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What is a Plank?

A plank in a vector space X is the region bounded by two parallel
hyperplanes.



Tarski Plank Problem

If an n-dimensional convex body is covered by a collection of
planks, then the sum of the widths of the planks should be at least
the minimal width of the convex body they cover.



Tarski’s plank problem

I Tarski (1932): unit disc and 3-dimensional ball.

I Bang (1951): arbitrary convex bodies.
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Affine Plank Problem

Bang (1951) also asked whether the widths of the planks could be
measured with respect to the convex body that it is covered.

I Ball (1990) solved this affine version of the plank problem for
the most interesting case: symmetric convex body.



Plank in normed spaces

A plank in a normed space X is a region of the form

{x ∈ X : |φ(x)−m| ≤ w}

where φ is a linear functional on X ∗ of norm 1, m a real number,
and w is a positive number. The number w is called the half-width
of the plank.



Ball’s Plank theorem

Theorem (The Plank Theorem)

For any sequence (φk)∞k=1 of norm one functionals on a real
Banach space X , (mk)∞k=1 a sequence of real numbers and
non-negative numbers (tk)∞k=1 satisfying

∞∑
k=1

tk < 1,

there exists a unit vector x in X for which

|φj(x)−mj | > tj

for every j .



Ball’s Plank theorem

The Plank Theorem is obviously sharp in the sense that the unit
ball of X can be covered by n non-overlapping parallel planks
whose half-widths add up to 1.



We are now going to restrict our attention to planks that are
symmetric about the origin:

{x ∈ X : |φ(x)| ≤ w}

where φ is a linear functional on X ∗ of norm 1 and w is a positive
number.



Theorem (The Plank Theorem)

For any sequence (φk)∞k=1 of norm one functionals on a (real)
Banach space X and non-negative numbers (tk)∞k=1 satisfying

∞∑
k=1

tk < 1,

there exists a unit vector x in X for which

|φj(x)| > tj

for every j .



Our problem

I For an arbitrary Banach space, the condition
∑

k tk = 1 is
sharp.

I Consider the space X to be `1 and the collection φi to be the
standard basis vectors in `∞.

I For other spaces we expect to be able to improve upon this
condition. Hilbert Spaces?

I Ball proved that for complex Hilbert spaces it is possible to
beat any sequence for which

∑
k t

2
k = 1.
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Complex Plank Theorem (2001)

Theorem (Complex Plank Theorem)

For any sequence v1, v2, . . . ,vn of unit vectors in a complex Hilbert
space H and positive real numbers t1, t2, . . . , tn satisfying

n∑
k=1

t2k = 1

there exists a unit vector z ∈ H such that

|〈vk , z〉| ≥ tk

for all k .



Complex Plank Theorem

Theorem (Complex Plank Theorem)

For any sequence v1, v2, . . . ,vn of unit vectors in a complex Hilbert
space H and positive real numbers t1, t2, . . . , tn satisfying

n∑
k=1

t2k = 1

there exists a unit vector z ∈ H such that

|〈vk , z〉| ≥ tk

for all k .



Complex Plank Theorem

Theorem (Complex Plank Theorem for same width)

For any sequence v1, v2, . . . ,vn of unit vectors in a complex Hilbert
space H there exists a unit vector z ∈ H such that

|〈vk , z〉| ≥
1√
n



Real Hilbert spaces

What happens for real Hilbert spaces?



Real Hilbert spaces

This is not possible. Consider 2n vectors v1, v2, . . . , v2n in R2

equally spaced around the circle: (n vectors and their negatives).
For any unit vector v in R2 there is a i such that

|〈vi , v〉| ≤ sin(π/2n).



Fejes Tóth’s zone conjecture

This simple statement is connected to a conjecture by Fejes Tóth
that was positively answered, about two years ago, by Jiang and
Polyanskii.



Zone

A zone of spherical width w associated to the great circle SH ∩ v>,
for a given unit vector v in H, is the set given by

{x ∈ SH : |〈v , x〉| ≤ sin(w/2)}



Zone



In 1973, Fejes Tóth conjectured that if a collection of zones of
equal width covers the unit sphere then the width of the zones
should be at least π/n.



Main Theorem

Theorem (Jiang-Polyanskii 2017 ;O 2019+)

For any sequence v1, v2, . . . , vn of unit vectors in a real Hilbert
space H, there exists a unit vector v ∈ H such that

|〈vi , v〉| ≥ sin(π/2n)

for all i ∈ {1, 2, . . . , n}.

Z. Jiang and A. Polyanskii used a completely different approach.
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Strategy

The basic strategy in the proof of the main theorem is the strategy
followed by Ball in the proof the Complex Plank Theorem, but
there is a fundamental difference.



Strategy

Fundamental difference: the main ingredient of the proof of the
Complex Plank Theorem has no analogue in the real case.



Strategy

Ball studies the behaviour of a complex polynomial locally around
1 and, with the aid of the maximum modulus principle, manages to
jump away from 1 to a point in the unit disk where this polynomial
has large absolute value.



Strategy

In contrast, the proof of the main theorem here relies on extremal
properties of trigonometric polynomials to produce this jump.



Rescaled version

Theorem
For any sequence v1, v2, . . . , vn of unit vectors in a real Hilbert
space H, there exists a vector v ∈ H of norm

√
n for which

|〈vk , v〉| ≥
√
n sin(π/2n)

for all k .



Inverse Eigenvectors: Motivation

We want to maximize

min
1≤k≤n

|〈vk , v〉|

subject to
v>v = n.

and hope that the factors are large enough to get the desired
inequality.
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Structure of extremal points

Proposition (G. Ambrus 2009)

Let v1, v2, . . . , vn be a sequence for unit vectors in a real Hilbert
space H. Suppose that v is vector of norm

√
n chosen so as to

maximize
n∏

k=1

| 〈vk , v〉 |.

Then,

v =
n∑

k=1

1

〈vk , v〉
vk



Structure of extremal points

Denote by H the Gram matrix Hij = 〈vi , vj〉, and let w be the
vector

wk =
1

〈vk , v〉
for all k . Then w satisfies

(Hw)j =
n∑

i=1

hjiwi = 〈vj ,
n∑

i=1

wivi 〉 = 〈vj , v〉 =
1

wj
.

So, w satisfies the following equation Hw = w−1 is given by

w−1 =

(
1

w1
, . . . ,

1

wn

)
.



Inverse Eigenvectors

Definition (G. Ambrus 2009)

Let M be a n × n matrix. We say that w is an inverse eigenvector
of M if

Mw = w−1



Theorem in terms of Inverse Eigenvectors

Theorem (O 2019+)

Let H be a real Gram matrix. Then, there exists an inverse
eigenvector w of H for which

‖w‖∞ ≤
1√

n sin(π/2n)



Final Transformation.

Lemma
Suppose that M is a symmetric positive matrix satisfying

• M1 = 1, and

• whenever c is a vector such that

c>M−1c = n,

then ∏
|ck | ≤ 1

Then mkk ≤ 1
n sin2(π/2n)

for all k .
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Proof

Let E be the ellipsoid defined by the equation b>Mb = n, i.e.

E = {b : b>Mb = n}

The proof consists of looking at a 2-dimensional ”X-rays” of the
ellipsoid E passing through the point 1. Given a vector v ∈ E
orthogonal to 1, denote by Hv the subspace spanned by v and 1.

Denote by Ev the 2-dimensional ellipse we get by intersecting E
and Hv ,

Ev = E ∩ Hv

= {cos θ1 + sin θv : θ ∈ [0, 2π]}
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By the second condition of the lemma, for all θ ∈ [0, 2π]

|Pv (θ)| =

∣∣∣∣∣
n∏

k=1

(cos θ + (Mv)k sin θ)

∣∣∣∣∣ ≤ 1
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for all v ∈ E ∩ 1>.
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On the other hand,
Pv (0) = 1
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Theorem
[Bernstein’s Inequality] If P is a trigonometric polynomial of degree
at most n, then ∥∥P ′∥∥∞ ≤ n ‖P‖∞ .



Applying Bernstein’s inequality twice, we get∥∥P ′′v ∥∥∞ ≤ n2 ‖Pv‖∞ .

Recall that
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for all v ∈ E ∩ 1>.
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Now taking v ∈ E to be the eigenvector orthogonal to 1
corresponding to the largest eigenvalue λ, we get

nλ = ‖Mv‖2 ≤ n(n − 1)

and hence,

mkk ≤ ‖M‖2 = maxλ, 1 ≤ n − 1 < n.

For the optimal bound we choose a particular subspace H to
bound each diagonal entry. For example, for m11 we pick

H = {(x , y , . . . , y) :, x , y ∈ R}
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