Singularity of random 0/1 matrices

Alexander Litvak

University of Alberta
based on a joint work with
K. Tikhomirov

BIRS, Banff, 2020

Random ± 1 matrices

An old problem: Let B be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$
P_{n}:=\mathbb{P}\{B \text { is singular }\} ?
$$

Random ± 1 matrices

An old problem: Let B be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$
P_{n}:=\mathbb{P}\{B \text { is singular }\} ?
$$

Equivalently: Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random vectors uniformly distributed on the vertices of the n-dimensional cube $[-1,1]^{n}$.

Random ± 1 matrices

An old problem: Let B be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$
P_{n}:=\mathbb{P}\{B \text { is singular }\} ?
$$

Equivalently: Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random vectors uniformly distributed on the vertices of the n-dimensional cube $[-1,1]^{n}$. What is the probability that the vectors are linearly dependent?

Random ± 1 matrices

An old problem: Let B be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$
P_{n}:=\mathbb{P}\{B \text { is singular }\} ?
$$

Equivalently: Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random vectors uniformly distributed on the vertices of the n-dimensional cube $[-1,1]^{n}$. What is the probability that the vectors are linearly dependent?

The trivial lower bound:

$P_{n} \geq \mathbb{P}\{$ Two rows/columns of B are equal up to a sign $\} \geq(1-o(1)) 2 n^{2} 2^{-n}$.

Random ± 1 matrices

An old problem: Let B be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$
P_{n}:=\mathbb{P}\{B \text { is singular }\} ?
$$

Equivalently: Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random vectors uniformly distributed on the vertices of the n-dimensional cube $[-1,1]^{n}$.
What is the probability that the vectors are linearly dependent?

The trivial lower bound:

$P_{n} \geq \mathbb{P}\{$ Two rows/columns of B are equal up to a sign $\} \geq(1-o(1)) 2 n^{2} 2^{-n}$.

A natural conjecture: This is the main reason for singularity.

Random ± 1 matrices

An old problem: Let B be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$
P_{n}:=\mathbb{P}\{B \text { is singular }\} ?
$$

Equivalently: Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random vectors uniformly distributed on the vertices of the n-dimensional cube $[-1,1]^{n}$.
What is the probability that the vectors are linearly dependent?

The trivial lower bound:

$P_{n} \geq \mathbb{P}\{$ Two rows/columns of B are equal up to a sign $\} \geq(1-o(1)) 2 n^{2} 2^{-n}$.

A natural conjecture: This is the main reason for singularity.

Conjecture 1:

$$
P_{n} \leq(1 / 2+o(1))^{n}=2^{-(1+o(1)) n} .
$$

Random ± 1 matrices

An old problem: Let B be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$
P_{n}:=\mathbb{P}\{B \text { is singular }\} ?
$$

Equivalently: Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random vectors uniformly distributed on the vertices of the n-dimensional cube $[-1,1]^{n}$.
What is the probability that the vectors are linearly dependent?

The trivial lower bound:

$P_{n} \geq \mathbb{P}\{$ Two rows/columns of B are equal up to a sign $\} \geq(1-o(1)) 2 n^{2} 2^{-n}$.
A natural conjecture: This is the main reason for singularity.

Conjecture 1:

$$
P_{n} \leq(1 / 2+o(1))^{n}=2^{-(1+o(1)) n} .
$$

Conjecture 2:

$$
P_{n} \leq(1+o(1)) 2 n^{2} 2^{-n} .
$$

Known results

Komlós (67): $\quad P_{n} \rightarrow 0$.

Known results

Komlós (67): $\quad P_{n} \rightarrow 0$.
Kahn, Komlós and Szemerédi (95): $\quad P_{n} \leq 0.999^{n}$.

Known results

Komlós (67): $\quad P_{n} \rightarrow 0$.
Kahn, Komlós and Szemerédi (95): $\quad P_{n} \leq 0.999^{n}$.
Tao-Vu (07): $\quad P_{n} \leq(3 / 4+o(1))^{n}$.

Known results

Komlós (67): $\quad P_{n} \rightarrow 0$.
Kahn, Komlós and Szemerédi (95): $\quad P_{n} \leq 0.999^{n}$.
Tao-Vu (07): $\quad P_{n} \leq(3 / 4+o(1))^{n}$.
Bourgain-Vu-P.M. Wood (10): $\quad P_{n} \leq(1 / \sqrt{2}+o(1))^{n}$.

Known results

Komlós (67): $\quad P_{n} \rightarrow 0$.
Kahn, Komlós and Szemerédi (95): $\quad P_{n} \leq 0.999^{n}$.
Tao-Vu (07): $\quad P_{n} \leq(3 / 4+o(1))^{n}$.
Bourgain-Vu-P.M. Wood (10): $\quad P_{n} \leq(1 / \sqrt{2}+o(1))^{n}$.
K. Tikhomirov (20+): $\quad P_{n} \leq(1 / 2+o(1))^{n}$, solving Conjecture 1.

Bernoulli random matrices

One can ask a similar question about Bernoulli $0 / 1$ random matrices:

Bernoulli random matrices

One can ask a similar question about Bernoulli $0 / 1$ random matrices: Let $p \in(0,1 / 2)$ and let B_{p} be an $n \times n$ random matrix with i.i.d. $0 / 1$ random variables taking value 1 with probability p.

Bernoulli random matrices

One can ask a similar question about Bernoulli $0 / 1$ random matrices: Let $p \in(0,1 / 2)$ and let B_{p} be an $n \times n$ random matrix with i.i.d. $0 / 1$ random variables taking value 1 with probability p. Note that B_{p} can be viewed as the adjacency matrix of directed Erdős-Rényi graph - a random graph on n vertices whose edges appear independently of others with probability p.

Bernoulli random matrices

One can ask a similar question about Bernoulli $0 / 1$ random matrices: Let $p \in(0,1 / 2)$ and let B_{p} be an $n \times n$ random matrix with i.i.d. $0 / 1$ random variables taking value 1 with probability p. Note that B_{p} can be viewed as the adjacency matrix of directed Erdős-Rényi graph - a random graph on n vertices whose edges appear independently of others with probability p.
Question: What is

$$
P_{n}:=\mathbb{P}\left\{B_{p} \text { is singular }\right\} ?
$$

Bernoulli random matrices

One can ask a similar question about Bernoulli $0 / 1$ random matrices: Let $p \in(0,1 / 2)$ and let B_{p} be an $n \times n$ random matrix with i.i.d. $0 / 1$ random variables taking value 1 with probability p. Note that B_{p} can be viewed as the adjacency matrix of directed Erdős-Rényi graph - a random graph on n vertices whose edges appear independently of others with probability p.
Question: What is

$$
P_{n}:=\mathbb{P}\left\{B_{p} \text { is singular }\right\} ?
$$

Conjecture:

$$
P_{n}=(1+o(1)) \mathbb{P}\{\exists \text { a zero row or a zero column }\}=(1+o(1)) 2 n(1-p)^{n} .
$$

Geometrically the condition means that either \exists a zero column or \exists a coordinate hyperplane such that all columns belong to it.

Bernoulli random matrices

One can ask a similar question about Bernoulli $0 / 1$ random matrices: Let $p \in(0,1 / 2)$ and let B_{p} be an $n \times n$ random matrix with i.i.d. $0 / 1$ random variables taking value 1 with probability p. Note that B_{p} can be viewed as the adjacency matrix of directed Erdős-Rényi graph - a random graph on n vertices whose edges appear independently of others with probability p.
Question: What is

$$
P_{n}:=\mathbb{P}\left\{B_{p} \text { is singular }\right\} ?
$$

Conjecture:

$$
P_{n}=(1+o(1)) \mathbb{P}\{\exists \text { a zero row or a zero column }\}=(1+o(1)) 2 n(1-p)^{n} .
$$

Geometrically the condition means that either \exists a zero column or \exists a coordinate hyperplane such that all columns belong to it.

Many works on different models of sparse matrices (with iid entries):
Götze-A. Tikhomirov, Costello-Vu, Basak-Rudelson, Rudelson-K. Tikhomirov, Tao-Vu,...

Bernoulli random matrices

Theorem (Basak-Rudelson, 17)
 Let $p=p(n) \geq(C \ln n) / n$. Then $P_{n} \leq \exp (-c n p)$.

Bernoulli random matrices

Theorem (Basak-Rudelson, 17)

Let $p=p(n) \geq(C \ln n) / n$. Then $P_{n} \leq \exp (-c n p)$.
Moreover

$$
\mathbb{P}\left\{s_{n}\left(B_{p}\right) \leq c t C_{p, n} \sqrt{p / n}\right\} \leq t+\exp (-c n p),
$$

where

$$
C_{p, n}=\exp (-C \ln (1 / p) / \ln (n p)) \quad \text { and } \quad s_{n}(M)=\inf _{|x|=1}|M x| .
$$

Bernoulli random matrices

Theorem (Basak-Rudelson, 17)

Let $p=p(n) \geq(C \ln n) / n$. Then $P_{n} \leq \exp (-c n p)$.
Moreover

$$
\mathbb{P}\left\{s_{n}\left(B_{p}\right) \leq \operatorname{ct} C_{p, n} \sqrt{p / n}\right\} \leq t+\exp (-c n p),
$$

where

$$
C_{p, n}=\exp (-C \ln (1 / p) / \ln (n p)) \quad \text { and } \quad s_{n}(M)=\inf _{|x|=1}|M x| .
$$

Remark. Note, if $p \leq(\ln n) / n$ then $\mathbb{P}\{\exists$ zero row $\} \geq 1 / 2$.

Bernoulli random matrices

Theorem (Basak-Rudelson, 17)

Let $p=p(n) \geq(C \ln n) / n$. Then $P_{n} \leq \exp (-c n p)$.
Moreover

$$
\mathbb{P}\left\{s_{n}\left(B_{p}\right) \leq c t C_{p, n} \sqrt{p / n}\right\} \leq t+\exp (-c n p)
$$

where

$$
C_{p, n}=\exp (-C \ln (1 / p) / \ln (n p)) \quad \text { and } \quad s_{n}(M)=\inf _{|x|=1}|M x|
$$

Remark. Note, if $p \leq(\ln n) / n$ then $\mathbb{P}\{\exists$ zero row $\} \geq 1 / 2$.
Problem. Prove the BR theorem with $C_{p, n}=1$ (possibly with worse probability).

Bernoulli random matrices

Theorem (Basak-Rudelson, 17)

Let $p=p(n) \geq(C \ln n) / n$. Then $P_{n} \leq \exp (-c n p)$.
Moreover

$$
\mathbb{P}\left\{s_{n}\left(B_{p}\right) \leq c t C_{p, n} \sqrt{p / n}\right\} \leq t+\exp (-c n p)
$$

where

$$
C_{p, n}=\exp (-C \ln (1 / p) / \ln (n p)) \quad \text { and } \quad s_{n}(M)=\inf _{|x|=1}|M x|
$$

Remark. Note, if $p \leq(\ln n) / n$ then $\mathbb{P}\{\exists$ zero row $\} \geq 1 / 2$.
Problem. Prove the BR theorem with $C_{p, n}=1$ (possibly with worse probability).

Theorem (K. Tikhomirov, 20+)

K. T. (20+): Let $p \in(0,1 / 2]$ (independent of $n)$. Then $P_{n} \leq(1-p+o(1))^{n}$.

Bernoulli random matrices

Theorem (Basak-Rudelson, 17)

Let $p=p(n) \geq(C \ln n) / n$. Then $P_{n} \leq \exp (-c n p)$.
Moreover

$$
\mathbb{P}\left\{s_{n}\left(B_{p}\right) \leq c t C_{p, n} \sqrt{p / n}\right\} \leq t+\exp (-c n p)
$$

where

$$
C_{p, n}=\exp (-C \ln (1 / p) / \ln (n p)) \quad \text { and } \quad s_{n}(M)=\inf _{|x|=1}|M x|
$$

Remark. Note, if $p \leq(\ln n) / n$ then $\mathbb{P}\{\exists$ zero row $\} \geq 1 / 2$.
Problem. Prove the BR theorem with $C_{p, n}=1$ (possibly with worse probability).

Theorem (K. Tikhomirov, 20+)

K. T. (20+): Let $p \in(0,1 / 2]$ (independent of $n)$. Then $P_{n} \leq(1-p+o(1))^{n}$.

Moreover,

$$
\forall \varepsilon>0 \forall n \geq n(p, \varepsilon): \quad \mathbb{P}\left\{s_{n}\left(B_{p}\right) \leq t \sqrt{p / n}\right\} \leq C(p, \varepsilon) t+(1-p+\varepsilon)^{n}
$$

Main result

Theorem (Basak-Rudelson, 20+)

Let $p=p(n) \leq(\ln n) / n+o(\ln \ln n)$. Then $\quad P_{n} \leq(1+o(1)) 2 n(1-p)^{n}$.

Main result

Theorem (Basak-Rudelson, 20+)

Let $p=p(n) \leq(\ln n) / n+o(\ln \ln n)$. Then $\quad P_{n} \leq(1+o(1)) 2 n(1-p)^{n}$.
Moreover, if $(\ln n) / n \leq p=p(n) \leq(\ln n) / n+o(\ln \ln n)$ then

$$
\mathbb{P}\left\{s_{n}\left(B_{p}\right) \leq c t C_{p, n} \sqrt{p / n}\right\} \leq t^{1 / 5}+(1+o(1)) 2 n(1-p)^{n} .
$$

Main result

Theorem (Basak-Rudelson, 20+)

Let $p=p(n) \leq(\ln n) / n+o(\ln \ln n)$. Then $\quad P_{n} \leq(1+o(1)) 2 n(1-p)^{n}$.
Moreover, if $(\ln n) / n \leq p=p(n) \leq(\ln n) / n+o(\ln \ln n)$ then

$$
\mathbb{P}\left\{s_{n}\left(B_{p}\right) \leq c t C_{p, n} \sqrt{p / n}\right\} \leq t^{1 / 5}+(1+o(1)) 2 n(1-p)^{n} .
$$

Theorem (L-K.T.)

Let $C(\ln n) / n \leq p \leq c$. Then $\quad P_{n} \leq(1+o(1)) 2 n(1-p)^{n}$.

Main result

Theorem (Basak-Rudelson, 20+)

Let $p=p(n) \leq(\ln n) / n+o(\ln \ln n)$. Then $\quad P_{n} \leq(1+o(1)) 2 n(1-p)^{n}$.
Moreover, if $(\ln n) / n \leq p=p(n) \leq(\ln n) / n+o(\ln \ln n)$ then

$$
\mathbb{P}\left\{s_{n}\left(B_{p}\right) \leq c t C_{p, n} \sqrt{p / n}\right\} \leq t^{1 / 5}+(1+o(1)) 2 n(1-p)^{n} .
$$

Theorem (L-K.T.)

Let $C(\ln n) / n \leq p \leq c$. Then $\quad P_{n} \leq(1+o(1)) 2 n(1-p)^{n}$.
Moreover,

$$
\mathbb{P}\left\{s_{n}\left(B_{p}\right) \leq c t \exp \left(-C \ln ^{2} n\right)\right\} \leq t+(1+o(1)) 2 n(1-p)^{n} .
$$

Main result

Theorem (Basak-Rudelson, 20+)

Let $p=p(n) \leq(\ln n) / n+o(\ln \ln n)$. Then $\quad P_{n} \leq(1+o(1)) 2 n(1-p)^{n}$.
Moreover, if $(\ln n) / n \leq p=p(n) \leq(\ln n) / n+o(\ln \ln n)$ then

$$
\mathbb{P}\left\{s_{n}\left(B_{p}\right) \leq c t C_{p, n} \sqrt{p / n}\right\} \leq t^{1 / 5}+(1+o(1)) 2 n(1-p)^{n} .
$$

Theorem (L-K.T.)

Let $C(\ln n) / n \leq p \leq c$. Then $\quad P_{n} \leq(1+o(1)) 2 n(1-p)^{n}$.
Moreover,

$$
\mathbb{P}\left\{s_{n}\left(B_{p}\right) \leq c t \exp \left(-C \ln ^{2} n\right)\right\} \leq t+(1+o(1)) 2 n(1-p)^{n} .
$$

Remark. In the case $p \geq c_{0}$ we can can get $s_{n}\left(B_{p}\right) \geq c_{1} n^{-3}$ (with the "right" prob.)

A related model: adjacency matrices of random d-regular directed graphs on n vertices

Consider the set of $n \times n$ matrices with $0 / 1$-entries and such that every row and every column has exactly d ones and with uniform probability on this set.

A related model: adjacency matrices of random d-regular directed graphs on n vertices

Consider the set of $n \times n$ matrices with $0 / 1$-entries and such that every row and every column has exactly d ones and with uniform probability on this set. In the case of undirected graphs, matrices are additionally symmetric.

A related model: adjacency matrices of random d-regular directed graphs on n vertices

Consider the set of $n \times n$ matrices with $0 / 1$-entries and such that every row and every column has exactly d ones and with uniform probability on this set. In the case of undirected graphs, matrices are additionally symmetric. We assume $3 \leq d \leq n / 2$.

A related model: adjacency matrices of random d-regular directed graphs on n vertices

Consider the set of $n \times n$ matrices with $0 / 1$-entries and such that every row and every column has exactly d ones and with uniform probability on this set. In the case of undirected graphs, matrices are additionally symmetric. We assume $3 \leq d \leq n / 2$.

Conjecture (Costello-Vu and Vu 08; Frieze and Vu, ICM talks 14)

Such a random matrix is non-singular with high probability

A related model: adjacency matrices of random d-regular directed graphs on n vertices

Consider the set of $n \times n$ matrices with $0 / 1$-entries and such that every row and every column has exactly d ones and with uniform probability on this set. In the case of undirected graphs, matrices are additionally symmetric. We assume $3 \leq d \leq n / 2$.

Conjecture (Costello-Vu and Vu 08; Frieze and Vu, ICM talks 14)

Such a random matrix is non-singular with high probability (that is, $\mathbb{P} \rightarrow 1$ with n).

A related model: adjacency matrices of random d-regular directed graphs on n vertices

Consider the set of $n \times n$ matrices with $0 / 1$-entries and such that every row and every column has exactly d ones and with uniform probability on this set. In the case of undirected graphs, matrices are additionally symmetric. We assume $3 \leq d \leq n / 2$.

Conjecture (Costello-Vu and Vu 08; Frieze and Vu, ICM talks 14)

Such a random matrix is non-singular with high probability (that is, $\mathbb{P} \rightarrow 1$ with n).

The conjecture was formulated in the symmetric setting, however it is natural to ask the same question in the general setting as well (N.A. Cook, 14).

A related model: adjacency matrices of random d-regular directed graphs on n vertices

Consider the set of $n \times n$ matrices with $0 / 1$-entries and such that every row and every column has exactly d ones and with uniform probability on this set. In the case of undirected graphs, matrices are additionally symmetric. We assume $3 \leq d \leq n / 2$.

Conjecture (Costello-Vu and Vu 08; Frieze and Vu, ICM talks 14)

Such a random matrix is non-singular with high probability (that is, $\mathbb{P} \rightarrow 1$ with n).

The conjecture was formulated in the symmetric setting, however it is natural to ask the same question in the general setting as well (N.A. Cook, 14).

Remark 1. If $d=1$ the matrix is a permutation matrix, hence invertible.

A related model: adjacency matrices of random d-regular directed graphs on n vertices

Consider the set of $n \times n$ matrices with $0 / 1$-entries and such that every row and every column has exactly d ones and with uniform probability on this set. In the case of undirected graphs, matrices are additionally symmetric. We assume $3 \leq d \leq n / 2$.

Conjecture (Costello-Vu and Vu 08; Frieze and Vu, ICM talks 14)

Such a random matrix is non-singular with high probability (that is, $\mathbb{P} \rightarrow 1$ with n).

The conjecture was formulated in the symmetric setting, however it is natural to ask the same question in the general setting as well (N.A. Cook, 14).

Remark 1. If $d=1$ the matrix is a permutation matrix, hence invertible.
Remark 2. If $d=2$ the conjecture fails (see e.g., Vu, N.A. Cook).

A related model: adjacency matrices of random d-regular directed graphs on n vertices

Consider the set of $n \times n$ matrices with $0 / 1$-entries and such that every row and every column has exactly d ones and with uniform probability on this set. In the case of undirected graphs, matrices are additionally symmetric. We assume $3 \leq d \leq n / 2$.

Conjecture (Costello-Vu and Vu 08; Frieze and Vu, ICM talks 14)

Such a random matrix is non-singular with high probability (that is, $\mathbb{P} \rightarrow 1$ with n).

The conjecture was formulated in the symmetric setting, however it is natural to ask the same question in the general setting as well (N.A. Cook, 14).

Remark 1. If $d=1$ the matrix is a permutation matrix, hence invertible.
Remark 2. If $d=2$ the conjecture fails (see e.g., Vu, N.A. Cook).
Remark 3. The cases $d=d_{0}$ and $d=n-d_{0}$ are essentially the same (by interchanging zeros and ones).

A related model: adjacency matrices of random d-regular directed graphs on n vertices

Consider the set of $n \times n$ matrices with $0 / 1$-entries and such that every row and every column has exactly d ones and with uniform probability on this set. In the case of undirected graphs, matrices are additionally symmetric. We assume $3 \leq d \leq n / 2$.

Conjecture (Costello-Vu and Vu 08; Frieze and Vu, ICM talks 14)

Such a random matrix is non-singular with high probability (that is, $\mathbb{P} \rightarrow 1$ with n).

The conjecture was formulated in the symmetric setting, however it is natural to ask the same question in the general setting as well (N.A. Cook, 14).

Remark 1. If $d=1$ the matrix is a permutation matrix, hence invertible.
Remark 2. If $d=2$ the conjecture fails (see e.g., Vu, N.A. Cook).
Remark 3. The cases $d=d_{0}$ and $d=n-d_{0}$ are essentially the same (by interchanging zeros and ones).

Remark 4. No zero rows or columns!

d-regular model: singularity

In the Bernoulli setting the average number of 1 in every row and every column is $p n$. Intuitively, two models (with $d=p n$) should be similar for $d>C \ln n \quad$ (recall, if $d<\ln n$ then random Bernoulli matrix has a zero row with probability at least $1 / 2$).

d-regular model: singularity

In the Bernoulli setting the average number of 1 in every row and every column is $p n$. Intuitively, two models (with $d=p n$) should be similar for $d>C \ln n \quad$ (recall, if $d<\ln n$ then random Bernoulli matrix has a zero row with probability at least $1 / 2$).

Many works on this conjecture in the non-symmetric case (without quantitative bounds on the smallest singular number):

d-regular model: singularity

In the Bernoulli setting the average number of 1 in every row and every column is $p n$. Intuitively, two models (with $d=p n$) should be similar for $d>C \ln n \quad$ (recall, if $d<\ln n$ then random Bernoulli matrix has a zero row with probability at least $1 / 2$).

Many works on this conjecture in the non-symmetric case (without quantitative bounds on the smallest singular number):
N.A. Cook (14/17): \quad for $d \geq C \ln ^{2} n$.

d-regular model: singularity

In the Bernoulli setting the average number of 1 in every row and every column is $p n$. Intuitively, two models (with $d=p n$) should be similar for $d>C \ln n \quad$ (recall, if $d<\ln n$ then random Bernoulli matrix has a zero row with probability at least $1 / 2$).

Many works on this conjecture in the non-symmetric case (without quantitative bounds on the smallest singular number):
N.A. Cook (14/17): \quad for $d \geq C \ln ^{2} n$.

Lytova-L-K. T.-Tomczak-Jaegermann-Youssef (15/16): \quad for $C<d \leq C \ln ^{2} n$.

d-regular model: singularity

In the Bernoulli setting the average number of 1 in every row and every column is $p n$. Intuitively, two models (with $d=p n$) should be similar for $d>C \ln n \quad$ (recall, if $d<\ln n$ then random Bernoulli matrix has a zero row with probability at least $1 / 2$).

Many works on this conjecture in the non-symmetric case (without quantitative bounds on the smallest singular number):
N.A. Cook (14/17): \quad for $d \geq C \ln ^{2} n$.

Lytova-L-K. T.-Tomczak-Jaegermann-Youssef (15/16): \quad for $C<d \leq C \ln ^{2} n$.
Jiaoyang Huang (18/20+): solved the conjecture.

d-regular model: singularity

In the Bernoulli setting the average number of 1 in every row and every column is $p n$. Intuitively, two models (with $d=p n$) should be similar for $d>C \ln n \quad$ (recall, if $d<\ln n$ then random Bernoulli matrix has a zero row with probability at least $1 / 2$).

Many works on this conjecture in the non-symmetric case (without quantitative bounds on the smallest singular number):
N.A. Cook (14/17): \quad for $d \geq C \ln ^{2} n$.

Lytova-L-K. T.-Tomczak-Jaegermann-Youssef (15/16): \quad for $C<d \leq C \ln ^{2} n$.
Jiaoyang Huang (18/20+): solved the conjecture.
Mészaros (18/20+): solved the symmetric case for even n.

d-regular model: singularity

In the Bernoulli setting the average number of 1 in every row and every column is $p n$. Intuitively, two models (with $d=p n$) should be similar for $d>C \ln n \quad$ (recall, if $d<\ln n$ then random Bernoulli matrix has a zero row with probability at least $1 / 2$).

Many works on this conjecture in the non-symmetric case (without quantitative bounds on the smallest singular number):
N.A. Cook (14/17): \quad for $d \geq C \ln ^{2} n$.

Lytova-L-K. T.-Tomczak-Jaegermann-Youssef (15/16): \quad for $C<d \leq C \ln ^{2} n$.
Jiaoyang Huang (18/20+): solved the conjecture.
Mészaros (18/20+): solved the symmetric case for even n.

d-regular model: singularity

In the Bernoulli setting the average number of 1 in every row and every column is $p n$. Intuitively, two models (with $d=p n$) should be similar for $d>C \ln n \quad$ (recall, if $d<\ln n$ then random Bernoulli matrix has a zero row with probability at least $1 / 2$).

Many works on this conjecture in the non-symmetric case (without quantitative bounds on the smallest singular number):
N.A. Cook (14/17): \quad for $d \geq C \ln ^{2} n$.

Lytova-L-K. T.-Tomczak-Jaegermann-Youssef (15/16): \quad for $C<d \leq C \ln ^{2} n$.
Jiaoyang Huang (18/20+): solved the conjecture.
Mészaros (18/20+): solved the symmetric case for even n.
Nguyen-M.M.Wood (18/20+): another proof of 2 previous results.

d-regular model: quantitative results.

None of previous works provides estimates on the smallest singular value.

Theorem (N.A. Cook, 17/19)

Let $d>C \ln ^{11} n$. Then the smallest singular number of M satisfies

$$
\mathbb{P}\left(s_{n}>n^{-C(\ln n) / \ln d}\right)>1-C \ln ^{5.5} n / \sqrt{d} .
$$

d-regular model: quantitative results.

None of previous works provides estimates on the smallest singular value.

Theorem (N.A. Cook, 17/19)

Let $d>C \ln ^{11} n$. Then the smallest singular number of M satisfies

$$
\mathbb{P}\left(s_{n}>n^{-C(\ln n) / \ln d}\right)>1-C \ln ^{5.5} n / \sqrt{d} .
$$

Theorem (LLTTP, 17/19)

Let $C<d<n / \ln ^{2} n$. Then

$$
\mathbb{P}\left(s_{n}>n^{-6}\right)>1-C \ln ^{2} d / \sqrt{d}
$$

d-regular model: quantitative results.

None of previous works provides estimates on the smallest singular value.

Theorem (N.A. Cook, 17/19)

Let $d>C \ln ^{11} n$. Then the smallest singular number of M satisfies

$$
\mathbb{P}\left(s_{n}>n^{-C(\ln n) / \ln d}\right)>1-C \ln ^{5.5} n / \sqrt{d} .
$$

Theorem (LLTTP, 17/19)

Let $C<d<n / \ln ^{2} n$. Then

$$
\mathbb{P}\left(s_{n}>n^{-6}\right)>1-C \ln ^{2} d / \sqrt{d} .
$$

Problem. Show better bounds on s_{n}, we expect the bound $s_{n} \geq c \sqrt{p / n}=c \sqrt{d} / n$.

Some ideas of the proof.

It is well-understood by now that to deal with the smallest singular number one needs to split S^{n-1} into several parts and to work separately on each part.

Some ideas of the proof.

It is well-understood by now that to deal with the smallest singular number one needs to split S^{n-1} into several parts and to work separately on each part.

This idea goes back to Kashin 77, where, in order obtain an orthogonal decomposition of ℓ_{1}^{n}, he split the sphere into two classes according to the ratio of ℓ_{1}^{n} and ℓ_{2}^{n} norms. In a similar context it was used by Schehtman 04.

Some ideas of the proof.

It is well-understood by now that to deal with the smallest singular number one needs to split S^{n-1} into several parts and to work separately on each part.

This idea goes back to Kashin 77, where, in order obtain an orthogonal decomposition of ℓ_{1}^{n}, he split the sphere into two classes according to the ratio of ℓ_{1}^{n} and ℓ_{2}^{n} norms. In a similar context it was used by Schehtman 04.

Since we want to provide a lower bound on the smallest singular value of a random matrix M, we need to show that $|M x|$ is not very small for all $x \in S^{n-1}$. Usually it is done using the union bound - to prove a good probability bound for an individual vector x and then to find a good net in order to apply approximation. The main point is to have a good balance between the probability and the cardinality of a net.

Some ideas of the proof.

But vectors behave differently. Consider the following example, let $X=\left\{\varepsilon_{i}\right\}_{i}$ be a Bernoulli random vector with ± 1 independent entries.

Some ideas of the proof.

But vectors behave differently. Consider the following example, let $X=\left\{\varepsilon_{i}\right\}_{i}$ be a Bernoulli random vector with ± 1 independent entries. Then

$$
\left\langle X, e_{1}+e_{2}\right\rangle=\varepsilon_{1}+\varepsilon_{2}=0 \quad \text { with probability } \quad 1 / 2
$$

Some ideas of the proof.

But vectors behave differently. Consider the following example, let $X=\left\{\varepsilon_{i}\right\}_{i}$ be a Bernoulli random vector with ± 1 independent entries. Then

$$
\left\langle X, e_{1}+e_{2}\right\rangle=\varepsilon_{1}+\varepsilon_{2}=0 \quad \text { with probability } \quad 1 / 2
$$

On the other hand,

$$
\left\langle X, \sum_{i} e_{i}\right\rangle=\sum_{i} \varepsilon_{i}=0 \quad \text { with probability at most } \quad 1 / \sqrt{n}
$$

by the Erdős-Littlewood-Offord anti-concentration lemma.

Some ideas of the proof.

But vectors behave differently. Consider the following example, let $X=\left\{\varepsilon_{i}\right\}_{i}$ be a Bernoulli random vector with ± 1 independent entries. Then

$$
\left\langle X, e_{1}+e_{2}\right\rangle=\varepsilon_{1}+\varepsilon_{2}=0 \quad \text { with probability } \quad 1 / 2
$$

On the other hand,

$$
\left\langle X, \sum_{i} e_{i}\right\rangle=\sum_{i} \varepsilon_{i}=0 \quad \text { with probability at most } \quad 1 / \sqrt{n}
$$

by the Erdős-Littlewood-Offord anti-concentration lemma.
Usually, it is hard to get good individual bounds for vectors of small support, so-called sparse vectors.

Some ideas of the proof.

But vectors behave differently. Consider the following example, let $X=\left\{\varepsilon_{i}\right\}_{i}$ be a Bernoulli random vector with ± 1 independent entries.Then

$$
\left\langle X, e_{1}+e_{2}\right\rangle=\varepsilon_{1}+\varepsilon_{2}=0 \quad \text { with probability } \quad 1 / 2
$$

On the other hand,

$$
\left\langle X, \sum_{i} e_{i}\right\rangle=\sum_{i} \varepsilon_{i}=0 \quad \text { with probability at most } \quad 1 / \sqrt{n}
$$

by the Erdős-Littlewood-Offord anti-concentration lemma.
Usually, it is hard to get good individual bounds for vectors of small support, so-called sparse vectors. However, the set of such vectors is essentially of lower dimension, hence admit a very good net.

Some ideas of the proof.

But vectors behave differently. Consider the following example, let $X=\left\{\varepsilon_{i}\right\}_{i}$ be a Bernoulli random vector with ± 1 independent entries.Then

$$
\left\langle X, e_{1}+e_{2}\right\rangle=\varepsilon_{1}+\varepsilon_{2}=0 \quad \text { with probability } \quad 1 / 2
$$

On the other hand,

$$
\left\langle X, \sum_{i} e_{i}\right\rangle=\sum_{i} \varepsilon_{i}=0 \quad \text { with probability at most } \quad 1 / \sqrt{n}
$$

by the Erdős-Littlewood-Offord anti-concentration lemma.
Usually, it is hard to get good individual bounds for vectors of small support, so-called sparse vectors. However, the set of such vectors is essentially of lower dimension, hence admit a very good net. This leads to splitting the sphere into compressible vectors - those closed to sparse, and incompressible vectors - the rest.

Some ideas of the proof.

But vectors behave differently. Consider the following example, let $X=\left\{\varepsilon_{i}\right\}_{i}$ be a Bernoulli random vector with ± 1 independent entries.Then

$$
\left\langle X, e_{1}+e_{2}\right\rangle=\varepsilon_{1}+\varepsilon_{2}=0 \quad \text { with probability } \quad 1 / 2
$$

On the other hand,

$$
\left\langle X, \sum_{i} e_{i}\right\rangle=\sum_{i} \varepsilon_{i}=0 \quad \text { with probability at most } \quad 1 / \sqrt{n}
$$

by the Erdős-Littlewood-Offord anti-concentration lemma.
Usually, it is hard to get good individual bounds for vectors of small support, so-called sparse vectors. However, the set of such vectors is essentially of lower dimension, hence admit a very good net. This leads to splitting the sphere into compressible vectors - those closed to sparse, and incompressible vectors - the rest. For compressible vectors we have a net of small cardinality, therefore relatively poor individual probability bounds work, while incompressible vectors are well spread and therefore have very good anti-concentration properties.

Some ideas of the proof.

But vectors behave differently. Consider the following example, let $X=\left\{\varepsilon_{i}\right\}_{i}$ be a Bernoulli random vector with ± 1 independent entries. Then

$$
\left\langle X, e_{1}+e_{2}\right\rangle=\varepsilon_{1}+\varepsilon_{2}=0 \quad \text { with probability } \quad 1 / 2
$$

On the other hand,

$$
\left\langle X, \sum_{i} e_{i}\right\rangle=\sum_{i} \varepsilon_{i}=0 \quad \text { with probability at most } \quad 1 / \sqrt{n}
$$

by the Erdős-Littlewood-Offord anti-concentration lemma.
Usually, it is hard to get good individual bounds for vectors of small support, so-called sparse vectors. However, the set of such vectors is essentially of lower dimension, hence admit a very good net. This leads to splitting the sphere into compressible vectors - those closed to sparse, and incompressible vectors - the rest. For compressible vectors we have a net of small cardinality, therefore relatively poor individual probability bounds work, while incompressible vectors are well spread and therefore have very good anti-concentration properties. This approach was used in L-Pajor-Rudelson-Tomczak-Jaegermann (05) for rectangular matrices and was later developed in series of works by Rudelson-Vershynin.

Some ideas of the proof.

For $0 / 1$ matrices an additional problem is caused by constant vectors. Indeed, while properly normalized centered random matrices (say with entries ± 1) have norm of order \sqrt{n}, the norm $\left\|B_{p}\right\| \approx p n$.

Some ideas of the proof.

For $0 / 1$ matrices an additional problem is caused by constant vectors. Indeed, while properly normalized centered random matrices (say with entries ± 1) have norm of order \sqrt{n}, the norm $\left\|B_{p}\right\| \approx p n$. Fortunately, this large norm is only in the direction of $\mathbf{1}=(1,1, \ldots, 1)$. On the subspace orthogonal to $\mathbf{1}$ the norm is of the order $\sqrt{p n}$.

Some ideas of the proof.

For $0 / 1$ matrices an additional problem is caused by constant vectors. Indeed, while properly normalized centered random matrices (say with entries ± 1) have norm of order \sqrt{n}, the norm $\left\|B_{p}\right\| \approx p n$. Fortunately, this large norm is only in the direction of $\mathbf{1}=(1,1, \ldots, 1)$. On the subspace orthogonal to $\mathbf{1}$ the norm is of the order $\sqrt{p n}$.
This leads to our splitting. The first class will be sparse vectors shifted by constants vectors. The second class will be the remaining vectors.

Some ideas of the proof.

For $0 / 1$ matrices an additional problem is caused by constant vectors. Indeed, while properly normalized centered random matrices (say with entries ± 1) have norm of order \sqrt{n}, the norm $\left\|B_{p}\right\| \approx p n$. Fortunately, this large norm is only in the direction of $\mathbf{1}=(1,1, \ldots, 1)$. On the subspace orthogonal to $\mathbf{1}$ the norm is of the order $\sqrt{p n}$.
This leads to our splitting. The first class will be sparse vectors shifted by constants vectors. The second class will be the remaining vectors.

For the first class standard anti-concentration technique together with methods developed in LLTTY works, since the set is essentially of lower dimension (although there are many cases).

Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors, that is, vectors (after certain normalization and for some parameters r, δ, L, h) s.t.

1. $x_{r n}^{*}=1$
2. $x_{i}^{*} \leq \varphi(n / i)$ for a certain function φ
(we consider two functions $\varphi(x)=(2 x)^{3 / 2}$ and $\varphi(x)=\exp \left(\ln ^{2} n\right)$).
3. If $\left(y_{i}\right)_{i}$ is a non-increasing rearrangement of $\left(x_{i}\right)_{i}$ then $y_{\delta n}-y_{n-\delta n} \geq h$.

Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors, that is, vectors (after certain normalization and for some parameters $r, \delta, L, h)$ s.t.

1. $x_{r n}^{*}=1$
2. $x_{i}^{*} \leq \varphi(n / i)$ for a certain function φ
(we consider two functions $\varphi(x)=(2 x)^{3 / 2}$ and $\varphi(x)=\exp \left(\ln ^{2} n\right)$).
3. If $\left(y_{i}\right)_{i}$ is a non-increasing rearrangement of $\left(x_{i}\right)_{i}$ then $y_{\delta n}-y_{n-\delta n} \geq h$.

To work with this class we partially follow Rudelson-Vershynin scheme.

Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors, that is, vectors (after certain normalization and for some parameters $r, \delta, L, h)$ s.t.

1. $x_{r n}^{*}=1$
2. $x_{i}^{*} \leq \varphi(n / i)$ for a certain function φ
(we consider two functions $\varphi(x)=(2 x)^{3 / 2}$ and $\varphi(x)=\exp \left(\ln ^{2} n\right)$).
3. If $\left(y_{i}\right)_{i}$ is a non-increasing rearrangement of $\left(x_{i}\right)_{i}$ then $y_{\delta n}-y_{n-\delta n} \geq h$.

To work with this class we partially follow Rudelson-Vershynin scheme.
First, one reduces estimating the smallest singular number to estimating distances between a column X_{i} to the span of remaining columns, say $H_{i}, i \leq 1$.

Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors, that is, vectors (after certain normalization and for some parameters $r, \delta, L, h)$ s.t.

1. $x_{r n}^{*}=1$
2. $x_{i}^{*} \leq \varphi(n / i)$ for a certain function φ
(we consider two functions $\varphi(x)=(2 x)^{3 / 2}$ and $\varphi(x)=\exp \left(\ln ^{2} n\right)$).
3. If $\left(y_{i}\right)_{i}$ is a non-increasing rearrangement of $\left(x_{i}\right)_{i}$ then $y_{\delta n}-y_{n-\delta n} \geq h$.

To work with this class we partially follow Rudelson-Vershynin scheme.
First, one reduces estimating the smallest singular number to estimating distances between a column X_{i} to the span of remaining columns, say $H_{i}, i \leq 1$.
This distance is a projection on a (random) normal vector to H_{i}.

Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors, that is, vectors (after certain normalization and for some parameters $r, \delta, L, h)$ s.t.

1. $x_{r n}^{*}=1$
2. $x_{i}^{*} \leq \varphi(n / i)$ for a certain function φ
(we consider two functions $\varphi(x)=(2 x)^{3 / 2}$ and $\varphi(x)=\exp \left(\ln ^{2} n\right)$).
3. If $\left(y_{i}\right)_{i}$ is a non-increasing rearrangement of $\left(x_{i}\right)_{i}$ then $y_{\delta n}-y_{n-\delta n} \geq h$.

To work with this class we partially follow Rudelson-Vershynin scheme.
First, one reduces estimating the smallest singular number to estimating distances between a column X_{i} to the span of remaining columns, say $H_{i}, i \leq 1$.
This distance is a projection on a (random) normal vector to H_{i}.
Thus, we have an inner product of X_{i} and the normal (note that they are independent).

Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors, that is, vectors (after certain normalization and for some parameters $r, \delta, L, h)$ s.t.

1. $x_{r n}^{*}=1$
2. $x_{i}^{*} \leq \varphi(n / i)$ for a certain function φ
(we consider two functions $\varphi(x)=(2 x)^{3 / 2}$ and $\varphi(x)=\exp \left(\ln ^{2} n\right)$).
3. If $\left(y_{i}\right)_{i}$ is a non-increasing rearrangement of $\left(x_{i}\right)_{i}$ then $y_{\delta n}-y_{n-\delta n} \geq h$.

To work with this class we partially follow Rudelson-Vershynin scheme.
First, one reduces estimating the smallest singular number to estimating distances between a column X_{i} to the span of remaining columns, say $H_{i}, i \leq 1$.
This distance is a projection on a (random) normal vector to H_{i}.
Thus, we have an inner product of X_{i} and the normal (note that they are independent).
Then we apply an anti-concentration property (such a property says that an inner product of a random vector with a flat vector can't concentrate around a number).

Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors, that is, vectors (after certain normalization and for some parameters r, δ, L, h) s.t.

1. $x_{r n}^{*}=1$
2. $x_{i}^{*} \leq \varphi(n / i)$ for a certain function φ (we consider two functions $\varphi(x)=(2 x)^{3 / 2}$ and $\varphi(x)=\exp \left(\ln ^{2} n\right)$).
3. If $\left(y_{i}\right)_{i}$ is a non-increasing rearrangement of $\left(x_{i}\right)_{i}$ then $y_{\delta n}-y_{n-\delta n} \geq h$.

To work with this class we partially follow Rudelson-Vershynin scheme.
First, one reduces estimating the smallest singular number to estimating distances between a column X_{i} to the span of remaining columns, say $H_{i}, i \leq 1$.
This distance is a projection on a (random) normal vector to H_{i}.
Thus, we have an inner product of X_{i} and the normal (note that they are independent).
Then we apply an anti-concentration property (such a property says that an inner product of a random vector with a flat vector can't concentrate around a number).
To make this scheme work, Rudelson-Vershynin introduced LCD (least common denominator), which, in a sense, measures how close a proportional coordinate projection of a vector to the properly rescaled integer lattice. They also had to develope Littlewood-Offord theory.

Some ideas of the proof.

In our case both, the LCD, and the known anti-concentration results are not strong enough, so we need to develop new tools.

Some ideas of the proof.

In our case both, the LCD, and the known anti-concentration results are not strong enough, so we need to develop new tools.

First idea is to pass from a Bernoulli random vector, which may have many zeros, to a random $0 / 1$ vector with prescribed number of ones, say, with m ones, where m is of the order $p n$. Note that $p n$ is an average number of ones in a Bernoulli vector.

Some ideas of the proof.

In our case both, the LCD, and the known anti-concentration results are not strong enough, so we need to develop new tools.

First idea is to pass from a Bernoulli random vector, which may have many zeros, to a random $0 / 1$ vector with prescribed number of ones, say, with m ones, where m is of the order $p n$. Note that $p n$ is an average number of ones in a Bernoulli vector.

Second idea is to substitute LCD with another parameter, which we call unstructuredness degree of a vector, and which is more directly related to the Esseen lemma, used to prove an anti-concentration.

Some ideas of the proof.

In our case both, the LCD, and the known anti-concentration results are not strong enough, so we need to develop new tools.

First idea is to pass from a Bernoulli random vector, which may have many zeros, to a random $0 / 1$ vector with prescribed number of ones, say, with m ones, where m is of the order $p n$. Note that $p n$ is an average number of ones in a Bernoulli vector.

Second idea is to substitute LCD with another parameter, which we call unstructuredness degree of a vector, and which is more directly related to the Esseen lemma, used to prove an anti-concentration.

Next we have to prove a Littlewood-Offord type anti-concentration property for this new parameter.

Some ideas of the proof.

In our case both, the LCD, and the known anti-concentration results are not strong enough, so we need to develop new tools.

First idea is to pass from a Bernoulli random vector, which may have many zeros, to a random $0 / 1$ vector with prescribed number of ones, say, with m ones, where m is of the order $p n$. Note that $p n$ is an average number of ones in a Bernoulli vector.

Second idea is to substitute LCD with another parameter, which we call unstructuredness degree of a vector, and which is more directly related to the Esseen lemma, used to prove an anti-concentration.

Next we have to prove a Littlewood-Offord type anti-concentration property for this new parameter.

In particular, we extend the Littlewood-Offord theory to the case of dependent r.v. (in our case - the coordinates of a vector with fixed number of ones).

Unstructuredness degree

Recall the definition of Lévy concentration function:

$$
\mathcal{L}(\xi, t)=\max _{\lambda} \mathbb{P}(|\xi-\lambda|<t) .
$$

Unstructuredness degree

Recall the definition of Lévy concentration function:

$$
\mathcal{L}(\xi, t)=\max _{\lambda} \mathbb{P}(|\xi-\lambda|<t) .
$$

Esseen Lemma (66):

$$
\mathcal{L}\left(\sum_{i=1}^{m} \xi_{i}, \tau\right) \leq C^{\prime} \int_{-1}^{1} \prod_{i=1}^{m}\left|\mathbb{E} \exp \left(2 \pi \mathbf{i} \xi_{i} s / \tau\right)\right| d s
$$

Unstructuredness degree

Recall the definition of Lévy concentration function:

$$
\mathcal{L}(\xi, t)=\max _{\lambda} \mathbb{P}(|\xi-\lambda|<t)
$$

Esseen Lemma (66):

$$
\mathcal{L}\left(\sum_{i=1}^{m} \xi_{i}, \tau\right) \leq C^{\prime} \int_{-1}^{1} \prod_{i=1}^{m}\left|\mathbb{E} \exp \left(2 \pi \mathbf{i} \xi_{i} s / \tau\right)\right| d s
$$

For a finite integer subset S, let $\eta[S]$ denotes a r.v. uniformly distributed on S.

Unstructuredness degree

Recall the definition of Lévy concentration function:

$$
\mathcal{L}(\xi, t)=\max _{\lambda} \mathbb{P}(|\xi-\lambda|<t) .
$$

Esseen Lemma (66):

$$
\mathcal{L}\left(\sum_{i=1}^{m} \xi_{i}, \tau\right) \leq C^{\prime} \int_{-1}^{1} \prod_{i=1}^{m}\left|\mathbb{E} \exp \left(2 \pi \mathbf{i} \xi_{i} s / \tau\right)\right| d s
$$

For a finite integer subset S, let $\eta[S]$ denotes a r.v. uniformly distributed on S. Then
$\mathbf{U D}(v, m, K):=\sup \left\{t>0: \frac{1}{N} \sum_{\left(S_{1}, \ldots, S_{m}\right)} \int_{-t}^{t} \prod_{i=1}^{m}\left|\mathbb{E} \exp \left(2 \pi \mathbf{i} v_{\eta\left[S_{i}\right]} m^{-1 / 2} s\right)\right| d s \leq K\right\}$, where the sum is taken over all sequences $\left(S_{i}\right)_{i=1}^{m}$ of disjoint subsets $S_{1}, \ldots, S_{m} \subset[n]$, each of cardinality $\lfloor n / m\rfloor, N$ is the number of such sequences, $K \geq 1$ is a parameter.

Unstructuredness degree

Recall the definition of Lévy concentration function:

$$
\mathcal{L}(\xi, t)=\max _{\lambda} \mathbb{P}(|\xi-\lambda|<t)
$$

Esseen Lemma (66):

$$
\mathcal{L}\left(\sum_{i=1}^{m} \xi_{i}, \tau\right) \leq C^{\prime} \int_{-1}^{1} \prod_{i=1}^{m}\left|\mathbb{E} \exp \left(2 \pi \mathbf{i} \xi_{i} s / \tau\right)\right| d s
$$

For a finite integer subset S, let $\eta[S]$ denotes a r.v. uniformly distributed on S. Then
$\mathbf{U D}(v, m, K):=\sup \left\{t>0: \frac{1}{N} \sum_{\left(S_{1}, \ldots, S_{m}\right)} \int_{-t}^{t} \prod_{i=1}^{m}\left|\mathbb{E} \exp \left(2 \pi \mathbf{i} v_{\eta\left[S_{i}\right]} m^{-1 / 2} s\right)\right| d s \leq K\right\}$, where the sum is taken over all sequences $\left(S_{i}\right)_{i=1}^{m}$ of disjoint subsets $S_{1}, \ldots, S_{m} \subset[n]$, each of cardinality $\lfloor n / m\rfloor, N$ is the number of such sequences, $K \geq 1$ is a parameter. We prove that for i.i.d. vectors X_{i} uniformly distributed on the set of vectors with $n-m$ zero coordinates and m coordinates equal to 1 , for every $t>0$

$$
\mathcal{L}\left(\sum_{i=1}^{n} v_{i} X_{i}, \sqrt{m} t\right) \leq C(t+1 / \mathbf{U D}(v, m, K))
$$

