

Also,  $L^{p}$ -BM  $\Rightarrow L^{q}$ -BM with equality condition for any  $q \in (p, 1]$ .

. . . . . . . .

# Local L<sup>p</sup>-Brunn-Minkowski and Minkowski uniqueness

Recall:

- L<sup>p</sup>-BM inequality (with equality condition) ⇔ L<sup>p</sup>-Minkowski inequality (with equality condition).
- L<sup>p</sup>-Minkowski inequality with equality condition ⇔ p-Minkowski uniqueness.

Also,  $L^p$ -BM  $\Rightarrow L^q$ -BM with equality condition for any  $q \in (p, 1]$ .

These implications also hold true locally. So Kolesnikov-Milman yields local *p*-Minkowski uniqueness for  $p \in (p_0(n), 1]$ .

# Local L<sup>p</sup>-Brunn-Minkowski and Minkowski uniqueness

Recall:

- L<sup>p</sup>-BM inequality (with equality condition) ⇔ L<sup>p</sup>-Minkowski inequality (with equality condition).
- L<sup>p</sup>-Minkowski inequality with equality condition ⇔ p-Minkowski uniqueness.

Also,  $L^p$ -BM  $\Rightarrow L^q$ -BM with equality condition for any  $q \in (p, 1]$ .

These implications also hold true locally. So Kolesnikov-Milman yields local *p*-Minkowski uniqueness for  $p \in (p_0(n), 1]$ .

Chen-Huang-Li-Liu, by PDE methods, showed that local *p*-Minkowski uniqueness implies global *p*-Minkowski uniqueness.

イロト イポト イヨト イヨト

# Local L<sup>p</sup>-Brunn-Minkowski and Minkowski uniqueness

Recall:

- L<sup>p</sup>-BM inequality (with equality condition) ⇔ L<sup>p</sup>-Minkowski inequality (with equality condition).
- L<sup>p</sup>-Minkowski inequality with equality condition ⇔ p-Minkowski uniqueness.

Also,  $L^p$ -BM  $\Rightarrow L^q$ -BM with equality condition for any  $q \in (p, 1]$ .

These implications also hold true locally. So Kolesnikov-Milman yields local *p*-Minkowski uniqueness for  $p \in (p_0(n), 1]$ .

Chen-Huang-Li-Liu, by PDE methods, showed that local *p*-Minkowski uniqueness implies global *p*-Minkowski uniqueness.

Yields equivalence of local and global  $L^p$ -BM in general, and in particular proves  $L^p$ -BM for  $p \in [p_0(n), 1]$ .

Pairs of strongly isomorphic polytopes are dense in  $\mathcal{K}^n \times \mathcal{K}^n$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Pairs of strongly isomorphic polytopes are dense in  $\mathcal{K}^n \times \mathcal{K}^n$ .

For strongly isomorphic polytopes K, L, one can compute  $(\operatorname{vol}(K_{\lambda})^{\frac{P}{n}})''$  at any "good"  $\lambda$  and obtain the same formula as in the smooth and strongly convex case.

Pairs of strongly isomorphic polytopes are dense in  $\mathcal{K}^n \times \mathcal{K}^n$ .

For strongly isomorphic polytopes K, L, one can compute  $(vol(K_{\lambda})^{\frac{p}{n}})''$  at any "good"  $\lambda$  and obtain the same formula as in the smooth and strongly convex case.

However, in this case the behavior of  $K_{\lambda}$  is very simple: it changes its s.i. class only at a finite set of points in [0, 1], and on each subinterval,  $(\operatorname{vol}(K_{\lambda})^{\frac{p}{n}})''$  exists and is given by the local formula.

Pairs of strongly isomorphic polytopes are dense in  $\mathcal{K}^n \times \mathcal{K}^n$ .

For strongly isomorphic polytopes K, L, one can compute  $(\operatorname{vol}(K_{\lambda})^{\frac{P}{n}})''$  at any "good"  $\lambda$  and obtain the same formula as in the smooth and strongly convex case.

However, in this case the behavior of  $K_{\lambda}$  is very simple: it changes its s.i. class only at a finite set of points in [0, 1], and on each subinterval,  $(\operatorname{vol}(K_{\lambda})^{\frac{p}{n}})''$  exists and is given by the local formula.

So local  $L^p$ -Brunn-Minkowski implies global  $L^p$ -Brunn Minkowski for such K, L; extend by continuity.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Pairs of strongly isomorphic polytopes are dense in  $\mathcal{K}^n \times \mathcal{K}^n$ .

For strongly isomorphic polytopes K, L, one can compute  $(\operatorname{vol}(K_{\lambda})^{\frac{P}{n}})''$  at any "good"  $\lambda$  and obtain the same formula as in the smooth and strongly convex case.

However, in this case the behavior of  $K_{\lambda}$  is very simple: it changes its s.i. class only at a finite set of points in [0, 1], and on each subinterval,  $(\operatorname{vol}(K_{\lambda})^{\frac{p}{n}})''$  exists and is given by the local formula.

So local  $L^p$ -Brunn-Minkowski implies global  $L^p$ -Brunn Minkowski for such K, L; extend by continuity.

- 4 回 ト 4 ヨ ト 4 ヨ ト

### Local-to-global - some details (1)

#### Lemma

Let *K* and *L* be polytopes with facet normals  $u_i \in S^{n-1}$  and support numbers  $h_K(u_i) = \alpha_i$ ,  $h_L(u_i) = \alpha_i e^{s_i}$ . Then for any  $\lambda \in [0, 1]$ ,  $K_\lambda = \{x : \langle x, u_i \rangle \leq \alpha_i e^{\lambda s_i}\}$ .

(人間) トイヨト (日) (日)

# Local-to-global - some details (1)

#### Lemma

Let *K* and *L* be polytopes with facet normals  $u_i \in S^{n-1}$  and support numbers  $h_K(u_i) = \alpha_i$ ,  $h_L(u_i) = \alpha_i e^{s_i}$ . Then for any  $\lambda \in [0, 1]$ ,  $K_\lambda = \{x : \langle x, u_i \rangle \leq \alpha_i e^{\lambda s_i}\}$ .

Note that  $K_{\lambda}$  may not have facets corresponding to all the  $u_i$ !

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

# Local-to-global - some details (1)

#### Lemma

Let *K* and *L* be polytopes with facet normals  $u_i \in S^{n-1}$  and support numbers  $h_K(u_i) = \alpha_i$ ,  $h_L(u_i) = \alpha_i e^{s_i}$ . Then for any  $\lambda \in [0, 1]$ ,  $K_\lambda = \{x : \langle x, u_i \rangle \leq \alpha_i e^{\lambda s_i}\}$ .

Note that  $K_{\lambda}$  may not have facets corresponding to all the  $u_i$ !

#### Lemma

Let  $K_t$  be a family of polytopes with facet normals  $u_i$ , support numbers  $h_{K_t}(u_i) = h_i(t)$ , and facet volumes  $F_i(t)$ . Then  $vol(K_t)' = \sum h'_i(t)F_i(t)$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Local-to-global - some details (1)

#### Lemma

Let *K* and *L* be polytopes with facet normals  $u_i \in S^{n-1}$  and support numbers  $h_K(u_i) = \alpha_i$ ,  $h_L(u_i) = \alpha_i e^{s_i}$ . Then for any  $\lambda \in [0, 1]$ ,  $K_\lambda = \{x : \langle x, u_i \rangle \leq \alpha_i e^{\lambda s_i}\}$ .

Note that  $K_{\lambda}$  may not have facets corresponding to all the  $u_i$ !

#### Lemma

Let  $K_t$  be a family of polytopes with facet normals  $u_i$ , support numbers  $h_{K_t}(u_i) = h_i(t)$ , and facet volumes  $F_i(t)$ . Then  $vol(K_t)' = \sum h'_i(t)F_i(t)$ .

The lemmata enable us to compute  $vol(K_{\lambda})'$ .

イロト イポト イヨト イヨト 三日

# Local-to-global - some details (1)

#### Lemma

Let *K* and *L* be polytopes with facet normals  $u_i \in S^{n-1}$  and support numbers  $h_K(u_i) = \alpha_i$ ,  $h_L(u_i) = \alpha_i e^{s_i}$ . Then for any  $\lambda \in [0, 1]$ ,  $K_\lambda = \{x : \langle x, u_i \rangle \leq \alpha_i e^{\lambda s_i}\}$ .

Note that  $K_{\lambda}$  may not have facets corresponding to all the  $u_i$ !

#### Lemma

Let  $K_t$  be a family of polytopes with facet normals  $u_i$ , support numbers  $h_{K_t}(u_i) = h_i(t)$ , and facet volumes  $F_i(t)$ . Then  $vol(K_t)' = \sum h'_i(t)F_i(t)$ .

The lemmata enable us to compute  $\operatorname{vol}(K_{\lambda})'$ . But if the  $K_{\lambda}$  are strongly isomorphic, then each facet of  $K_{\lambda}$  satisfies the assumptions of the lemma as well, which lets us compute  $\log \operatorname{vol}(K_{\lambda})''$ . The result is the local log-BM formula.

#### Local-to-global - some details (2)

So assuming the local log-BM inequality, for any neighborhood  $U \subset [0, 1]$ in which all the  $\{K_{\lambda} : \lambda \in U\}$  are strongly isomorphic, we have  $\log \operatorname{vol}(K_{\lambda})'' \leq 0$ . How do we go from here to a proof that local log-BM implies global log-BM?

< 同 > < 三 > < 三 > -

So assuming the local log-BM inequality, for any neighborhood  $U \subset [0, 1]$ in which all the  $\{K_{\lambda} : \lambda \in U\}$  are strongly isomorphic, we have  $\log \operatorname{vol}(K_{\lambda})'' \leq 0$ . How do we go from here to a proof that local log-BM implies global log-BM?

Essentially, this boils down to the question of when  $K_{\lambda}$  can change its strong isomorphism class. Let's start with an easier question: when does a polytope defined by varying support numbers  $h_i(\lambda)$  lose or gain a facet?

・ 何 ト ・ ヨ ト ・ ヨ ト

So assuming the local log-BM inequality, for any neighborhood  $U \subset [0, 1]$ in which all the  $\{K_{\lambda} : \lambda \in U\}$  are strongly isomorphic, we have  $\log \operatorname{vol}(K_{\lambda})'' \leq 0$ . How do we go from here to a proof that local log-BM implies global log-BM?

Essentially, this boils down to the question of when  $K_{\lambda}$  can change its strong isomorphism class. Let's start with an easier question: when does a polytope defined by varying support numbers  $h_i(\lambda)$  lose or gain a facet?

It turns out that this boils down to some linear inequalities involving  $h_i$  and other support numbers.

So assuming the local log-BM inequality, for any neighborhood  $U \subset [0, 1]$ in which all the  $\{K_{\lambda} : \lambda \in U\}$  are strongly isomorphic, we have  $\log \operatorname{vol}(K_{\lambda})'' \leq 0$ . How do we go from here to a proof that local log-BM implies global log-BM?

Essentially, this boils down to the question of when  $K_{\lambda}$  can change its strong isomorphism class. Let's start with an easier question: when does a polytope defined by varying support numbers  $h_i(\lambda)$  lose or gain a facet?

It turns out that this boils down to some linear inequalities involving  $h_i$  and other support numbers. The same holds true for lower-dimensional faces, whose support numbers are linear combinations of the original ones.

So assuming the local log-BM inequality, for any neighborhood  $U \subset [0, 1]$ in which all the  $\{K_{\lambda} : \lambda \in U\}$  are strongly isomorphic, we have  $\log \operatorname{vol}(K_{\lambda})'' \leq 0$ . How do we go from here to a proof that local log-BM implies global log-BM?

Essentially, this boils down to the question of when  $K_{\lambda}$  can change its strong isomorphism class. Let's start with an easier question: when does a polytope defined by varying support numbers  $h_i(\lambda)$  lose or gain a facet?

It turns out that this boils down to some linear inequalities involving  $h_i$  and other support numbers. The same holds true for lower-dimensional faces, whose support numbers are linear combinations of the original ones.

But since the  $h_i(\lambda)$  are analytic, any linear combination of them can change sign only at a finite number of points in [0, 1]. So we obtain that log vol $(K_{\lambda})'$  is decreasing except at a finite number of points in [0, 1], and a continuity argument finishes the proof.

#### Local Log-BM in dimension 2

For  $K, L \in \mathcal{K}_e^2$ , define the inradius and circumradius of L w.r.t.K:

$$r(L, K) = \min_{u \in S^{n-1}} \frac{h_L(u)}{h_K(u)}$$
  $R(L, K) = \max_{u \in S^{n-1}} \frac{h_L(u)}{h_K(u)}$ 

< 回 > < 回 > < 回 >

#### Local Log-BM in dimension 2

For  $K, L \in \mathcal{K}_{e}^{2}$ , define the inradius and circumradius of L w.r.t.K:

$$r(L, K) = \min_{u \in S^{n-1}} \frac{h_L(u)}{h_K(u)} \qquad R(L, K) = \max_{u \in S^{n-1}} \frac{h_L(u)}{h_K(u)}$$

By Blaschke's extension of the Bonnesen inequality, for any  $t \in [r(L, K), R(L, K)]$  we have

$$\operatorname{vol}(L) - 2tV(L,K) + t^2\operatorname{vol}(K) \leq 0$$

伺下 イヨト イヨト

#### Local Log-BM in dimension 2

For  $K, L \in \mathcal{K}_{e}^{2}$ , define the inradius and circumradius of L w.r.t.K:

$$r(L, K) = \min_{u \in S^{n-1}} \frac{h_L(u)}{h_K(u)} \qquad R(L, K) = \max_{u \in S^{n-1}} \frac{h_L(u)}{h_K(u)}$$

By Blaschke's extension of the Bonnesen inequality, for any  $t \in [r(L, K), R(L, K)]$  we have

$$\operatorname{vol}(L) - 2tV(L,K) + t^2\operatorname{vol}(K) \leq 0$$

Substituting  $\frac{h_L(u)}{h_K(u)}$  for t and integrating over  $h_K dS_K$  gives

$$\operatorname{vol}(L) \cdot \int h_K \, dS_K - 2V(K,L) \int h_L \, dS_K + \operatorname{vol}(K) \int \frac{h_L^2}{h_K} \, dS_K \leq 0$$

・ 戸 ト ・ ヨ ト ・ ヨ ト …

### Local Log-BM in dimension 2

For  $K, L \in \mathcal{K}_{e}^{2}$ , define the inradius and circumradius of L w.r.t.K:

$$r(L, K) = \min_{u \in S^{n-1}} \frac{h_L(u)}{h_K(u)} \qquad R(L, K) = \max_{u \in S^{n-1}} \frac{h_L(u)}{h_K(u)}$$

By Blaschke's extension of the Bonnesen inequality, for any  $t \in [r(L, K), R(L, K)]$  we have

$$\operatorname{vol}(L) - 2tV(L,K) + t^2\operatorname{vol}(K) \leq 0$$

Substituting  $\frac{h_L(u)}{h_K(u)}$  for t and integrating over  $h_K dS_K$  gives

$$\begin{aligned} \operatorname{vol}(L) \cdot \int h_{K} \, dS_{K} - 2V(K,L) \int h_{L} \, dS_{K} + \operatorname{vol}(K) \int \frac{h_{L}^{2}}{h_{K}} \, dS_{K} &\leq 0 \\ \Rightarrow 2 \operatorname{vol}(K) \operatorname{vol}(L) - 4V(K,L)^{2} + \operatorname{vol}(K) \int \frac{h_{L}^{2}}{h_{K}} \, dS_{K} &\leq 0 \end{aligned}$$

which is precisely local log-BM in dimension  $2_{\Box}$ ,  $A_{\Box}$ ,

### Questions?

メロト メポト メヨト メヨ

э

### Questions?

#### Thank you!

Eli Putterman Tel Aviv University The log-Brunn-Minkowski inequality and its local version

▲ □ ▶ ▲ □ ▶ ▲

Э