# On some results in harmonic analysis on the discrete cube 

Krzysztof Oleszkiewicz<br>Institute of Mathematics<br>University of Warsaw

Geometric Tomography workshop, Banff, 2020

## Discrete cube

$[n]:=\{1,2, \ldots, n\}$
Discrete cube (hypercube) $C_{n}:=\{-1,1\}^{n}$, equipped with a normalized counting (uniform probability) measure $\left(\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}\right)^{\otimes n}$

Disclaimer: There will be no "cheating" as long as the discrete cube $C_{n}$ is considered, with $n<\infty$. Many results of the present talk can be extended to the case $n=\infty$ and more general product probability spaces. However, usually technical details become much more delicate then.

Hamming's metric: For $x, y \in C_{n}$ let

$$
d(x, y)=\left|\left\{i \in[n]: x_{i} \neq y_{i}\right\}\right|=\frac{1}{2}\|x-y\|_{1} .
$$

Expectation: For $f: C_{n} \longrightarrow \mathbb{R}$ we have

$$
\mathbb{E}[f]=2^{-n} \sum_{x \in C_{n}} f(x)
$$

## Discrete cube

$[n]:=\{1,2, \ldots, n\}$
Discrete cube (hypercube) $C_{n}:=\{-1,1\}^{n}$, equipped with a normalized counting (uniform probability) measure $\left(\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}\right)^{\otimes n}$

Disclaimer: There will be no "cheating" as long as the discrete cube $C_{n}$ is considered, with $n<\infty$. Many results of the present talk can be extended to the case $n=\infty$ and more general product probability spaces. However, usually technical details become much more delicate then.

Hamming's metric: For $x, y \in C_{n}$ let


Expectation: For $f: C_{n} \longrightarrow \mathbb{R}$ we have


## Discrete cube

$[n]:=\{1,2, \ldots, n\}$
Discrete cube (hypercube) $C_{n}:=\{-1,1\}^{n}$, equipped with a normalized counting (uniform probability) measure $\left(\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}\right)^{\otimes n}$

Disclaimer: There will be no "cheating" as long as the discrete cube $C_{n}$ is considered, with $n<\infty$. Many results of the present talk can be extended to the case $n=\infty$ and more general product probability spaces. However, usually technical details become much more delicate then.

Hamming's metric: For $x, y \in C_{n}$ let


Expectation: For $f: C_{n} \longrightarrow \mathbb{R}$ we have


## Discrete cube

$[n]:=\{1,2, \ldots, n\}$
Discrete cube (hypercube) $C_{n}:=\{-1,1\}^{n}$, equipped with a normalized counting (uniform probability) measure $\left(\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}\right)^{\otimes n}$

Disclaimer: There will be no "cheating" as long as the discrete cube $C_{n}$ is considered, with $n<\infty$. Many results of the present talk can be extended to the case $n=\infty$ and more general product probability spaces. However, usually technical details become much more delicate then.

Hamming's metric: For $x, y \in C_{n}$ let

$$
d(x, y)=\left|\left\{i \in[n]: x_{i} \neq y_{i}\right\}\right|=\frac{1}{2}\|x-y\|_{1} .
$$

Expectation: For $f: C_{n} \longrightarrow \mathbb{R}$ we have


## Discrete cube

$[n]:=\{1,2, \ldots, n\}$
Discrete cube (hypercube) $C_{n}:=\{-1,1\}^{n}$, equipped with a normalized counting (uniform probability) measure $\left(\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}\right)^{\otimes n}$

Disclaimer: There will be no "cheating" as long as the discrete cube $C_{n}$ is considered, with $n<\infty$. Many results of the present talk can be extended to the case $n=\infty$ and more general product probability spaces. However, usually technical details become much more delicate then.

Hamming's metric: For $x, y \in C_{n}$ let

$$
d(x, y)=\left|\left\{i \in[n]: x_{i} \neq y_{i}\right\}\right|=\frac{1}{2}\|x-y\|_{1} .
$$

Expectation: For $f: C_{n} \longrightarrow \mathbb{R}$ we have

$$
\mathbb{E}[f]=2^{-n} \sum_{x \in C_{n}} f(x)
$$

## $L^{2}$ structure

Scalar product: For $f, g: C_{n} \longrightarrow \mathbb{R}$ let

$$
\langle f, g\rangle=\mathbb{E}[f \cdot g]=2^{-n} \cdot \sum_{x \in C_{n}} f(x) g(x)
$$

We denote $\|f\|_{p}=\left(\mathbb{E}\left[|f|^{p}\right]\right)^{1 / p}$ for $p>0$ and
$\|f\|_{\infty}=\max _{x \in C_{n}}|f(x)|$.
Note that $\langle f, f\rangle=\|f\|_{2}^{2}$.

## Hilbert space:



Scalar product: For $f, g: C_{n} \longrightarrow \mathbb{R}$ let

$$
\langle f, g\rangle=\mathbb{E}[f \cdot g]=2^{-n} \cdot \sum_{x \in C_{n}} f(x) g(x)
$$

We denote $\|f\|_{p}=\left(\mathbb{E}\left[|f|^{p}\right]\right)^{1 / p}$ for $p>0$ and $\|f\|_{\infty}=\max _{x \in C_{n}}|f(x)|$.

Note that $\langle f, f\rangle=\|f\|_{2}^{2}$.
Hilbert space:

$$
\mathcal{H}_{n}:=L^{2}\left(C_{n}, \mathbb{R}\right) ; \quad \operatorname{dim} \mathcal{H}_{n}=2^{n}
$$

Scalar product: For $f, g: C_{n} \longrightarrow \mathbb{R}$ let

$$
\langle f, g\rangle=\mathbb{E}[f \cdot g]=2^{-n} \cdot \sum_{x \in C_{n}} f(x) g(x)
$$

We denote $\|f\|_{p}=\left(\mathbb{E}\left[|f|^{p}\right]\right)^{1 / p}$ for $p>0$ and $\|f\|_{\infty}=\max _{x \in C_{n}}|f(x)|$.

Note that $\langle f, f\rangle=\|f\|_{2}^{2}$.
Hilbert space:

$$
\mathcal{H}_{n}:=L^{2}\left(C_{n}, \mathbb{R}\right) ; \quad \operatorname{dim} \mathcal{H}_{n}=2^{n}
$$

## Walsh system

Boolean function: $\quad f: C_{n} \rightarrow\{-1,1\}$

## Motivation:

- theoretical computer science
- social choice theory

Walsh functions: For $x \in\{-1,1\}^{n}$ and $S \subseteq[n]$ let


$$
w_{\emptyset} \equiv 1
$$

$r_{1}, r_{2}, \ldots, r_{n}$ - a Rademacher sequence:
indenendent symmetric $\pm 1$ Rernoulli random variables

## Walsh system

Boolean function: $\quad f: C_{n} \rightarrow\{-1,1\}$

## Motivation:

- theoretical computer science
- social choice theory

Walsh functions: For $x \in\{-1,1\}^{n}$ and $S \subseteq[n]$ let

$$
w_{S}(x)=\prod_{i \in S} x_{i}
$$

$$
w_{\emptyset} \equiv 1
$$

$r_{1}, r_{2}, \ldots, r_{n}$ - a Rademacher sequence:
independent symmetric $\pm 1$ Bernoulli random variables

## Walsh system

Boolean function: $\quad f: C_{n} \rightarrow\{-1,1\}$

## Motivation:

- theoretical computer science
- social choice theory

Walsh functions: For $x \in\{-1,1\}^{n}$ and $S \subseteq[n]$ let

$$
\begin{aligned}
w_{S}(x) & =\prod_{i \in S} x_{i} \\
w_{\emptyset} & \equiv 1
\end{aligned}
$$

$r_{1}, r_{2}, \ldots, r_{n}$ - a Rademacher sequence:
indenendent symmetric $\pm 1$ Rernoulli random variables

## Walsh system

Boolean function: $\quad f: C_{n} \rightarrow\{-1,1\}$

## Motivation:

- theoretical computer science
- social choice theory

Walsh functions: For $x \in\{-1,1\}^{n}$ and $S \subseteq[n]$ let

$$
\begin{aligned}
w_{S}(x) & =\prod_{i \in S} x_{i} \\
w_{\emptyset} & \equiv 1
\end{aligned}
$$

$r_{i}:=w_{i}=w_{\{i\}}-i$-th coordinate projection $\pi_{i}(i \in[n])$
$r_{1}, r_{2}, \ldots, r_{n}$ - a Rademacher sequence:
independent symmetric $\pm 1$ Bernoulli random variables

## Walsh system

Boolean function: $\quad f: C_{n} \rightarrow\{-1,1\}$

## Motivation:

- theoretical computer science
- social choice theory

Walsh functions: For $x \in\{-1,1\}^{n}$ and $S \subseteq[n]$ let

$$
\begin{aligned}
w_{S}(x) & =\prod_{i \in S} x_{i}, \\
w_{\emptyset} & \equiv 1
\end{aligned}
$$

$r_{i}:=w_{i}=w_{\{i\}}-i$-th coordinate projection $\pi_{i}(i \in[n])$
$r_{1}, r_{2}, \ldots, r_{n}$ - a Rademacher sequence:
independent symmetric $\pm 1$ Bernoulli random variables

## Orthonormality

$\mathbb{E}\left[w_{S}\right]=0$ for $S \neq \emptyset$ and $\mathbb{E}\left[w_{\emptyset}\right]=1$
Indeed, expectation of the product of independent random variables is equal to the product of their expectations (and they are all equal to zero).

Orthonormality: $w_{S} \cdot w_{T}=w_{S \Delta T}$ thus

$$
\left\langle w_{S}, w_{T}\right\rangle=\mathbb{E}\left[w_{S \Delta T}\right]=\delta_{S, T}
$$

Here $\Delta$ denotes a symmetric set difference (XOR) while $\delta_{S, T}=1$ if $S=T$ and $\delta_{S, T}=0$ if $S \neq T$ (Kronecker's delta).

Example: $w_{\{1,2\}} \cdot w_{\{2,3\}}=r_{1} r_{2} \cdot r_{2} r_{3}=r_{1} r_{2}^{2} r_{3}=r_{1} r_{3}$.
We have proved that the Walsh system $\left(w_{S}\right)_{S \subseteq[n]}$ is orthonormal (and therefore linearly independent). Since it is of cardinality $2^{n}$, which is equal to the linear dimension of $\mathcal{H}_{n}$, it spans the whole
space and thus is complete.

## Orthonormality

$\mathbb{E}\left[w_{S}\right]=0$ for $S \neq \emptyset$ and $\mathbb{E}\left[w_{\emptyset}\right]=1$
Indeed, expectation of the product of independent random variables is equal to the product of their expectations (and they are all equal to zero).

Orthonormality: $w_{S} \cdot w_{T}=w_{S \Delta T}$ thus

$$
\left\langle w_{S}, w_{T}\right\rangle=\mathbb{E}\left[w_{S \Delta T}\right]=\delta_{S, T}
$$

Here $\Delta$ denotes a symmetric set difference (XOR) while $\delta_{S, T}=1$ if $S=T$ and $\delta_{S, T}=0$ if $S \neq T$ (Kronecker's delta).

Example: $w_{\{1,2\}}$
We have proved that the Walsh system $\left(w_{S}\right)_{S \subseteq[n]}$ is orthonormal (and therefore linearly independent). Since it is of cardinality $2^{n}$, which is equal to the linear dimension of $\mathcal{H}_{n}$, it spans the whole space and thus is complete.

## Orthonormality

$\mathbb{E}\left[w_{S}\right]=0$ for $S \neq \emptyset$ and $\mathbb{E}\left[w_{\emptyset}\right]=1$
Indeed, expectation of the product of independent random variables is equal to the product of their expectations (and they are all equal to zero).

Orthonormality: $w_{S} \cdot w_{T}=w_{S \Delta T}$ thus

$$
\left\langle w_{S}, w_{T}\right\rangle=\mathbb{E}\left[w_{S \Delta T}\right]=\delta_{S, T}
$$

Here $\Delta$ denotes a symmetric set difference (XOR) while $\delta_{S, T}=1$ if $S=T$ and $\delta_{S, T}=0$ if $S \neq T$ (Kronecker's delta).

Example: $w_{\{1,2\}} \cdot w_{\{2,3\}}=r_{1} r_{2} \cdot r_{2} r_{3}=r_{1} r_{2}^{2} r_{3}=r_{1} r_{3}$.
We have proved that the Walsh system $\left(w_{S}\right)_{S \subseteq[n]}$ is orthonormal (and therefore linearly independent). Since it is of cardinality $2^{n}$, which is equal to the linear dimension of $\mathcal{H}_{n}$, it spans the whole space and thus is complete.

## Orthonormality

$\mathbb{E}\left[w_{S}\right]=0$ for $S \neq \emptyset$ and $\mathbb{E}\left[w_{\emptyset}\right]=1$
Indeed, expectation of the product of independent random variables is equal to the product of their expectations (and they are all equal to zero).

Orthonormality: $w_{S} \cdot w_{T}=w_{S \Delta T}$ thus

$$
\left\langle w_{S}, w_{T}\right\rangle=\mathbb{E}\left[w_{S \Delta T}\right]=\delta_{S, T}
$$

Here $\Delta$ denotes a symmetric set difference (XOR) while $\delta_{S, T}=1$ if $S=T$ and $\delta_{S, T}=0$ if $S \neq T$ (Kronecker's delta).

Example: $w_{\{1,2\}} \cdot w_{\{2,3\}}=r_{1} r_{2} \cdot r_{2} r_{3}=r_{1} r_{2}^{2} r_{3}=r_{1} r_{3}$.
We have proved that the Walsh system $\left(w_{S}\right)_{S \subseteq[n]}$ is orthonormal (and therefore linearly independent). Since it is of cardinality $2^{n}$, which is equal to the linear dimension of $\mathcal{H}_{n}$, it spans the whole space and thus is complete.

There is also a straightforward way to see that every function from $\mathcal{H}_{n}$ is a linear combination of the Walsh functions. Indeed, for any $y \in C_{n}$ we have

$$
1_{y}(x)=\prod_{i=1}^{n} \frac{1+x_{i} y_{i}}{2}=2^{-n} \sum_{S \subseteq[n]} w_{S}(y) w_{S}(x),
$$

where $1_{y}$ denotes the indicator (the characteristic function) of $\{y\}$. Hence

$$
\begin{gathered}
f(x)=\sum_{y \in C_{n}} f(y) 1_{y}(x)=2^{-n} \sum_{S \subseteq[n]}\left(\sum_{y \in C_{n}} f(y) w_{S}(y)\right) w_{S}(x)= \\
=\sum_{S \subseteq[n]}\left\langle f, w_{S}\right\rangle \cdot w_{S}(x) .
\end{gathered}
$$

Therefore every $f \in \mathcal{H}_{n}$ admits one and only one Walsh-Fourier expansion:

There is also a straightforward way to see that every function from $\mathcal{H}_{n}$ is a linear combination of the Walsh functions. Indeed, for any $y \in C_{n}$ we have

$$
1_{y}(x)=\prod_{i=1}^{n} \frac{1+x_{i} y_{i}}{2}=2^{-n} \sum_{S \subseteq[n]} w_{S}(y) w_{S}(x),
$$

where $1_{y}$ denotes the indicator (the characteristic function) of $\{y\}$. Hence

$$
\begin{gathered}
f(x)=\sum_{y \in C_{n}} f(y) 1_{y}(x)=2^{-n} \sum_{S \subseteq[n]}\left(\sum_{y \in C_{n}} f(y) w_{S}(y)\right) w_{S}(x)= \\
=\sum_{S \subseteq[n]}\left\langle f, w_{S}\right\rangle \cdot w_{S}(x) .
\end{gathered}
$$

Therefore every $f \in \mathcal{H}_{n}$ admits one and only one Walsh-Fourier expansion:

$$
f=\sum \hat{f}(S) w_{S} .
$$

## Simple consequences of the orthonormality

As we have seen above (it follows also from the orthonormality of the Walsh system):

$$
\hat{f}(S)=\left\langle f, w_{S}\right\rangle=\mathbb{E}\left[f \cdot w_{S}\right] .
$$

In particular, for every $f \in \mathcal{H}_{n}$ we have

$$
\mathbb{E}[f]=\mathbb{E}[f \cdot 1]=\mathbb{E}\left[f \cdot w_{\phi}\right]=\left\langle f, w_{\theta}\right\rangle=\hat{f}(\theta)
$$



## Simple consequences of the orthonormality

As we have seen above (it follows also from the orthonormality of the Walsh system):

$$
\hat{f}(S)=\left\langle f, w_{S}\right\rangle=\mathbb{E}\left[f \cdot w_{S}\right] .
$$

In particular, for every $f \in \mathcal{H}_{n}$ we have

$$
\mathbb{E}[f]=\mathbb{E}[f \cdot \mathbf{1}]=\mathbb{E}\left[f \cdot w_{\emptyset}\right]=\left\langle f, w_{\emptyset}\right\rangle=\hat{f}(\emptyset)
$$

and

$$
\begin{aligned}
& \mathbb{E}\left[f^{2}\right]=\mathbb{E}[f \cdot f]=\langle f, f\rangle=\left\langle\sum_{S \subseteq[n]} \hat{f}(S) w_{S}, \sum_{T \subseteq[n]} \hat{f}(T) w_{T}\right\rangle= \\
& =\sum_{S, T \subseteq[n]} \hat{f}(S) \hat{f}(T)\left\langle w_{S}, w_{T}\right\rangle=\sum_{S \subseteq[n]} \hat{f}(S)^{2} \text { (Plancherel) }
\end{aligned}
$$

## Frequencies

Let $S \subseteq[n]$. If the cardinality of $S$ is
small, then we deal with a low frequency.
If it is large, then we deal with a high frequency.
Clear analogy to the trigonometric system terminology.

## Frequencies

Let $S \subseteq[n]$. If the cardinality of $S$ is
small, then we deal with a low frequency.
If it is large, then we deal with a high frequency.
Clear analogy to the trigonometric system terminology.

## Frequencies

Let $S \subseteq[n]$. If the cardinality of $S$ is
small, then we deal with a low frequency.
If it is large, then we deal with a high frequency.
Clear analogy to the trigonometric system terminology.

## Bounded degree chaoses and tail spaces

We will call $f:\{-1,1\} \rightarrow \mathbb{R}$ a Rademacher chaos of degree not exceeding $d$, if $\hat{f}(S)=0$ for all $S \subseteq[n]$ with $|S|>d$.

Rademacher chaoses of degree not exceeding $d$ form a linear subspace of $\mathcal{H}_{n}$.

The linear subspace of $\mathcal{H}_{n}$ spanned by $\left(w_{S}\right)_{|S| \geq k}$ is usually denoted by $T_{\geq k}$ and called the $k$-th tail space.

## Bounded degree chaoses and tail spaces

We will call $f:\{-1,1\} \rightarrow \mathbb{R}$ a Rademacher chaos of degree not exceeding $d$, if $\hat{f}(S)=0$ for all $S \subseteq[n]$ with $|S|>d$.

Rademacher chaoses of degree not exceeding $d$ form a linear subspace of $\mathcal{H}_{n}$.

The linear subspace of $\mathcal{H}_{n}$ spanned by $\left(w_{S}\right)_{|S| \geq k}$ is usually denoted by $T_{\geq k}$ and called the $k$-th tail space.

## Bounded degree chaoses and tail spaces

We will call $f:\{-1,1\} \rightarrow \mathbb{R}$ a Rademacher chaos of degree not exceeding $d$, if $\hat{f}(S)=0$ for all $S \subseteq[n]$ with $|S|>d$.

Rademacher chaoses of degree not exceeding $d$ form a linear subspace of $\mathcal{H}_{n}$.

The linear subspace of $\mathcal{H}_{n}$ spanned by $\left(w_{S}\right)_{|S| \geq k}$ is usually denoted by $T_{\geq k}$ and called the $k$-th tail space.

## LCA setting

Remark: Note that $\{-1,1\}$ (with multiplication as a group action) is a locally compact (compact, in fact) abelian group and $C_{n}=\{-1,1\}^{n}$ (with coordinatewise multiplication as a group action) shares this property. The case of the Cantor group ( $n=\infty$ with the natural product topology) is covered as well. The standard product probability measure on $C_{n}$ is the Haar measure then and general harmonic analysis on LCA groups tools apply. It is easy to check that, for $n<\infty, C_{n}$ is self-dual: the group of characters on $C_{n}$ is just the Walsh system and it is isomorphic with $C_{n}$ itself and the isomorphism is very natural $-S \subseteq[n]$ is identified with $x \in C_{n}$ such that $S=\left\{i \in[n]: x_{i}=-1\right\}$. Then the mapping $f \mapsto \hat{f}$, which sends a real function on $C_{n}$ to its Walsh-Fourier coefficients collection, is just the classical Fourier transform (on LCA groups) up to some normalization. The transform applied twice returns the original function, up to a multiplicative factor. However, in what follows we will not take advantage (at least explicitely) of the group structure of $C_{n}$.

# Jacek Jendrej, K. O., Jakub Onufry Wojtaszczyk (University of Warsaw, back in 2013...) 

Some extensions of the FKN theorem
Theory of Computing 11 (2015), 445-469

## The FKN result

## Theorem

There exists a universal constant $L>0$ with the following property. For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ let $\rho=\left(\sum_{A \subseteq[n]:|A| \geq 2}|\hat{f}(A)|^{2}\right)^{1 / 2}$.

Then there exists some $B \subseteq[n]$ with $|B| \leq 1$ such that

$$
\begin{gathered}
\sum_{A \subseteq[n]: A \neq B}|\hat{f}(A)|^{2} \leq L \cdot \rho^{2}, \\
|\hat{f}(B)|^{2} \geq 1-L \cdot \rho^{2} .
\end{gathered}
$$

The $O\left(\rho^{2}\right)$ bound of Friedgut, Kalai, and Naor (2002) was a bit later strengthened to $2 \rho^{2}+o\left(\rho^{2}\right)$ by Kindler and Safra

## The FKN result

## Theorem

There exists a universal constant $L>0$ with the following property. For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ let $\rho=\left(\sum_{A \subseteq[n]:|A| \geq 2}|\hat{f}(A)|^{2}\right)^{1 / 2}$.

Then there exists some $B \subseteq[n]$ with $|B| \leq 1$ such that

$$
\begin{gathered}
\sum_{A \subseteq[n]: A \neq B}|\hat{f}(A)|^{2} \leq L \cdot \rho^{2}, \\
|\hat{f}(B)|^{2} \geq 1-L \cdot \rho^{2}
\end{gathered}
$$

The $O\left(\rho^{2}\right)$ bound of Friedgut, Kalai, and Naor (2002) was a bit later strengthened to $2 \rho^{2}+o\left(\rho^{2}\right)$ by Kindler and Safra.

## Main idea of FKN

Friedgut, Kalai and Naor have shown that if the variance of the absolute value of a sum of weighted Rademacher variables is much smaller than the variance of the sum, then one of the summands dominates the sum.

## Geometric digression

Let $(F,\|\cdot\|)$ be a normed linear space. We will say that $A \subset F$ is 1 -separated if for any distinct $x, y \in A$ there is $\|x-y\| \geq 1$.

Question: Let $A$ and $B$ be 1-separated finite non-empty subsets of $F$. Does their Minkowski sum $A+B$ necessarily contain some 1-separated subset of cardinality $|A|+|B|-1$ ?

Example: $F=\mathbb{R}, A=\{1,2, \ldots, a\}, B=\{1,2, \ldots, b\}$, $A+B=\{2,3, \ldots, a+b\}$.

Yes, if $|A| \leq 2$ or $|B| \leq 2$ (easy)
Yes, if $(F,\|\cdot\|)$ is Euclidean.
What if $|A|=|B|=3$ ?

## Geometric digression

Let $(F,\|\cdot\|)$ be a normed linear space. We will say that $A \subset F$ is 1 -separated if for any distinct $x, y \in A$ there is $\|x-y\| \geq 1$.

Question: Let $A$ and $B$ be 1-separated finite non-empty subsets of $F$. Does their Minkowski sum $A+B$ necessarily contain some 1-separated subset of cardinality $|A|+|B|-1$ ?

Example: $F=\mathbb{R}, A=\{1,2, \ldots, a\}, B=\{1,2, \ldots, b\}$


Yes, if $|A| \leq 2$ or $|B| \leq 2$ (easy)
Yes, if (F, \|. || $)$ is Euclidean.
What if $|A|=|B|=3$ ?

## Geometric digression

Let $(F,\|\cdot\|)$ be a normed linear space. We will say that $A \subset F$ is 1 -separated if for any distinct $x, y \in A$ there is $\|x-y\| \geq 1$.

Question: Let $A$ and $B$ be 1-separated finite non-empty subsets of $F$. Does their Minkowski sum $A+B$ necessarily contain some 1-separated subset of cardinality $|A|+|B|-1$ ?

Example: $F=\mathbb{R}, A=\{1,2, \ldots, a\}, B=\{1,2, \ldots, b\}$, $A+B=\{2,3, \ldots, a+b\}$.

Yes, if $|A| \leq 2$ or $|B| \leq 2$ (easy).
Yes, if $(F,\|\cdot\|)$ is Euclidean.
What if $|A|=|B|=3$ ?

## Geometric digression

Let $(F,\|\cdot\|)$ be a normed linear space. We will say that $A \subset F$ is 1 -separated if for any distinct $x, y \in A$ there is $\|x-y\| \geq 1$.

Question: Let $A$ and $B$ be 1-separated finite non-empty subsets of $F$. Does their Minkowski sum $A+B$ necessarily contain some 1-separated subset of cardinality $|A|+|B|-1$ ?

Example: $F=\mathbb{R}, A=\{1,2, \ldots, a\}, B=\{1,2, \ldots, b\}$, $A+B=\{2,3, \ldots, a+b\}$.

Yes, if $|A| \leq 2$ or $|B| \leq 2$ (easy).
Yes, if $(F,\|\cdot\|)$ is Euclidean.
What if $|A|=|B|=3$ ?

## Geometric digression

Let $(F,\|\cdot\|)$ be a normed linear space. We will say that $A \subset F$ is 1 -separated if for any distinct $x, y \in A$ there is $\|x-y\| \geq 1$.

Question: Let $A$ and $B$ be 1-separated finite non-empty subsets of $F$. Does their Minkowski sum $A+B$ necessarily contain some 1-separated subset of cardinality $|A|+|B|-1$ ?

Example: $F=\mathbb{R}, A=\{1,2, \ldots, a\}, B=\{1,2, \ldots, b\}$, $A+B=\{2,3, \ldots, a+b\}$.

Yes, if $|A| \leq 2$ or $|B| \leq 2$ (easy).
Yes, if $(F,\|\cdot\|)$ is Euclidean.
What if $|A|=|B|=3$ ?

## Geometric digression

Let $(F,\|\cdot\|)$ be a normed linear space. We will say that $A \subset F$ is 1 -separated if for any distinct $x, y \in A$ there is $\|x-y\| \geq 1$.

Question: Let $A$ and $B$ be 1-separated finite non-empty subsets of $F$. Does their Minkowski sum $A+B$ necessarily contain some 1-separated subset of cardinality $|A|+|B|-1$ ?

Example: $F=\mathbb{R}, A=\{1,2, \ldots, a\}, B=\{1,2, \ldots, b\}$, $A+B=\{2,3, \ldots, a+b\}$.

Yes, if $|A| \leq 2$ or $|B| \leq 2$ (easy).
Yes, if $(F,\|\cdot\|)$ is Euclidean.
What if $|A|=|B|=3$ ?

## An improvement of the FKN theorem

## Theorem

There exists a universal constant $L>0$ with the following property. For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ let $\rho=\left(\sum_{A \subseteq[n]:|A| \geq 2}|\hat{f}(A)|^{2}\right)^{1 / 2}$.

Then there exists some $B \subseteq[n]$ with $|B| \leq 1$ such that

$$
\begin{gathered}
\sum_{A \subseteq[n]:|A| \leq 1, A \neq B}|\hat{f}(A)|^{2} \leq L \cdot \rho^{4} \ln (2 / \rho), \\
|\hat{f}(B)|^{2} \geq 1-\rho^{2}-L \cdot \rho^{4} \ln (2 / \rho)
\end{gathered}
$$

The bound $O\left(\rho^{4} \ln (2 / \rho)\right)$ is of the optimal order (and was independently proved by O'Donnell). For any $2 \leq m \leq n$ consider just


## An improvement of the FKN theorem

## Theorem

There exists a universal constant $L>0$ with the following property. For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ let $\rho=\left(\sum_{A \subseteq[n]:|A| \geq 2}|\hat{f}(A)|^{2}\right)^{1 / 2}$.

Then there exists some $B \subseteq[n]$ with $|B| \leq 1$ such that

$$
\begin{gathered}
\sum_{A \subseteq[n]:|A| \leq 1, A \neq B}|\hat{f}(A)|^{2} \leq L \cdot \rho^{4} \ln (2 / \rho), \\
|\hat{f}(B)|^{2} \geq 1-\rho^{2}-L \cdot \rho^{4} \ln (2 / \rho)
\end{gathered}
$$

The bound $O\left(\rho^{4} \ln (2 / \rho)\right)$ is of the optimal order (and was independently proved by O'Donnell). For any $2 \leq m \leq n$ consider just

$$
f(x)=1-\frac{1}{2^{m-1}} \prod_{i=1}^{m}\left(1+x_{i}\right)
$$

## Assumptions and Notation (A \& N)

$\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ - independent symmetric $\pm 1$ random variables, $\mathbb{E} \xi_{i}=0, \mathbb{E} \xi_{i}^{2}=1$.

Hilbert space $L^{2}=L^{2}\left(\{-1,1\}^{n}, \mu\right)$, where

is the distribution of the vector $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$

Let $\xi_{0} \equiv 1$
Let $\mathcal{A}$ be a linear (finite dimensional and thus closed) subspace of $L^{2}$ consisting of (restrictions to the discrete cube of) all affine real-valued functions.

## Assumptions and Notation (A \& N)

$\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ - independent symmetric $\pm 1$ random variables, $\mathbb{E} \xi_{i}=0, \mathbb{E} \xi_{i}^{2}=1$.

Hilbert space $L^{2}=L^{2}\left(\{-1,1\}^{n}, \mu\right)$, where

$$
\mu=\left(\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}\right)^{\otimes n}
$$

is the distribution of the vector $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$.
Let $\xi_{0} \equiv 1$.
Let $\mathcal{A}$ be a linear (finite dimensional and thus closed) subspace of $L^{2}$ consisting of (restrictions to the discrete cube of) all affine real-valued functions.

## Assumptions and Notation (A \& N)

$\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ - independent symmetric $\pm 1$ random variables, $\mathbb{E} \xi_{i}=0, \mathbb{E} \xi_{i}^{2}=1$.

Hilbert space $L^{2}=L^{2}\left(\{-1,1\}^{n}, \mu\right)$, where

$$
\mu=\left(\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}\right)^{\otimes n}
$$

is the distribution of the vector $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$.
Let $\xi_{0} \equiv 1$.
Let $\mathcal{A}$ be a linear (finite dimensional and thus closed) subspace of $L^{2}$ consisting of (restrictions to the discrete cube of) all affine real-valued functions.

## Assumptions and Notation (A \& N)

$\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ - independent symmetric $\pm 1$ random variables, $\mathbb{E} \xi_{i}=0, \mathbb{E} \xi_{i}^{2}=1$.

Hilbert space $L^{2}=L^{2}\left(\{-1,1\}^{n}, \mu\right)$, where

$$
\mu=\left(\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}\right)^{\otimes n}
$$

is the distribution of the vector $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$.
Let $\xi_{0} \equiv 1$.
Let $\mathcal{A}$ be a linear (finite dimensional and thus closed) subspace of $L^{2}$ consisting of (restrictions to the discrete cube of) all affine real-valued functions.

## A \& N-continued

We define coordinate projection functions $\pi_{i}:\{-1,1\}^{n} \longrightarrow \mathbb{R}$ by $\pi_{i}(x)=x_{i}$ for $1 \leq i \leq n$, and $\pi_{0} \equiv 1$ (orthonormal system). Let $\mathcal{A}_{\pi}=\left\{\pi_{0},-\pi_{0}, \pi_{1},-\pi_{1}, \ldots, \pi_{n},-\pi_{n}\right\}$.

For a Boolean (i.e. $\{-1,1\}$-valued) function $f$ on $\{-1,1\}^{n}$ by $f_{\mathcal{A}}$ we will denote its orthogonal projection in $L^{2}$ onto $\mathcal{A}$ : $f_{\mathcal{A}}(x)=a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, i.e. $f_{\mathcal{A}}=\sum_{i=0}^{n} a_{i} \pi_{i}$.
( $L^{2}$-distance between two Boolean functions cannot exceed $\sqrt{2}$ ) Obviously, $\rho \leq d$ (since $\left.\mathcal{A}_{\pi} \subset \mathcal{A}\right)$

## A \& N-continued

We define coordinate projection functions $\pi_{i}:\{-1,1\}^{n} \longrightarrow \mathbb{R}$ by $\pi_{i}(x)=x_{i}$ for $1 \leq i \leq n$, and $\pi_{0} \equiv 1$ (orthonormal system). Let $\mathcal{A}_{\pi}=\left\{\pi_{0},-\pi_{0}, \pi_{1},-\pi_{1}, \ldots, \pi_{n},-\pi_{n}\right\}$.

For a Boolean (i.e. $\{-1,1\}$-valued) function $f$ on $\{-1,1\}^{n}$ by $f_{\mathcal{A}}$ we will denote its orthogonal projection in $L^{2}$ onto $\mathcal{A}$ : $f_{\mathcal{A}}(x)=a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, i.e. $f_{\mathcal{A}}=\sum_{i=0}^{n} a_{i} \pi_{i}$.

$$
\rho:=\operatorname{dist}_{L^{2}}(f, \mathcal{A}), \quad d:=\operatorname{dist}_{L^{2}}\left(f, \mathcal{A}_{\pi}\right)
$$

Easy: if $f$ is Boolean, then $\rho \leq\|f-0\|_{L^{2}}=1$ and $d \leq \sqrt{2}$ ( $L^{2}$-distance between two Boolean functions cannot exceed $\sqrt{2}$ ) Obviously, $\rho \leq d\left(\right.$ since $\left.\mathcal{A}_{\pi} \subset \mathcal{A}\right)$

## A \& N-continued

We define coordinate projection functions $\pi_{i}:\{-1,1\}^{n} \longrightarrow \mathbb{R}$ by $\pi_{i}(x)=x_{i}$ for $1 \leq i \leq n$, and $\pi_{0} \equiv 1$ (orthonormal system). Let $\mathcal{A}_{\pi}=\left\{\pi_{0},-\pi_{0}, \pi_{1},-\pi_{1}, \ldots, \pi_{n},-\pi_{n}\right\}$.

For a Boolean (i.e. $\{-1,1\}$-valued) function $f$ on $\{-1,1\}^{n}$ by $f_{\mathcal{A}}$ we will denote its orthogonal projection in $L^{2}$ onto $\mathcal{A}$ : $f_{\mathcal{A}}(x)=a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, i.e. $f_{\mathcal{A}}=\sum_{i=0}^{n} a_{i} \pi_{i}$.

$$
\rho:=\operatorname{dist}_{L^{2}}(f, \mathcal{A}), \quad d:=\operatorname{dist}_{L^{2}}\left(f, \mathcal{A}_{\pi}\right)
$$

Easy: if $f$ is Boolean, then $\rho \leq\|f-0\|_{L^{2}}=1$ ( $L^{2}$-distance between two Boolean functions cannot exceed $\sqrt{2}$ ) Obviously, $\rho \leq d\left(\right.$ since $\left.\mathcal{A}_{\pi} \subset \mathcal{A}\right)$

## A \& N-continued

We define coordinate projection functions $\pi_{i}:\{-1,1\}^{n} \longrightarrow \mathbb{R}$ by $\pi_{i}(x)=x_{i}$ for $1 \leq i \leq n$, and $\pi_{0} \equiv 1$ (orthonormal system). Let $\mathcal{A}_{\pi}=\left\{\pi_{0},-\pi_{0}, \pi_{1},-\pi_{1}, \ldots, \pi_{n},-\pi_{n}\right\}$.

For a Boolean (i.e. $\{-1,1\}$-valued) function $f$ on $\{-1,1\}^{n}$ by $f_{\mathcal{A}}$ we will denote its orthogonal projection in $L^{2}$ onto $\mathcal{A}$ : $f_{\mathcal{A}}(x)=a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, i.e. $f_{\mathcal{A}}=\sum_{i=0}^{n} a_{i} \pi_{i}$.

$$
\rho:=\operatorname{dist}_{L^{2}}(f, \mathcal{A}), \quad d:=\operatorname{dist}_{L^{2}}\left(f, \mathcal{A}_{\pi}\right)
$$

Easy: if $f$ is Boolean, then $\rho \leq\|f-0\|_{L^{2}}=1$ and $d \leq \sqrt{2}$ ( $L^{2}$-distance between two Boolean functions cannot exceed $\sqrt{2}$ ).

Obviously, $\rho \leq d$ (since $\mathcal{A}_{\pi} \subset \mathcal{A}$ ).

## A \& N-continued

We define coordinate projection functions $\pi_{i}:\{-1,1\}^{n} \longrightarrow \mathbb{R}$ by $\pi_{i}(x)=x_{i}$ for $1 \leq i \leq n$, and $\pi_{0} \equiv 1$ (orthonormal system). Let $\mathcal{A}_{\pi}=\left\{\pi_{0},-\pi_{0}, \pi_{1},-\pi_{1}, \ldots, \pi_{n},-\pi_{n}\right\}$.

For a Boolean (i.e. $\{-1,1\}$-valued) function $f$ on $\{-1,1\}^{n}$ by $f_{\mathcal{A}}$ we will denote its orthogonal projection in $L^{2}$ onto $\mathcal{A}$ : $f_{\mathcal{A}}(x)=a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, i.e. $f_{\mathcal{A}}=\sum_{i=0}^{n} a_{i} \pi_{i}$.

$$
\rho:=\operatorname{dist}_{L^{2}}(f, \mathcal{A}), \quad d:=\operatorname{dist}_{L^{2}}\left(f, \mathcal{A}_{\pi}\right)
$$

Easy: if $f$ is Boolean, then $\rho \leq\|f-0\|_{L^{2}}=1$ and $d \leq \sqrt{2}$ ( $L^{2}$-distance between two Boolean functions cannot exceed $\sqrt{2}$ ).

Obviously, $\rho \leq d$ (since $\mathcal{A}_{\pi} \subset \mathcal{A}$ ).

## Discrete cube

Now let us see how to strengthen the result of Friedgut, Kalai, and Naor. For a function $f$ defined on the discrete cube $\{-1,1\}^{n}$ we consider its standard Walsh-Fourier expansion $\sum_{A} \hat{f}(A) w_{A}$, where $w_{A}(x)=\prod_{i \in A} x_{i}$.

## Theorem

There exists a universal constant $L>0$ with the following property. For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ let $\rho=\left(\sum_{A \subseteq[n]:|A| \geq 2}|\hat{f}(A)|^{2}\right)^{1 / 2}$.

Then there exists some $B \subseteq[n]$ with $|B| \leq 1$ such that

$$
\begin{gathered}
\sum_{A \subseteq[n]:|A| \leq 1, A \neq B}|\hat{f}(A)|^{2} \leq L \cdot \rho^{4} \ln (2 / \rho), \\
|\hat{f}(B)|^{2} \geq 1-\rho^{2}-L \cdot \rho^{4} \ln (2 / \rho)
\end{gathered}
$$

## Proof of the discrete cube result - auxiliary notation

Proof:
Let $a_{i}=\left\langle f, \pi_{i}\right\rangle_{L^{2}}=\hat{f}(\{i\})$ for $i \in[n]$, and $a_{0}=\hat{f}(\emptyset)$.
Let $\theta=\left(4 \log _{2}(2 / d)-1\right)^{-1}$. There is $\theta \in(0,1]$ because $d \leq \sqrt{2}$.
Let $k \in\{0,1, \ldots, n\}$ be such that $d=\left\|f-\pi_{k}\right\|_{L^{2}}$ (if the point of $\mathcal{A}_{\pi}$ closest to $f$ is of the form $-\pi_{k}$ then a similar reasoning works). Hence $\left.d^{2}=\|f\|_{L^{2}}^{2}+\left\|\pi_{k}\right\|_{L^{2}}^{2}-2\left\langle f, \pi_{k}\right\rangle\right\rangle_{L^{2}}=2\left(1-a_{k}\right)$.
Remember:


Proof:
Let $a_{i}=\left\langle f, \pi_{i}\right\rangle_{L^{2}}=\hat{f}(\{i\})$ for $i \in[n]$, and $a_{0}=\hat{f}(\emptyset)$.
Let $\theta=\left(4 \log _{2}(2 / d)-1\right)^{-1}$. There is $\theta \in(0,1]$ because $d \leq \sqrt{2}$.
Let $k \in\{0,1, \ldots, n\}$ be such that $d=\left\|f-\pi_{k}\right\|_{L^{2}}$ (if the point of $\mathcal{A}_{\pi}$ closest to $f$ is of the form $-\pi_{k}$ then a similar reasoning works).

Hence $d^{2}=\|f\|_{L^{2}}^{2}+\left\|\pi_{k}\right\|_{L^{2}}^{2}-2\left\langle f, \pi_{k}\right\rangle L_{L^{2}}=2\left(1-a_{k}\right)$.
Remember:


## Proof of the discrete cube result - auxiliary notation

Proof:
Let $a_{i}=\left\langle f, \pi_{i}\right\rangle_{L^{2}}=\hat{f}(\{i\})$ for $i \in[n]$, and $a_{0}=\hat{f}(\emptyset)$.
Let $\theta=\left(4 \log _{2}(2 / d)-1\right)^{-1}$. There is $\theta \in(0,1]$ because $d \leq \sqrt{2}$.
Let $k \in\{0,1, \ldots, n\}$ be such that $d=\left\|f-\pi_{k}\right\|_{L^{2}}$ (if the point of $\mathcal{A}_{\pi}$ closest to $f$ is of the form $-\pi_{k}$ then a similar reasoning works).

Hence $d^{2}=\|f\|_{L^{2}}^{2}+\left\|\pi_{k}\right\|_{L^{2}}^{2}-2\left\langle f, \pi_{k}\right\rangle_{L^{2}}=2\left(1-a_{k}\right)$. Remember:

## Proof of the discrete cube result - auxiliary notation

## Proof:

Let $a_{i}=\left\langle f, \pi_{i}\right\rangle_{L^{2}}=\hat{f}(\{i\})$ for $i \in[n]$, and $a_{0}=\hat{f}(\emptyset)$.
Let $\theta=\left(4 \log _{2}(2 / d)-1\right)^{-1}$. There is $\theta \in(0,1]$ because $d \leq \sqrt{2}$.
Let $k \in\{0,1, \ldots, n\}$ be such that $d=\left\|f-\pi_{k}\right\|_{L^{2}}$ (if the point of $\mathcal{A}_{\pi}$ closest to $f$ is of the form $-\pi_{k}$ then a similar reasoning works).

Hence $d^{2}=\|f\|_{L^{2}}^{2}+\left\|\pi_{k}\right\|_{L^{2}}^{2}-2\left\langle f, \pi_{k}\right\rangle_{L^{2}}=2\left(1-a_{k}\right)$.
Remember:

$$
\left(1-a_{k}\right)^{2}=d^{4} / 4
$$

Since a function $h=f-\pi_{k}$ is $\{-2,0,2\}$-valued we get

$$
\mu(h \neq 0)=\mu\left(\left\{x \in\{-1,1\}^{n}: h(x) \neq 0\right\}\right)=\frac{1}{4}\|h\|_{L^{2}}^{2}=(d / 2)^{2} .
$$

Therefore
$d^{4} / 2=4(d / 2)^{\frac{4}{1+\theta}}=4(\mu(h \neq 0))^{\frac{2}{1+\theta}}=\|h\|_{L^{1+\theta}}^{2} \geq$
( $B-B$ is the classical $L^{2}-L^{1+\theta}$ Bonami-Beckner inequality)

so that


## Hypercontractivity

Since a function $h=f-\pi_{k}$ is $\{-2,0,2\}$-valued we get

$$
\mu(h \neq 0)=\mu\left(\left\{x \in\{-1,1\}^{n}: h(x) \neq 0\right\}\right)=\frac{1}{4}\|h\|_{L^{2}}^{2}=(d / 2)^{2} .
$$

Therefore

$$
d^{4} / 2=4(d / 2)^{\frac{4}{1+\theta}}=4(\mu(h \neq 0))^{\frac{2}{1+\theta}}=\|h\|_{L^{1+\theta}}^{2}{ }^{B-B}
$$

( $B-B$ is the classical $L^{2}-L^{1+\theta}$ Bonami-Beckner inequality)

so that


## Hypercontractivity

Since a function $h=f-\pi_{k}$ is $\{-2,0,2\}$-valued we get

$$
\mu(h \neq 0)=\mu\left(\left\{x \in\{-1,1\}^{n}: h(x) \neq 0\right\}\right)=\frac{1}{4}\|h\|_{L^{2}}^{2}=(d / 2)^{2} .
$$

Therefore

$$
d^{4} / 2=4(d / 2)^{\frac{4}{1+\theta}}=4(\mu(h \neq 0))^{\frac{2}{1+\theta}}=\|h\|_{L^{1+\theta}}^{2}{ }^{B-B}
$$

( $B-B$ is the classical $L^{2}-L^{1+\theta}$ Bonami-Beckner inequality)

$$
\sum_{A \subseteq[n]} \theta^{|A|} \cdot|\hat{h}(A)|^{2} \geq \theta \cdot \sum_{A \subseteq[n]:|A| \leq 1}|\hat{h}(A)|^{2}=
$$

so that


Since a function $h=f-\pi_{k}$ is $\{-2,0,2\}$-valued we get

$$
\mu(h \neq 0)=\mu\left(\left\{x \in\{-1,1\}^{n}: h(x) \neq 0\right\}\right)=\frac{1}{4}\|h\|_{L^{2}}^{2}=(d / 2)^{2}
$$

Therefore

$$
d^{4} / 2=4(d / 2)^{\frac{4}{1+\theta}}=4(\mu(h \neq 0))^{\frac{2}{1+\theta}}=\|h\|_{L^{1+\theta}}^{2}{ }^{B-B}
$$

( $B-B$ is the classical $L^{2}-L^{1+\theta}$ Bonami-Beckner inequality)

$$
\begin{gathered}
\sum_{A \subseteq[n]} \theta^{|A|} \cdot|\hat{h}(A)|^{2} \geq \theta \cdot \sum_{A \subseteq[n]:|A| \leq 1}|\hat{h}(A)|^{2}= \\
\theta \cdot\left(\left(1-a_{k}\right)^{2}+\sum_{i \in\{0,1, \ldots, n\} \backslash\{k\}} a_{i}^{2}\right)=\theta \cdot\left(\frac{d^{4}}{4}+\sum_{i \in\{0,1, \ldots, n\} \backslash\{k\}} a_{i}^{2}\right),
\end{gathered}
$$

so that


Since a function $h=f-\pi_{k}$ is $\{-2,0,2\}$-valued we get

$$
\mu(h \neq 0)=\mu\left(\left\{x \in\{-1,1\}^{n}: h(x) \neq 0\right\}\right)=\frac{1}{4}\|h\|_{L^{2}}^{2}=(d / 2)^{2} .
$$

Therefore

$$
d^{4} / 2=4(d / 2)^{\frac{4}{1+\theta}}=4(\mu(h \neq 0))^{\frac{2}{1+\theta}}=\|h\|_{L^{1+\theta}}^{2}{ }^{B-B}
$$

( $B-B$ is the classical $L^{2}-L^{1+\theta}$ Bonami-Beckner inequality)

$$
\begin{gathered}
\sum_{A \subseteq[n]} \theta^{|A|} \cdot|\hat{h}(A)|^{2} \geq \theta \cdot \sum_{A \subseteq[n]:|A| \leq 1}|\hat{h}(A)|^{2}= \\
\theta \cdot\left(\left(1-a_{k}\right)^{2}+\sum_{i \in\{0,1, \ldots, n\} \backslash\{k\}} a_{i}^{2}\right)=\theta \cdot\left(\frac{d^{4}}{4}+\sum_{i \in\{0,1, \ldots, n\} \backslash\{k\}} a_{i}^{2}\right),
\end{gathered}
$$

so that

$$
\begin{equation*}
\sum_{i \in\{0,1, \ldots, n\} \backslash\{k\}} a_{i}^{2} \leq\left(2 \theta^{-1}-1\right) d^{4} / 4 \leq 2 d^{4} \log _{2}(2 / d) \tag{1}
\end{equation*}
$$

## Proof of the discrete cube result - the end

$$
\begin{aligned}
\sum_{i=0}^{n} a_{i}^{2}= & \left(1-\frac{d^{2}}{2}\right)^{2}+\sum_{i \in\{0,1, \ldots, n\} \backslash\{k\}} a_{i}^{2} \leq\left(1-\frac{d^{2}}{2}\right)^{2}+\frac{1}{4}\left(2 \theta^{-1}-1\right) d^{4} \\
& =1-d^{2}+\frac{1}{2} \theta^{-1} d^{4} \leq 1-d^{2}+2 d^{4} \log _{2}(2 / d),
\end{aligned}
$$

SO


## We finish the proof by observing that


uniformly, as $\rho \rightarrow 0$

## Proof of the discrete cube result - the end

$$
\begin{aligned}
\sum_{i=0}^{n} a_{i}^{2}= & \left(1-\frac{d^{2}}{2}\right)^{2}+\sum_{i \in\{0,1, \ldots, n\} \backslash\{k\}} a_{i}^{2} \leq\left(1-\frac{d^{2}}{2}\right)^{2}+\frac{1}{4}\left(2 \theta^{-1}-1\right) d^{4} \\
& =1-d^{2}+\frac{1}{2} \theta^{-1} d^{4} \leq 1-d^{2}+2 d^{4} \log _{2}(2 / d),
\end{aligned}
$$

SO

$$
\begin{equation*}
\rho^{2}=\sum_{A \subseteq[n]:|A| \geq 2}|\hat{f}(A)|^{2}=1-\sum_{i=0}^{n} a_{i}^{2} \geq d^{2}-2 d^{4} \log _{2}(2 / d) . \tag{2}
\end{equation*}
$$

We finish the proof by observing that


$$
\begin{aligned}
\sum_{i=0}^{n} a_{i}^{2}= & \left(1-\frac{d^{2}}{2}\right)^{2}+\sum_{i \in\{0,1, \ldots, n\} \backslash\{k\}} a_{i}^{2} \leq\left(1-\frac{d^{2}}{2}\right)^{2}+\frac{1}{4}\left(2 \theta^{-1}-1\right) d^{4} \\
& =1-d^{2}+\frac{1}{2} \theta^{-1} d^{4} \leq 1-d^{2}+2 d^{4} \log _{2}(2 / d),
\end{aligned}
$$

SO

$$
\begin{equation*}
\rho^{2}=\sum_{A \subseteq[n]:|A| \geq 2}|\hat{f}(A)|^{2}=1-\sum_{i=0}^{n} a_{i}^{2} \geq d^{2}-2 d^{4} \log _{2}(2 / d) . \tag{2}
\end{equation*}
$$

We finish the proof by observing that

$$
\sum_{i \in\{0,1, \ldots, n\} \backslash\{k\}} a_{i}^{2} \stackrel{(1)}{\leq} 2 d^{4} \log _{2}(2 / d) \stackrel{(2)}{\leq} 2\left(\rho^{2}+2 d^{4} \log _{2}(2 / d)\right)^{2} \log _{2}(2 / d)
$$

$$
\begin{aligned}
\sum_{i=0}^{n} a_{i}^{2}= & \left(1-\frac{d^{2}}{2}\right)^{2}+\sum_{i \in\{0,1, \ldots, n\} \backslash\{k\}} a_{i}^{2} \leq\left(1-\frac{d^{2}}{2}\right)^{2}+\frac{1}{4}\left(2 \theta^{-1}-1\right) d^{4} \\
& =1-d^{2}+\frac{1}{2} \theta^{-1} d^{4} \leq 1-d^{2}+2 d^{4} \log _{2}(2 / d),
\end{aligned}
$$

SO

$$
\begin{equation*}
\rho^{2}=\sum_{A \subseteq[n]| | A \mid \geq 2}|\hat{f}(A)|^{2}=1-\sum_{i=0}^{n} a_{i}^{2} \geq d^{2}-2 d^{4} \log _{2}(2 / d) . \tag{2}
\end{equation*}
$$

We finish the proof by observing that

$$
\begin{aligned}
& \sum_{i \in\{0,1, \ldots, n\} \backslash\{k\}} a_{i}^{2} \stackrel{(1)}{\leq} 2 d^{4} \log _{2}(2 / d) \stackrel{(2)}{\leq} 2\left(\rho^{2}+2 d^{4} \log _{2}(2 / d)\right)^{2} \log _{2}(2 / d) \\
& d \geq \rho \\
& \leq \\
& \text { ( } \left.\rho^{2}+2 d^{4} \log _{2}(2 / \rho)\right)^{2} \log _{2}(2 / \rho) \stackrel{d=O(\rho)}{=} 2 \rho^{4} \log _{2}(2 / \rho)+o\left(\rho^{5}\right), \\
& \text { uniformly, as } \rho \rightarrow 0^{+} .
\end{aligned}
$$

## Influences

For $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ and $i \in[n]$, let us define the $i$-th influence of $f$ by

$$
\operatorname{Inf}_{i}(f)=\sum_{S \subseteq[n]: i \in S}(\hat{f}(S))^{2}=\mathbb{E}\left[\operatorname{Var}_{i}(f)\right]
$$

This quantity measures dependence of $f(x)$ on the $i$-th coordinate

## Influences

For $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ and $i \in[n]$, let us define the $i$-th influence of $f$ by

$$
\operatorname{Inf}_{i}(f)=\sum_{S \subseteq[n]: i \in S}(\hat{f}(S))^{2}=\mathbb{E}\left[\operatorname{Var}_{i}(f)\right]
$$

This quantity measures dependence of $f(x)$ on the $i$-th coordinate of $x$.

Kahn, Kalai, and Linial proved that for every mean-zero function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ there exists $i \in[n]$ such that $\operatorname{Inf}_{i}(f) \geq c \cdot \frac{\log n}{n}$, where $c>0$ is some universal constant.

The assumption that $\mathbb{E}[f]=0$ can be weakened, but not completely removed (since for $f \equiv 1$ all influences are obviously equal to zero).

The $\frac{\log n}{n}$ order of the bound is optimal: Tribes function.

Kahn, Kalai, and Linial proved that for every mean-zero function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ there exists $i \in[n]$ such that $\operatorname{Inf}_{i}(f) \geq c \cdot \frac{\log n}{n}$, where $c>0$ is some universal constant.

The assumption that $\mathbb{E}[f]=0$ can be weakened, but not completely removed (since for $f \equiv 1$ all influences are obviously equal to zero).

The $\frac{\log n}{n}$ order of the bound is optimal: Tribes function

Kahn, Kalai, and Linial proved that for every mean-zero function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ there exists $i \in[n]$ such that $\operatorname{Inf}_{i}(f) \geq c \cdot \frac{\log n}{n}$, where $c>0$ is some universal constant.

The assumption that $\mathbb{E}[f]=0$ can be weakened, but not completely removed (since for $f \equiv 1$ all influences are obviously equal to zero).

The $\frac{\log n}{n}$ order of the bound is optimal: Tribes function.

## Discrete partial derivative

For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $i \in[n]$, let $\tau_{i}(x)$ denote the reflection of $x$ with respect to the $i$-th coordinate:

$$
\tau_{i}(x)=\left(x_{1}, x_{2}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

Now we can define a linear partial derivative operator $D_{i}$ acting on real-valued functions on the discrete cube. For $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$, we put

$$
D_{i}(f)(x)=\left(f(x)-f\left(\tau_{i}(x)\right)\right) / 2
$$

We have


## Discrete partial derivative

For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $i \in[n]$, let $\tau_{i}(x)$ denote the reflection of $x$ with respect to the $i$-th coordinate:

$$
\tau_{i}(x)=\left(x_{1}, x_{2}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

Now we can define a linear partial derivative operator $D_{i}$ acting on real-valued functions on the discrete cube. For $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$, we put

$$
D_{i}(f)(x)=\left(f(x)-f\left(\tau_{i}(x)\right)\right) / 2
$$

We have


## Discrete partial derivative

For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $i \in[n]$, let $\tau_{i}(x)$ denote the reflection of $x$ with respect to the $i$-th coordinate:

$$
\tau_{i}(x)=\left(x_{1}, x_{2}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

Now we can define a linear partial derivative operator $D_{i}$ acting on real-valued functions on the discrete cube. For $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$, we put

$$
D_{i}(f)(x)=\left(f(x)-f\left(\tau_{i}(x)\right)\right) / 2
$$

We have

$$
D_{i} f=\sum_{S \subseteq[n]: i \in S} \hat{f}(S) w_{s}
$$

and

$$
\operatorname{Inf}_{i}(f)=\left\|D_{i} f\right\|_{2}^{2}
$$

## Second order quantities

For $i, j \in[n]$ with $i \neq j$, let $D_{i, j}=D_{i} \circ D_{j}$.
One easily checks that


It is natural to define $\operatorname{Inf}_{i, j} f$ as $\left\|D_{i, j} f\right\|_{2}^{2}$ :


## Second order quantities

For $i, j \in[n]$ with $i \neq j$, let $D_{i, j}=D_{i} \circ D_{j}$.
One easily checks that

$$
D_{i, j} f=\sum_{S \subseteq[n]: i, j \in S} \hat{f}(S) w_{s} .
$$

It is natural to define $\operatorname{Inf}_{i, j} f$ as $\left\|D_{i, j} f\right\|_{2}^{2}$ :


## Second order quantities

For $i, j \in[n]$ with $i \neq j$, let $D_{i, j}=D_{i} \circ D_{j}$.
One easily checks that

$$
D_{i, j} f=\sum_{S \subseteq[n]: i, j \in S} \hat{f}(S) w_{s} .
$$

It is natural to define $\operatorname{Inf}_{i, j} f$ as $\left\|D_{i, j} f\right\|_{2}^{2}$ :

$$
\operatorname{Inf}_{i, j} f=\sum_{S \subseteq[n]: i, j \in[n]}(\hat{f}(S))^{2}
$$

