The log-Brunn-Minkowski inequality and its local version

Eli Putterman
Tel Aviv University

Banff, 10 February 2020

Outline

(1) The log-Brunn-Minkowski inequality
(2) Alternative formulations and applications
(3) The local log-Brunn-Minkowski inequality

The Brunn-Minkowski inequality

$K, L \subset \mathbb{R}^{n}$ convex bodies

$$
\operatorname{vol}(K+L)^{\frac{1}{n}} \geq \operatorname{vol}(K)^{\frac{1}{n}}+\operatorname{vol}(L)^{\frac{1}{n}}
$$

The Brunn-Minkowski inequality

$K, L \subset \mathbb{R}^{n}$ convex bodies, $\lambda \in[0,1]$

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{\frac{1}{n}} \geq(1-\lambda) \operatorname{vol}(K)^{\frac{1}{n}}+\lambda \operatorname{vol}(L)^{\frac{1}{n}}
$$

The Brunn-Minkowski inequality

$K, L \subset \mathbb{R}^{n}$ convex bodies, $\lambda \in[0,1]$

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{\frac{1}{n}} \geq(1-\lambda) \operatorname{vol}(K)^{\frac{1}{n}}+\lambda \operatorname{vol}(L)^{\frac{1}{n}}
$$

where

$$
(1-\lambda) K+\lambda L=\left\{x:\langle x, u\rangle \leq(1-\lambda) h_{K}(u)+\lambda h_{L}(u) \forall u \in S^{n-1}\right\}
$$

The Brunn-Minkowski inequality

$K, L \subset \mathbb{R}^{n}$ convex bodies, $\lambda \in[0,1]$

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{\frac{1}{n}} \geq(1-\lambda) \operatorname{vol}(K)^{\frac{1}{n}}+\lambda \operatorname{vol}(L)^{\frac{1}{n}}
$$

where
$(1-\lambda) K+\lambda L=\left\{x:\langle x, u\rangle \leq(1-\lambda) h_{K}(u)+\lambda h_{L}(u) \forall u \in S^{n-1}\right\}$
with equality iff K, L are homothetic.

The Brunn-Minkowski-Firey inequality (Firey, 1962)

$K, L \subset \mathbb{R}^{n}$ convex bodies, $\lambda \in[0,1]$

$$
\operatorname{vol}\left((1-\lambda) K+{ }_{p} \lambda L\right)^{\frac{p}{n}} \geq(1-\lambda) \operatorname{vol}(K)^{\frac{p}{n}}+\lambda \operatorname{vol}(L)^{\frac{p}{n}}
$$

The Brunn-Minkowski-Firey inequality (Firey, 1962)

$K, L \subset \mathbb{R}^{n}$ convex bodies, $\lambda \in[0,1]$

$$
\operatorname{vol}\left((1-\lambda) K+{ }_{p} \lambda L\right)^{\frac{p}{n}} \geq(1-\lambda) \operatorname{vol}(K)^{\frac{p}{n}}+\lambda \operatorname{vol}(L)^{\frac{p}{n}}
$$

where
$(1-\lambda) K+{ }_{p} \lambda L=\left\{x:\langle x, u\rangle \leq\left((1-\lambda) h_{K}(u)^{p}+\lambda h_{L}(u)^{p}\right)^{\frac{1}{p}} \forall u \in S^{n-1}\right\}$
with equality iff K, L are homothetic.

The Brunn-Minkowski-Firey inequality (Firey, 1962)

$K, L \subset \mathbb{R}^{n}$ convex bodies, $\lambda \in[0,1]$

$$
\operatorname{vol}\left((1-\lambda) K+{ }_{p} \lambda L\right)^{\frac{p}{n}} \geq(1-\lambda) \operatorname{vol}(K)^{\frac{p}{n}}+\lambda \operatorname{vol}(L)^{\frac{p}{n}}
$$

where
$(1-\lambda) K+{ }_{p} \lambda L=\left\{x:\langle x, u\rangle \leq\left((1-\lambda) h_{K}(u)^{p}+\lambda h_{L}(u)^{p}\right)^{\frac{1}{p}} \forall u \in S^{n-1}\right\}$
with equality iff K, L are homothetic.
\ldots if $p \geq 1$.

The conjectured L^{P}-BM inequality (BLYZ, 2012)

$K, L \subset \mathbb{R}^{n}$ centrally symmetric convex bodies, $\lambda \in[0,1], p \in(0,1]$

$$
\operatorname{vol}\left((1-\lambda) K+{ }_{p} \lambda L\right)^{\frac{p}{n}} \geq(1-\lambda) \operatorname{vol}(K)^{\frac{p}{n}}+\lambda \operatorname{vol}(L)^{\frac{p}{n}}
$$

where
$(1-\lambda) K+{ }_{p} \lambda L=\left\{x:\langle x, u\rangle \leq\left((1-\lambda) h_{K}(u)^{p}+\lambda h_{L}(u)^{p}\right)^{\frac{1}{p}} \forall u \in S^{n-1}\right\}$
with equality iff K, L are homothetic.

The conjectured L^{p}-BM inequality (BLYZ, 2012)

$K, L \subset \mathbb{R}^{n}$ centrally symmetric convex bodies, $\lambda \in[0,1], p \in(0,1]$

$$
\operatorname{vol}\left((1-\lambda) K+{ }_{p} \lambda L\right)^{\frac{p}{n}} \geq(1-\lambda) \operatorname{vol}(K)^{\frac{p}{n}}+\lambda \operatorname{vol}(L)^{\frac{p}{n}}
$$

where
$(1-\lambda) K+{ }_{p} \lambda L=\left\{x:\langle x, u\rangle \leq\left((1-\lambda) h_{K}(u)^{p}+\lambda h_{L}(u)^{p}\right)^{\frac{1}{p}} \forall u \in S^{n-1}\right\}$
with equality iff K, L are homothetic.
$h_{(1-\lambda) K+{ }_{p} \lambda L} \neq\left((1-\lambda) h_{K}(u)^{p}+\lambda h_{L}(u)^{p}\right)^{\frac{1}{p}}$ in general!

The conjectured log-BM inequality (BLYZ, 2012)

$K, L \subset \mathbb{R}^{n}$ centrally symmetric convex bodies, $\lambda \in[0,1]$

$$
\operatorname{vol}\left((1-\lambda) K+{ }_{o} \lambda L\right)^{\frac{1}{n}} \geq \operatorname{vol}(K)^{1-\lambda} \operatorname{vol}(L)^{\lambda}
$$

where

$$
(1-\lambda) K+{ }_{o} \lambda L=\left\{x:\langle x, u\rangle \leq h_{K}(u)^{1-\lambda} h_{L}(u)^{\lambda} \forall u \in S^{n-1}\right\}
$$

with equality iff K, L are similar.

The conjectured log-BM inequality (BLYZ, 2012)

$K, L \subset \mathbb{R}^{n}$ centrally symmetric convex bodies, $\lambda \in[0,1]$

$$
\operatorname{vol}\left((1-\lambda) K+{ }_{o} \lambda L\right)^{\frac{1}{n}} \geq \operatorname{vol}(K)^{1-\lambda} \operatorname{vol}(L)^{\lambda}
$$

where

$$
(1-\lambda) K+{ }_{o} \lambda L=\left\{x:\langle x, u\rangle \leq h_{K}(u)^{1-\lambda} h_{L}(u)^{\lambda} \forall u \in S^{n-1}\right\}
$$

with equality iff K, L are similar.
Again, $h_{(1-\lambda) K+o \lambda L} \neq h_{K}^{1-\lambda} h_{L}^{\lambda}$ in general.

The (B)-conjecture for uniform measures

Conjecture

For all c.s. convex bodies K, L and diagonal matrices Λ, the function

$$
t \mapsto \operatorname{vol}\left(K \cap e^{\wedge t} L\right)
$$

is log-concave.

The (B)-conjecture for uniform measures

Conjecture

For all c.s. convex bodies K, L and diagonal matrices Λ, the function

$$
t \mapsto \operatorname{vol}\left(K \cap e^{\wedge t} L\right)
$$

is log-concave.
Weak (B)-conjecture: consider only matrices of the form $\Lambda=\lambda I$.

The (B)-conjecture for uniform measures

Conjecture

For all c.s. convex bodies K, L and diagonal matrices Λ, the function

$$
t \mapsto \operatorname{vol}\left(K \cap e^{\wedge t} L\right)
$$

is log-concave.
Weak (B)-conjecture: consider only matrices of the form $\Lambda=\lambda I$. Saroglou:

- Log-BM in dimension $n \Rightarrow$ Weak (B)-conjecture in dimension n.
- (B)-conjecture in all dimensions for $K=B_{\infty}^{n} \Rightarrow$ Log- BM in all dimensions.

The (B)-conjecture for uniform measures

Conjecture

For all c.s. convex bodies K, L and diagonal matrices Λ, the function

$$
t \mapsto \operatorname{vol}\left(K \cap e^{\wedge t} L\right)
$$

is log-concave.
Weak (B)-conjecture: consider only matrices of the form $\Lambda=\lambda I$. Saroglou:

- Log-BM in dimension $n \Rightarrow$ Weak (B)-conjecture in dimension n.
- (B)-conjecture in all dimensions for $K=B_{\infty}^{n} \Rightarrow$ Log- BM in all dimensions.

Nayar-Tkocz: (B)-conjecture holds for $K=B_{1}^{n}, B_{2}^{n}$.

The Minkowski and log-Minkowski inequalities

The Minkowski inequality

$\operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_{L} d S_{K}$, equality iff K, L are homothetic.

The Minkowski and log-Minkowski inequalities

The Minkowski inequality

$\operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_{L} d S_{K}$, equality iff K, L are homothetic.
Follows from computing the derivative of $\operatorname{vol}((1-\lambda) K+\lambda L)^{\frac{1}{n}}$ at 0 and Brunn-Minkowski.

The Minkowski and log-Minkowski inequalities

The Minkowski inequality

$\operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_{L} d S_{K}$, equality iff K, L are homothetic.
Follows from computing the derivative of $\operatorname{vol}((1-\lambda) K+\lambda L)^{\frac{1}{n}}$ at 0 and Brunn-Minkowski.

The log-Minkowski inequality (conjectured)

$\frac{\operatorname{vol}(K)}{n} \log \frac{\operatorname{vol}(L)}{\operatorname{vol}(K)} \leq \int h_{K} \log \frac{h_{L}}{h_{K}} d S_{K}$, equality iff K, L are similar.

The Minkowski and log-Minkowski inequalities

The Minkowski inequality

$\operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_{L} d S_{K}$, equality iff K, L are homothetic.
Follows from computing the derivative of $\operatorname{vol}((1-\lambda) K+\lambda L)^{\frac{1}{n}}$ at 0 and Brunn-Minkowski.

The log-Minkowski inequality (conjectured)

$\frac{\operatorname{vol}(K)}{n} \log \frac{\operatorname{vol}(L)}{\operatorname{vol}(K)} \leq \int h_{K} \log \frac{h_{L}}{h_{K}} d S_{K}$, equality iff K, L are similar.
Follows from computing the derivative of $\operatorname{vol}\left((1-\lambda) K+{ }_{o} \lambda L\right)^{\frac{1}{n}}$ at 0 and log-BM.

Minkowski uniqueness

The Minkowski inequality (1)

$K, L \subset \mathbb{R}^{n}$ convex bodies $\Rightarrow \operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_{L} d S_{K}$, with equality iff K, L are homothetic.

Minkowski uniqueness

The Minkowski inequality (1)

$K, L \subset \mathbb{R}^{n}$ convex bodies $\Rightarrow \operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_{L} d S_{K}$, with equality iff K, L are homothetic.

Minkowski uniqueness (2)

If two convex bodies K, L have the same surface area measure, they are translates.

Minkowski uniqueness

The Minkowski inequality (1)

$K, L \subset \mathbb{R}^{n}$ convex bodies $\Rightarrow \operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_{L} d S_{K}$, with equality iff K, L are homothetic.

Minkowski uniqueness (2)

If two convex bodies K, L have the same surface area measure, they are translates.
(1) \Rightarrow (2): Multiply $d S_{K}=d S_{L}$ by h_{K} and integrate; use (1) to show that that $\operatorname{vol}(K) \leq \operatorname{vol}(L)$. By the same argument, $\operatorname{vol}(L) \leq \operatorname{vol}(K)$, so $\operatorname{vol}(K)=\operatorname{vol}(L)=\frac{1}{n} \int h_{L} d S_{K}$.

Minkowski uniqueness

The Minkowski inequality (1)

$K, L \subset \mathbb{R}^{n}$ convex bodies $\Rightarrow \operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_{L} d S_{K}$, with equality iff K, L are homothetic.

Minkowski uniqueness (2)

If two convex bodies K, L have the same surface area measure, they are translates.
(2) $\Rightarrow(1)$: For given K, let K_{0} minimize the functional $f\left(h_{L}\right)=\operatorname{vol}(L)^{-\frac{1}{n}} \int h_{L} d S_{K} ;$ wlog $\operatorname{vol}\left(K_{0}\right)=\operatorname{vol}(K)$. We claim K_{0} is homothetic to K.

Minkowski uniqueness

The Minkowski inequality (1)

$K, L \subset \mathbb{R}^{n}$ convex bodies $\Rightarrow \operatorname{vol}(K)^{\frac{n-1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \leq \frac{1}{n} \int h_{L} d S_{K}$, with equality iff K, L are homothetic.

Minkowski uniqueness (2)

If two convex bodies K, L have the same surface area measure, they are translates.
(2) $\Rightarrow(1)$: For given K, let K_{0} minimize the functional $f\left(h_{L}\right)=\operatorname{vol}(L)^{-\frac{1}{n}} \int h_{L} d S_{K} ;$ wlog $\operatorname{vol}\left(K_{0}\right)=\operatorname{vol}(K)$. We claim K_{0} is homothetic to K.

For any $\varphi \in C\left(S^{n-1}\right)$, let $g(t)=f\left(h_{K_{0}}+t \varphi\right)$; we must have $g^{\prime}(0)=0$, giving $\int \varphi d S_{K_{0}}=\int \varphi d S_{K} \Rightarrow S_{K}=S_{K_{0}}$. Now use (2).

Log-Minkowski uniqueness

The conjectured log-Minkowski inequality
K, L c.s. convex bodies $\Rightarrow \frac{1}{n} \operatorname{vol}(L)$ iff K, L are similar: that is, there exist c.s. convex bodies
$K_{1}, \ldots, K_{m}, \alpha_{i}>0, T \in G L_{n}$ such that $K=T\left(K_{1} \times \cdots \times K_{m}\right)$ and $L=T\left(\alpha_{1} K_{1} \times \cdots \alpha_{m} K_{m}\right)$.

Log-Minkowski uniqueness

The conjectured log-Minkowski inequality
K, L c.s. convex bodies $\Rightarrow \frac{1}{n} \operatorname{vol}(L) \leq \int h_{K} \log \frac{h_{L}}{h_{K}} d S_{K}$ with equality iff K, L are similar: that is, there exist c.s. convex bodies
$K_{1}, \ldots, K_{m}, \alpha_{i}>0, T \in G L_{n}$ such that $K=T\left(K_{1} \times \cdots \times K_{m}\right)$ and $L=T\left(\alpha_{1} K_{1} \times \cdots \alpha_{m} K_{m}\right)$.

Log-Minkowski uniqueness

If two c.s. convex bodies K, L have the same cone-volume measure - $h_{K} d S_{K}=h_{L} d S_{L}$ - then K and L are similar.

Log-Minkowski uniqueness

The conjectured log-Minkowski inequality
K, L c.s. convex bodies $\Rightarrow \frac{1}{n} \operatorname{vol}(L)$ iff K, L are similar: that is, there exist c.s. convex bodies
$K_{1}, \ldots, K_{m}, \alpha_{i}>0, T \in G L_{n}$ such that $K=T\left(K_{1} \times \cdots \times K_{m}\right)$ and $L=T\left(\alpha_{1} K_{1} \times \cdots \alpha_{m} K_{m}\right)$.

Log-Minkowski uniqueness

If two c.s. convex bodies K, L have the same cone-volume measure - $h_{K} d S_{K}=h_{L} d S_{L}$ - then K and L are similar.

In dimension 2, K and L are similar iff they are homothetic, or parallelograms with parallel sides (BLYZ 2012).

Log-Minkowski uniqueness

The conjectured log-Minkowski inequality
K, L c.s. convex bodies $\Rightarrow \frac{1}{n} \operatorname{vol}(L) \leq \int h_{K} \log \frac{h_{L}}{h_{K}} d S_{K}$ with equality iff K, L are similar: that is, there exist c.s. convex bodies
$K_{1}, \ldots, K_{m}, \alpha_{i}>0, T \in G L_{n}$ such that $K=T\left(K_{1} \times \cdots \times K_{m}\right)$ and $L=T\left(\alpha_{1} K_{1} \times \cdots \alpha_{m} K_{m}\right)$.

Log-Minkowski uniqueness

If two c.s. convex bodies K, L have the same cone-volume measure - $h_{K} d S_{K}=h_{L} d S_{L}$ - then K and L are similar.

In dimension 2, K and L are similar iff they are homothetic, or parallelograms with parallel sides (BLYZ 2012).
There are also L^{p}-Minkowski inequalities and corresponding p-Minkowski uniqueness statements for all $p \in(0,1]$.

Differentiating the log-BM inequality

Set $K_{\lambda}=(1-\lambda) K+{ }_{o} \lambda L$ for $\lambda \in[0,1]$.
$\log -\mathrm{BM} \Leftrightarrow f(\lambda)=\log \operatorname{vol}\left(K_{\lambda}\right)$ is concave on $[0,1]$.

Differentiating the log-BM inequality

Set $K_{\lambda}=(1-\lambda) K+{ }_{o} \lambda L$ for $\lambda \in[0,1]$.
$\log -\mathrm{BM} \Leftrightarrow f(\lambda)=\log \operatorname{vol}\left(K_{\lambda}\right)$ is concave on $[0,1]$.

A natural question: what do you get when you take the second derivative of f ?

Differentiating the log-BM inequality

Set $K_{\lambda}=(1-\lambda) K+{ }_{o} \lambda L$ for $\lambda \in[0,1]$.
$\log -\mathrm{BM} \Leftrightarrow f(\lambda)=\log \operatorname{vol}\left(K_{\lambda}\right)$ is concave on $[0,1]$.

A natural question: what do you get when you take the second derivative of f ?

Studied by Colesanti-Livshyts-Marsiglietti and by Kolesnikov-Milman in the class of smooth and strongly convex bodies, and by P. in the class of strongly isomorphic polytopes.

Local log-BM and local p-BM

Theorem (Colesanti-Livshyts-Marsiglietti)

Set $K=B_{2}^{n}$. Then for $L \in \mathcal{K}_{+, e}^{n}$ close enough to K, the log-Brunn-Minkowski inequality holds for K, L.

Write $h_{L}=e^{\varphi}, K_{\lambda}=(1-\lambda) K+_{o} \lambda L$. Then $h_{K_{\lambda}}=e^{\lambda \varphi}$ for all $\lambda \in[0,1]$. Substitute in
$\operatorname{vol}\left(K_{\lambda}\right)=\frac{1}{n} \int_{S^{n-1}} h_{K_{\lambda}} d S_{K_{\lambda}}=\frac{1}{n} \int_{S^{n-1}} h_{K_{\lambda}} \operatorname{det}\left[D^{2} h_{K_{\lambda}}\right] d \sigma$.
Using some linear algebra, we compute that $n^{2} \kappa_{n} \log \operatorname{vol}\left(K_{\lambda}\right)^{\prime \prime}(0)$ equals

$$
n \int \varphi^{2} d \sigma-\int_{S^{n-1}}|\nabla \varphi|^{2} d \sigma-\frac{1}{\kappa_{n}}\left(\int_{S^{n-1}} \varphi d \sigma\right)^{2}
$$

Decomposing into spherical harmonics shows this is nonpositive!

Local Lp-Brunn-Minkowski

Kolesnikov-Milman generalized in two directions:

- Work with L^{p}-Brunn-Minkowski for any $p \in[0,1]$.

Local L^{p}-Brunn-Minkowski

Kolesnikov-Milman generalized in two directions:

- Work with L^{p}-Brunn-Minkowski for any $p \in[0,1]$.
- Consider local behavior near any $K \in \mathcal{K}_{+, e}^{n}$, not just B_{2}^{n}.

Local L^{p}-Brunn-Minkowski

Kolesnikov-Milman generalized in two directions:

- Work with L^{p}-Brunn-Minkowski for any $p \in[0,1]$.
- Consider local behavior near any $K \in \mathcal{K}_{+, e}^{n}$, not just B_{2}^{n}.

They showed that $\left(\operatorname{vol}\left(K_{\lambda}\right)^{\frac{p}{n}}\right)^{\prime \prime}(0) \leq 0$ implies that for all $\varphi \in C^{2}\left(S^{n-1}\right)$,

$$
\begin{aligned}
\frac{n-1}{n-p} V\left(\varphi h_{K}[2], K[n-2]\right)+\frac{1-p}{n-p} V & \left(\varphi^{2} h_{K}[1], K[n-1]\right) \\
& -\frac{V\left(\varphi h_{K}[1], K[n-1]\right)^{2}}{\operatorname{vol}(K)} \leq 0
\end{aligned}
$$

Using spectral methods, they proved this inequality for $p \in\left[p_{0}(n), 1\right]$.

Why local-to-global is nontrivial

Whenever $h_{K_{\lambda}}=(1-\lambda) h_{K}+_{p} \lambda h_{L}$ on some neighborhood, $\operatorname{vol}\left(K_{\lambda}\right)^{\frac{p}{n}}$ is twice differentiable with second derivative given by the LHS of the local $L^{p}-\mathrm{BM}$ inequality.

Why local-to-global is nontrivial

Whenever $h_{K_{\lambda}}=(1-\lambda) h_{K}+_{p} \lambda h_{L}$ on some neighborhood, $\operatorname{vol}\left(K_{\lambda}\right)^{\frac{p}{n}}$ is twice differentiable with second derivative given by the LHS of the local L^{p}-BM inequality.

In particular, this is true for any $K, L \in \mathcal{K}_{+, e}^{n}$ and small enough λ, so global $L^{p}-B M$ implies the local version.

Why local-to-global is nontrivial

Whenever $h_{K_{\lambda}}=(1-\lambda) h_{K}+_{p} \lambda h_{L}$ on some neighborhood, $\operatorname{vol}\left(K_{\lambda}\right)^{\frac{p}{n}}$ is twice differentiable with second derivative given by the LHS of the local $L^{p}-\mathrm{BM}$ inequality.

In particular, this is true for any $K, L \in \mathcal{K}_{+, e}^{n}$ and small enough λ, so global $L^{p}-B M$ implies the local version.

But in general, $h_{K_{\lambda}} \neq(1-\lambda) h_{K}+_{p} \lambda h_{L}$, because the RHS isn't necessarily convex for $p \in[0,1)$.

Why local-to-global is nontrivial

Whenever $h_{K_{\lambda}}=(1-\lambda) h_{K}+_{p} \lambda h_{L}$ on some neighborhood, $\operatorname{vol}\left(K_{\lambda}\right)^{\frac{p}{n}}$ is twice differentiable with second derivative given by the LHS of the local $L^{p}-\mathrm{BM}$ inequality.

In particular, this is true for any $K, L \in \mathcal{K}_{+, e}^{n}$ and small enough λ, so global L^{p}-BM implies the local version.

But in general, $h_{K_{\lambda}} \neq(1-\lambda) h_{K}+_{p} \lambda h_{L}$, because the RHS isn't necessarily convex for $p \in[0,1)$.

It turns out that the first derivative of $\operatorname{vol}\left(K_{\lambda}\right)$ can be computed despite this problem (Alexandrov's lemma), but the second derivative seems out of reach in general.

Local LP-Brunn-Minkowski and Minkowski uniqueness

Recall:

- L^{p}-BM inequality (with equality condition) $\Leftrightarrow L^{p}$-Minkowski inequality (with equality condition).

Local L^{p}-Brunn-Minkowski and Minkowski uniqueness

Recall:

- L^{p}-BM inequality (with equality condition) $\Leftrightarrow L^{p}$-Minkowski inequality (with equality condition).
- L^{p}-Minkowski inequality with equality condition \Leftrightarrow p-Minkowski uniqueness.

Local L^{p}-Brunn-Minkowski and Minkowski uniqueness

Recall:

- L^{p}-BM inequality (with equality condition) $\Leftrightarrow L^{p}$-Minkowski inequality (with equality condition).
- L^{p}-Minkowski inequality with equality condition \Leftrightarrow p-Minkowski uniqueness.
Also, $L^{p}-\mathrm{BM} \Rightarrow L^{q}-\mathrm{BM}$ with equality condition for any $q \in(p, 1]$.

Local L^{p}-Brunn-Minkowski and Minkowski uniqueness

Recall:

- L^{p}-BM inequality (with equality condition) $\Leftrightarrow L^{p}$-Minkowski inequality (with equality condition).
- L^{p}-Minkowski inequality with equality condition \Leftrightarrow p-Minkowski uniqueness.
Also, $L^{p}-\mathrm{BM} \Rightarrow L^{q}-\mathrm{BM}$ with equality condition for any $q \in(p, 1]$.

These implications also hold true locally. So Kolesnikov-Milman yields local p-Minkowski uniqueness for $p \in\left(p_{0}(n), 1\right]$.

Local L^{p}-Brunn-Minkowski and Minkowski uniqueness

Recall:

- L^{p}-BM inequality (with equality condition) $\Leftrightarrow L^{p}$-Minkowski inequality (with equality condition).
- L^{p}-Minkowski inequality with equality condition \Leftrightarrow p-Minkowski uniqueness.
Also, $L^{p}-\mathrm{BM} \Rightarrow L^{q}-\mathrm{BM}$ with equality condition for any $q \in(p, 1]$.

These implications also hold true locally. So Kolesnikov-Milman yields local p-Minkowski uniqueness for $p \in\left(p_{0}(n), 1\right]$.

Chen-Huang-Li-Liu, by PDE methods, showed that local p-Minkowski uniqueness implies global p-Minkowski uniqueness.

Local L^{p}-Brunn-Minkowski and Minkowski uniqueness

Recall:

- L^{p}-BM inequality (with equality condition) $\Leftrightarrow L^{p}$-Minkowski inequality (with equality condition).
- L^{p}-Minkowski inequality with equality condition \Leftrightarrow p-Minkowski uniqueness.
Also, $L^{p}-\mathrm{BM} \Rightarrow L^{q}-\mathrm{BM}$ with equality condition for any $q \in(p, 1]$.

These implications also hold true locally. So Kolesnikov-Milman yields local p-Minkowski uniqueness for $p \in\left(p_{0}(n), 1\right]$.

Chen-Huang-Li-Liu, by PDE methods, showed that local p-Minkowski uniqueness implies global p-Minkowski uniqueness.

Yields equivalence of local and global $L^{p}-B M$ in general, and in particular proves $L^{p}-B M$ for $p \in\left[p_{0}(n), 1\right]$.

Local-to-global via strongly isomorphic polytopes (P.)

Pairs of strongly isomorphic polytopes are dense in $\mathcal{K}^{n} \times \mathcal{K}^{n}$.

Local-to-global via strongly isomorphic polytopes (P.)

Pairs of strongly isomorphic polytopes are dense in $\mathcal{K}^{n} \times \mathcal{K}^{n}$.
For strongly isomorphic polytopes K, L, one can compute $\left(\operatorname{vol}\left(K_{\lambda}\right)^{\frac{p}{n}}\right)$ " at any "good" λ and obtain the same formula as in the smooth and strongly convex case.

Local-to-global via strongly isomorphic polytopes (P.)

Pairs of strongly isomorphic polytopes are dense in $\mathcal{K}^{n} \times \mathcal{K}^{n}$.
For strongly isomorphic polytopes K, L, one can compute $\left(\operatorname{vol}\left(K_{\lambda}\right)^{\frac{p}{n}}\right)^{\prime \prime}$ at any "good" λ and obtain the same formula as in the smooth and strongly convex case.

However, in this case the behavior of K_{λ} is very simple: it changes its s.i. class only at a finite set of points in $[0,1]$, and on each subinterval, $\left(\operatorname{vol}\left(K_{\lambda}\right)^{\frac{p}{n}}\right)^{\prime \prime}$ exists and is given by the local formula.

Local-to-global via strongly isomorphic polytopes (P.)

Pairs of strongly isomorphic polytopes are dense in $\mathcal{K}^{n} \times \mathcal{K}^{n}$.

For strongly isomorphic polytopes K, L, one can compute $\left(\operatorname{vol}\left(K_{\lambda}\right)^{\frac{p}{n}}\right)^{\prime \prime}$ at any "good" λ and obtain the same formula as in the smooth and strongly convex case.

However, in this case the behavior of K_{λ} is very simple: it changes its s.i. class only at a finite set of points in $[0,1]$, and on each subinterval, $\left(\operatorname{vol}\left(K_{\lambda}\right)^{\frac{p}{n}}\right)^{\prime \prime}$ exists and is given by the local formula.

So local L^{p}-Brunn-Minkowski implies global L^{p}-Brunn Minkowski for such K, L; extend by continuity.

Local-to-global via strongly isomorphic polytopes (P.)

Pairs of strongly isomorphic polytopes are dense in $\mathcal{K}^{n} \times \mathcal{K}^{n}$.

For strongly isomorphic polytopes K, L, one can compute $\left(\operatorname{vol}\left(K_{\lambda}\right)^{\frac{p}{n}}\right)^{\prime \prime}$ at any "good" λ and obtain the same formula as in the smooth and strongly convex case.

However, in this case the behavior of K_{λ} is very simple: it changes its s.i. class only at a finite set of points in $[0,1]$, and on each subinterval, $\left(\operatorname{vol}\left(K_{\lambda}\right)^{\frac{p}{n}}\right)^{\prime \prime}$ exists and is given by the local formula.

So local L^{p}-Brunn-Minkowski implies global L^{p}-Brunn Minkowski for such K, L; extend by continuity.

Local-to-global - some details (1)

Lemma

Let K and L be polytopes with facet normals $u_{i} \in S^{n-1}$ and support numbers $h_{K}\left(u_{i}\right)=\alpha_{i}, h_{L}\left(u_{i}\right)=\alpha_{i} e^{s_{i}}$. Then for any $\lambda \in[0,1], K_{\lambda}=\left\{x:\left\langle x, u_{i}\right\rangle \leq \alpha_{i} e^{\lambda s_{i}}\right\}$.

Local-to-global - some details (1)

Lemma

Let K and L be polytopes with facet normals $u_{i} \in S^{n-1}$ and support numbers $h_{K}\left(u_{i}\right)=\alpha_{i}, h_{L}\left(u_{i}\right)=\alpha_{i} e^{s_{i}}$. Then for any $\lambda \in[0,1], K_{\lambda}=\left\{x:\left\langle x, u_{i}\right\rangle \leq \alpha_{i} e^{\lambda s_{i}}\right\}$.

Note that K_{λ} may not have facets corresponding to all the u_{i} !

Local-to-global - some details (1)

Lemma

Let K and L be polytopes with facet normals $u_{i} \in S^{n-1}$ and support numbers $h_{K}\left(u_{i}\right)=\alpha_{i}, h_{L}\left(u_{i}\right)=\alpha_{i} e^{s_{i}}$. Then for any $\lambda \in[0,1], K_{\lambda}=\left\{x:\left\langle x, u_{i}\right\rangle \leq \alpha_{i} e^{\lambda s_{i}}\right\}$.

Note that K_{λ} may not have facets corresponding to all the u_{i} !

Lemma

Let K_{t} be a family of polytopes with facet normals u_{i}, support numbers $h_{K_{t}}\left(u_{i}\right)=h_{i}(t)$, and facet volumes $F_{i}(t)$. Then $\operatorname{vol}\left(K_{t}\right)^{\prime}=\sum h_{i}^{\prime}(t) F_{i}(t)$.

Local-to-global - some details (1)

Lemma

Let K and L be polytopes with facet normals $u_{i} \in S^{n-1}$ and support numbers $h_{K}\left(u_{i}\right)=\alpha_{i}, h_{L}\left(u_{i}\right)=\alpha_{i} e^{s_{i}}$. Then for any $\lambda \in[0,1], K_{\lambda}=\left\{x:\left\langle x, u_{i}\right\rangle \leq \alpha_{i} e^{\lambda s_{i}}\right\}$.

Note that K_{λ} may not have facets corresponding to all the u_{i} !

Lemma

Let K_{t} be a family of polytopes with facet normals u_{i}, support numbers $h_{K_{t}}\left(u_{i}\right)=h_{i}(t)$, and facet volumes $F_{i}(t)$. Then $\operatorname{vol}\left(K_{t}\right)^{\prime}=\sum h_{i}^{\prime}(t) F_{i}(t)$.

The lemmata enable us to compute $\operatorname{vol}\left(K_{\lambda}\right)^{\prime}$.

Local-to-global - some details (1)

Lemma

Let K and L be polytopes with facet normals $u_{i} \in S^{n-1}$ and support numbers $h_{K}\left(u_{i}\right)=\alpha_{i}, h_{L}\left(u_{i}\right)=\alpha_{i} e^{s_{i}}$. Then for any $\lambda \in[0,1], K_{\lambda}=\left\{x:\left\langle x, u_{i}\right\rangle \leq \alpha_{i} e^{\lambda s_{i}}\right\}$.

Note that K_{λ} may not have facets corresponding to all the u_{i} !

Lemma

Let K_{t} be a family of polytopes with facet normals u_{i}, support numbers $h_{K_{t}}\left(u_{i}\right)=h_{i}(t)$, and facet volumes $F_{i}(t)$. Then $\operatorname{vol}\left(K_{t}\right)^{\prime}=\sum h_{i}^{\prime}(t) F_{i}(t)$.

The lemmata enable us to compute $\operatorname{vol}\left(K_{\lambda}\right)^{\prime}$. But if the K_{λ} are strongly isomorphic, then each facet of K_{λ} satisfies the assumptions of the lemma as well, which lets us compute $\log \operatorname{vol}\left(K_{\lambda}\right)^{\prime \prime}$. The result is the local log-BM formula.

Local-to-global - some details (2)

So assuming the local \log-BM inequality, for any neighborhood $U \subset[0,1]$ in which all the $\left\{K_{\lambda}: \lambda \in U\right\}$ are strongly isomorphic, we have $\log \operatorname{vol}\left(K_{\lambda}\right)^{\prime \prime} \leq 0$. How do we go from here to a proof that local log-BM implies global log-BM?

Local-to-global - some details (2)

So assuming the local log-BM inequality, for any neighborhood $U \subset[0,1]$ in which all the $\left\{K_{\lambda}: \lambda \in U\right\}$ are strongly isomorphic, we have $\log \operatorname{vol}\left(K_{\lambda}\right)^{\prime \prime} \leq 0$. How do we go from here to a proof that local log-BM implies global log-BM?

Essentially, this boils down to the question of when K_{λ} can change its strong isomorphism class. Let's start with an easier question: when does a polytope defined by varying support numbers $h_{i}(\lambda)$ lose or gain a facet?

Local-to-global - some details (2)

So assuming the local log-BM inequality, for any neighborhood $U \subset[0,1]$ in which all the $\left\{K_{\lambda}: \lambda \in U\right\}$ are strongly isomorphic, we have $\log \operatorname{vol}\left(K_{\lambda}\right)^{\prime \prime} \leq 0$. How do we go from here to a proof that local log-BM implies global log-BM?

Essentially, this boils down to the question of when K_{λ} can change its strong isomorphism class. Let's start with an easier question: when does a polytope defined by varying support numbers $h_{i}(\lambda)$ lose or gain a facet?

It turns out that this boils down to some linear inequalities involving h_{i} and other support numbers.

Local-to-global - some details (2)

So assuming the local log-BM inequality, for any neighborhood $U \subset[0,1]$ in which all the $\left\{K_{\lambda}: \lambda \in U\right\}$ are strongly isomorphic, we have $\log \operatorname{vol}\left(K_{\lambda}\right)^{\prime \prime} \leq 0$. How do we go from here to a proof that local log-BM implies global log-BM?

Essentially, this boils down to the question of when K_{λ} can change its strong isomorphism class. Let's start with an easier question: when does a polytope defined by varying support numbers $h_{i}(\lambda)$ lose or gain a facet?

It turns out that this boils down to some linear inequalities involving h_{i} and other support numbers. The same holds true for lower-dimensional faces, whose support numbers are linear combinations of the original ones.

Local-to-global - some details (2)

So assuming the local log-BM inequality, for any neighborhood $U \subset[0,1]$ in which all the $\left\{K_{\lambda}: \lambda \in U\right\}$ are strongly isomorphic, we have $\log \operatorname{vol}\left(K_{\lambda}\right)^{\prime \prime} \leq 0$. How do we go from here to a proof that local log-BM implies global log-BM?

Essentially, this boils down to the question of when K_{λ} can change its strong isomorphism class. Let's start with an easier question: when does a polytope defined by varying support numbers $h_{i}(\lambda)$ lose or gain a facet?

It turns out that this boils down to some linear inequalities involving h_{i} and other support numbers. The same holds true for lower-dimensional faces, whose support numbers are linear combinations of the original ones.

But since the $h_{i}(\lambda)$ are analytic, any linear combination of them can change sign only at a finite number of points in $[0,1]$. So we obtain that $\log \operatorname{vol}\left(K_{\lambda}\right)^{\prime}$ is decreasing except at a finite number of points in $[0,1]$, and a continuity argument finishes the proof.

Local Log-BM in dimension 2

For $K, L \in \mathcal{K}_{e}^{2}$, define the inradius and circumradius of L w.r.t. K :

$$
r(L, K)=\min _{u \in S^{n-1}} \frac{h_{L}(u)}{h_{K}(u)} \quad R(L, K)=\max _{u \in S^{n-1}} \frac{h_{L}(u)}{h_{K}(u)}
$$

Local Log-BM in dimension 2

For $K, L \in \mathcal{K}_{e}^{2}$, define the inradius and circumradius of L w.r.t. K :

$$
r(L, K)=\min _{u \in S^{n-1}} \frac{h_{L}(u)}{h_{K}(u)} \quad R(L, K)=\max _{u \in S^{n-1}} \frac{h_{L}(u)}{h_{K}(u)}
$$

By Blaschke's extension of the Bonnesen inequality, for any $t \in[r(L, K), R(L, K)]$ we have

$$
\operatorname{vol}(L)-2 t V(L, K)+t^{2} \operatorname{vol}(K) \leq 0
$$

Local Log-BM in dimension 2

For $K, L \in \mathcal{K}_{e}^{2}$, define the inradius and circumradius of L w.r.t. K :

$$
r(L, K)=\min _{u \in S^{n-1}} \frac{h_{L}(u)}{h_{K}(u)} \quad R(L, K)=\max _{u \in S^{n-1}} \frac{h_{L}(u)}{h_{K}(u)}
$$

By Blaschke's extension of the Bonnesen inequality, for any $t \in[r(L, K), R(L, K)]$ we have

$$
\operatorname{vol}(L)-2 t V(L, K)+t^{2} \operatorname{vol}(K) \leq 0
$$

Substituting $\frac{h_{L}(u)}{h_{K}(u)}$ for t and integrating over $h_{K} d S_{K}$ gives

$$
\operatorname{vol}(L) \cdot \int h_{K} d S_{K}-2 V(K, L) \int h_{L} d S_{K}+\operatorname{vol}(K) \int \frac{h_{L}^{2}}{h_{K}} d S_{K} \leq 0
$$

Local Log-BM in dimension 2

For $K, L \in \mathcal{K}_{e}^{2}$, define the inradius and circumradius of L w.r.t. K :

$$
r(L, K)=\min _{u \in S^{n-1}} \frac{h_{L}(u)}{h_{K}(u)} \quad R(L, K)=\max _{u \in S^{n-1}} \frac{h_{L}(u)}{h_{K}(u)}
$$

By Blaschke's extension of the Bonnesen inequality, for any $t \in[r(L, K), R(L, K)]$ we have

$$
\operatorname{vol}(L)-2 t V(L, K)+t^{2} \operatorname{vol}(K) \leq 0
$$

Substituting $\frac{h_{L}(u)}{h_{K}(u)}$ for t and integrating over $h_{K} d S_{K}$ gives

$$
\begin{aligned}
& \operatorname{vol}(L) \cdot \int h_{K} d S_{K}-2 V(K, L) \int h_{L} d S_{K}+\operatorname{vol}(K) \int \frac{h_{L}^{2}}{h_{K}} d S_{K} \leq 0 \\
& \quad \Rightarrow 2 \operatorname{vol}(K) \operatorname{vol}(L)-4 V(K, L)^{2}+\operatorname{vol}(K) \int \frac{h_{L}^{2}}{h_{K}} d S_{K} \leq 0
\end{aligned}
$$

which is precisely local log-BM in dimension 2.

Questions?

Questions?

Thank you!

