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Discrete cube

[n] := {1, 2, . . . , n}

Discrete cube (hypercube) Cn := {−1, 1}n, equipped with a
normalized counting (uniform probability) measure (1

2δ−1 + 1
2δ1)⊗n

Disclaimer: There will be no "cheating" as long as the discrete
cube Cn is considered, with n <∞. Many results of the present
talk can be extended to the case n =∞ and more general product
probability spaces. However, usually technical details become much
more delicate then.

Hamming’s metric: For x , y ∈ Cn let

d(x , y) = |{i ∈ [n] : xi 6= yi}| =
1
2
‖x − y‖1.

Expectation: For f : Cn −→ R we have

E[f ] = 2−n
∑
x∈Cn

f (x).
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L2 structure

Scalar product: For f , g : Cn −→ R let

〈f , g〉 = E[f · g ] = 2−n ·
∑
x∈Cn

f (x)g(x).

We denote ‖f ‖p = (E[|f |p])1/p for p > 0 and
‖f ‖∞ = maxx∈Cn |f (x)|.

Note that 〈f , f 〉 = ‖f ‖22.

Hilbert space:

Hn := L2(Cn,R); dimHn = 2n
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Walsh system

Boolean function: f : Cn → {−1, 1}

Motivation:

theoretical computer science
social choice theory

Walsh functions: For x ∈ {−1, 1}n and S ⊆ [n] let

wS(x) =
∏
i∈S

xi ,

w∅ ≡ 1

ri := wi = w{i} - i-th coordinate projection πi (i ∈ [n])

r1, r2, . . . , rn - a Rademacher sequence:
independent symmetric ±1 Bernoulli random variables
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Orthonormality

E[wS ] = 0 for S 6= ∅ and E[w∅] = 1

Indeed, expectation of the product of independent random variables
is equal to the product of their expectations (and they are all equal
to zero).

Orthonormality: wS · wT = wS∆T thus

〈wS ,wT 〉 = E[wS∆T ] = δS,T

Here ∆ denotes a symmetric set difference (XOR) while δS ,T = 1
if S = T and δS,T = 0 if S 6= T (Kronecker’s delta).

Example: w{1,2} · w{2,3} = r1r2 · r2r3 = r1r
2
2 r3 = r1r3.

We have proved that the Walsh system (wS)S⊆[n] is orthonormal
(and therefore linearly independent). Since it is of cardinality 2n,
which is equal to the linear dimension of Hn, it spans the whole
space and thus is complete.

K. Oleszkiewicz On some results in harmonic analysis on the discrete cube



Orthonormality

E[wS ] = 0 for S 6= ∅ and E[w∅] = 1

Indeed, expectation of the product of independent random variables
is equal to the product of their expectations (and they are all equal
to zero).

Orthonormality: wS · wT = wS∆T thus

〈wS ,wT 〉 = E[wS∆T ] = δS,T

Here ∆ denotes a symmetric set difference (XOR) while δS ,T = 1
if S = T and δS,T = 0 if S 6= T (Kronecker’s delta).

Example: w{1,2} · w{2,3} = r1r2 · r2r3 = r1r
2
2 r3 = r1r3.

We have proved that the Walsh system (wS)S⊆[n] is orthonormal
(and therefore linearly independent). Since it is of cardinality 2n,
which is equal to the linear dimension of Hn, it spans the whole
space and thus is complete.

K. Oleszkiewicz On some results in harmonic analysis on the discrete cube



Orthonormality

E[wS ] = 0 for S 6= ∅ and E[w∅] = 1

Indeed, expectation of the product of independent random variables
is equal to the product of their expectations (and they are all equal
to zero).

Orthonormality: wS · wT = wS∆T thus

〈wS ,wT 〉 = E[wS∆T ] = δS,T

Here ∆ denotes a symmetric set difference (XOR) while δS ,T = 1
if S = T and δS,T = 0 if S 6= T (Kronecker’s delta).

Example: w{1,2} · w{2,3} = r1r2 · r2r3 = r1r
2
2 r3 = r1r3.

We have proved that the Walsh system (wS)S⊆[n] is orthonormal
(and therefore linearly independent). Since it is of cardinality 2n,
which is equal to the linear dimension of Hn, it spans the whole
space and thus is complete.

K. Oleszkiewicz On some results in harmonic analysis on the discrete cube



Orthonormality

E[wS ] = 0 for S 6= ∅ and E[w∅] = 1

Indeed, expectation of the product of independent random variables
is equal to the product of their expectations (and they are all equal
to zero).

Orthonormality: wS · wT = wS∆T thus

〈wS ,wT 〉 = E[wS∆T ] = δS,T

Here ∆ denotes a symmetric set difference (XOR) while δS ,T = 1
if S = T and δS,T = 0 if S 6= T (Kronecker’s delta).

Example: w{1,2} · w{2,3} = r1r2 · r2r3 = r1r
2
2 r3 = r1r3.

We have proved that the Walsh system (wS)S⊆[n] is orthonormal
(and therefore linearly independent). Since it is of cardinality 2n,
which is equal to the linear dimension of Hn, it spans the whole
space and thus is complete.

K. Oleszkiewicz On some results in harmonic analysis on the discrete cube



Elementary argument

There is also a straightforward way to see that every function from
Hn is a linear combination of the Walsh functions. Indeed, for any
y ∈ Cn we have

1y (x) =
n∏

i=1

1 + xiyi
2

= 2−n
∑
S⊆[n]

wS(y)wS(x),

where 1y denotes the indicator (the characteristic function) of {y}.
Hence

f (x) =
∑
y∈Cn

f (y)1y (x) = 2−n
∑
S⊆[n]

( ∑
y∈Cn

f (y)wS(y)
)
wS(x) =

=
∑
S⊆[n]

〈f ,wS〉 · wS(x).

Therefore every f ∈ Hn admits one and only one Walsh-Fourier
expansion:

f =
∑
S⊆[n]

f̂ (S)wS .
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Simple consequences of the orthonormality

As we have seen above (it follows also from the orthonormality of
the Walsh system):

f̂ (S) = 〈f ,wS〉 = E[f · wS ].

In particular, for every f ∈ Hn we have

E[f ] = E[f · 1] = E[f · w∅] = 〈f ,w∅〉 = f̂ (∅)

and

E[f 2] = E[f · f ] = 〈f , f 〉 = 〈
∑
S⊆[n]

f̂ (S)wS ,
∑
T⊆[n]

f̂ (T )wT 〉 =

=
∑

S ,T⊆[n]

f̂ (S)f̂ (T )〈wS ,wT 〉 =
∑
S⊆[n]

f̂ (S)2 (Plancherel).
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Frequencies

Let S ⊆ [n]. If the cardinality of S is

small, then we deal with a low frequency.

If it is large, then we deal with a high frequency.

Clear analogy to the trigonometric system terminology.
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Bounded degree chaoses and tail spaces

We will call f : {−1, 1} → R a Rademacher chaos of degree not
exceeding d , if f̂ (S) = 0 for all S ⊆ [n] with |S | > d .

Rademacher chaoses of degree not exceeding d form a linear
subspace of Hn.

The linear subspace of Hn spanned by (wS)|S |≥k is usually denoted
by T≥k and called the k-th tail space.
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LCA setting

Remark: Note that {−1, 1} (with multiplication as a group action)
is a locally compact (compact, in fact) abelian group and
Cn = {−1, 1}n (with coordinatewise multiplication as a group
action) shares this property. The case of the Cantor group (n =∞
with the natural product topology) is covered as well. The standard
product probability measure on Cn is the Haar measure then and
general harmonic analysis on LCA groups tools apply. It is easy to
check that, for n <∞, Cn is self-dual: the group of characters on
Cn is just the Walsh system and it is isomorphic with Cn itself and
the isomorphism is very natural - S ⊆ [n] is identified with x ∈ Cn

such that S = {i ∈ [n] : xi = −1}. Then the mapping f 7→ f̂ ,
which sends a real function on Cn to its Walsh-Fourier coefficients
collection, is just the classical Fourier transform (on LCA groups)
up to some normalization. The transform applied twice returns the
original function, up to a multiplicative factor. However, in what
follows we will not take advantage (at least explicitely) of the group
structure of Cn.
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Jacek Jendrej, K.O., Jakub Onufry Wojtaszczyk
(University of Warsaw, back in 2013...)

Some extensions of the FKN theorem

Theory of Computing 11 (2015), 445–469
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The FKN result

Theorem
There exists a universal constant L > 0 with the following property.

For f : {−1, 1}n → {−1, 1} let ρ =
(∑

A⊆[n]: |A|≥2 |f̂ (A)|2
)1/2

.

Then there exists some B ⊆ [n] with |B| ≤ 1 such that∑
A⊆[n]:A6=B

|f̂ (A)|2 ≤ L · ρ2,

|f̂ (B)|2 ≥ 1− L · ρ2.

The O(ρ2) bound of Friedgut, Kalai, and Naor (2002) was a bit
later strengthened to 2ρ2 + o(ρ2) by Kindler and Safra.
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Main idea of FKN

Friedgut, Kalai and Naor have shown that if the variance of the
absolute value of a sum of weighted Rademacher variables is much
smaller than the variance of the sum, then one of the summands
dominates the sum.
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Geometric digression

Let (F , ‖ · ‖) be a normed linear space. We will say that A ⊂ F is
1-separated if for any distinct x , y ∈ A there is ‖x − y‖ ≥ 1.

Question: Let A and B be 1-separated finite non-empty subsets
of F . Does their Minkowski sum A + B necessarily contain some
1-separated subset of cardinality |A|+ |B| − 1?

Example: F = R, A = {1, 2, . . . , a}, B = {1, 2, . . . , b},
A + B = {2, 3, . . . , a + b}.

Yes, if |A| ≤ 2 or |B| ≤ 2 (easy).

Yes, if (F , ‖ · ‖) is Euclidean.

What if |A| = |B| = 3?
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An improvement of the FKN theorem

Theorem
There exists a universal constant L > 0 with the following property.

For f : {−1, 1}n → {−1, 1} let ρ =
(∑

A⊆[n]: |A|≥2 |f̂ (A)|2
)1/2

.

Then there exists some B ⊆ [n] with |B| ≤ 1 such that∑
A⊆[n]: |A|≤1,A 6=B

|f̂ (A)|2 ≤ L · ρ4 ln(2/ρ),

|f̂ (B)|2 ≥ 1− ρ2 − L · ρ4 ln(2/ρ).

The bound O
(
ρ4 ln(2/ρ)

)
is of the optimal order (and was

independently proved by O’Donnell). For any 2 ≤ m ≤ n consider
just

f (x) = 1− 1
2m−1

m∏
i=1

(1 + xi ).
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Assumptions and Notation (A & N)

ξ1, ξ2, . . . , ξn – independent symmetric ±1 random variables,
Eξi = 0, Eξ2i = 1.

Hilbert space L2 = L2({−1, 1}n, µ), where

µ =

(
1
2
δ−1 +

1
2
δ1

)⊗n
is the distribution of the vector (ξ1, ξ2, . . . , ξn).

Let ξ0 ≡ 1.

Let A be a linear (finite dimensional and thus closed) subspace
of L2 consisting of (restrictions to the discrete cube of) all affine
real-valued functions.
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A & N - continued

We define coordinate projection functions πi : {−1, 1}n −→ R
by πi (x) = xi for 1 ≤ i ≤ n, and π0 ≡ 1 (orthonormal system).
Let Aπ = {π0,−π0, π1,−π1, . . . , πn,−πn}.

For a Boolean (i.e. {−1, 1}-valued) function f on {−1, 1}n
by fA we will denote its orthogonal projection in L2 onto A:
fA(x) = a0 + a1x1 + . . .+ anxn, i.e. fA =

∑n
i=0 aiπi .

ρ := distL2(f ,A), d := distL2(f ,Aπ)

Easy: if f is Boolean, then ρ ≤ ‖f − 0‖L2 = 1 and d ≤
√
2

(L2-distance between two Boolean functions cannot exceed
√
2).

Obviously, ρ ≤ d (since Aπ ⊂ A).
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Discrete cube

Now let us see how to strengthen the result of Friedgut, Kalai,
and Naor. For a function f defined on the discrete cube {−1, 1}n
we consider its standard Walsh-Fourier expansion

∑
A f̂ (A)wA,

where wA(x) =
∏

i∈A xi .

Theorem

There exists a universal constant L > 0 with the following property.

For f : {−1, 1}n → {−1, 1} let ρ =
(∑

A⊆[n]: |A|≥2 |f̂ (A)|2
)1/2

.

Then there exists some B ⊆ [n] with |B| ≤ 1 such that∑
A⊆[n]: |A|≤1,A6=B

|f̂ (A)|2 ≤ L · ρ4 ln(2/ρ),

|f̂ (B)|2 ≥ 1− ρ2 − L · ρ4 ln(2/ρ).
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Proof of the discrete cube result - auxiliary notation

Proof:
Let ai = 〈f , πi 〉L2 = f̂ ({i}) for i ∈ [n], and a0 = f̂ (∅).

Let θ =
(
4 log2(2/d)− 1

)−1
. There is θ ∈ (0, 1] because d ≤

√
2.

Let k ∈ {0, 1, . . . , n} be such that d = ‖f − πk‖L2 (if the point of
Aπ closest to f is of the form −πk then a similar reasoning works).

Hence d2 = ‖f ‖2L2 + ‖πk‖2L2 − 2〈f , πk〉L2 = 2(1− ak).
Remember:

(1− ak)2 = d4/4.
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Hypercontractivity

Since a function h = f − πk is {−2, 0, 2}-valued we get

µ(h 6= 0) = µ({x ∈ {−1, 1}n : h(x) 6= 0}) =
1
4
‖h‖2L2 = (d/2)2.

Therefore

d4/2 = 4(d/2)
4

1+θ = 4
(
µ(h 6= 0)

) 2
1+θ

= ‖h‖2L1+θ

B−B
≥

(B − B is the classical L2 − L1+θ Bonami-Beckner inequality)∑
A⊆[n]

θ|A| · |ĥ(A)|2 ≥ θ ·
∑

A⊆[n]:|A|≤1

|ĥ(A)|2 =

θ ·
(

(1− ak)2 +
∑

i∈{0,1,...,n}\{k}

a2
i

)
= θ ·

(d4

4
+

∑
i∈{0,1,...,n}\{k}

a2
i

)
,

so that ∑
i∈{0,1,...,n}\{k}

a2
i ≤ (2θ−1 − 1)d4/4 ≤ 2d4 log2(2/d). (1)
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Proof of the discrete cube result - the end

n∑
i=0

a2
i =

(
1−d2

2

)2
+

∑
i∈{0,1,...,n}\{k}

a2
i

(1)

≤
(
1−d2

2

)2
+
1
4

(2θ−1−1)d4

= 1− d2 +
1
2
θ−1d4 ≤ 1− d2 + 2d4 log2(2/d),

so

ρ2 =
∑

A⊆[n]:|A|≥2

|f̂ (A)|2 = 1−
n∑

i=0

a2
i ≥ d2 − 2d4 log2(2/d). (2)

We finish the proof by observing that∑
i∈{0,1,...,n}\{k}

a2
i

(1)

≤ 2d4 log2(2/d)
(2)

≤ 2
(
ρ2+2d4 log2(2/d)

)2
log2(2/d)

d≥ρ
≤ 2

(
ρ2 +2d4 log2(2/ρ)

)2
log2(2/ρ)

d=O(ρ)
= 2ρ4 log2(2/ρ)+o(ρ5),

uniformly, as ρ→ 0+.
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Influences

For f : {−1, 1}n → R and i ∈ [n], let us define the i-th influence
of f by

Inf i (f ) =
∑

S⊆[n]: i∈S

(
f̂ (S)

)2
= E[Vari (f )].

This quantity measures dependence of f (x) on the i-th coordinate
of x .
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The KKL Theorem

Kahn, Kalai, and Linial proved that for every mean-zero function
f : {−1, 1}n → {−1, 1} there exists i ∈ [n] such that
Inf i (f ) ≥ c · log n

n , where c > 0 is some universal constant.

The assumption that E[f ] = 0 can be weakened, but not completely
removed (since for f ≡ 1 all influences are obviously equal to zero).

The log n
n order of the bound is optimal: Tribes function.
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Discrete partial derivative

For x = (x1, x2, . . . , xn) and i ∈ [n], let τi (x) denote the reflection
of x with respect to the i-th coordinate:

τi (x) = (x1, x2, . . . , xi−1,−xi , xi+1, . . . , xn).

Now we can define a linear partial derivative operator Di acting on
real-valued functions on the discrete cube. For f : {−1, 1}n → R,
we put

Di (f )(x) = (f (x)− f (τi (x))) /2.

We have
Di f =

∑
S⊆[n]: i∈S

f̂ (S)ws .

and
Inf i (f ) = ‖Di f ‖22.
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Second order quantities

For i , j ∈ [n] with i 6= j , let Di ,j = Di ◦ Dj .

One easily checks that

Di ,j f =
∑

S⊆[n]: i ,j∈S

f̂ (S)ws .

It is natural to define Inf i ,j f as ‖Di ,j f ‖22:

Inf i ,j f =
∑

S⊆[n]: i ,j∈[n]

(
f̂ (S)

)2
.
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