Moments of random vectors

Rafał Latała (University of Warsaw)

(based on joint works with Piotr Nayar and Marta Strzelecka)

Banff, February 112020

Strong and weak moments

Let X be an n-dimensional random vector. In many problems one needs to estimate strong moments of X with respect to a norm structure $\left(\mathbb{R}^{n},\|\cdot\|\right)$, i.e.

$$
M_{p}(X,\|\cdot\|):=\left(\mathbb{E}\|X\|^{p}\right)^{1 / p}=\left(\mathbb{E} \sup _{\|t\|_{*} \leq 1}|\langle t, X\rangle|^{p}\right)^{1 / p}, \quad p \geq 1
$$

Usually it is much easier to bound weak moments of X, defined as

$$
\sigma_{p}(X,\|\cdot\|):=\sup _{\|t\|_{*} \leq 1}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}, \quad p \geq 1
$$

It is natural to investigate relations between these quantities.
Remark. Equivalently one may take bounded nonempty subsets $T \subset \mathbb{R}^{n}$ and define

Strong and weak moments

Let X be an n-dimensional random vector. In many problems one needs to estimate strong moments of X with respect to a norm structure $\left(\mathbb{R}^{n},\|\cdot\|\right)$, i.e.

$$
M_{p}(X,\|\cdot\|):=\left(\mathbb{E}\|X\|^{p}\right)^{1 / p}=\left(\mathbb{E} \sup _{\|t\|_{*} \leq 1}|\langle t, X\rangle|^{p}\right)^{1 / p}, \quad p \geq 1
$$

Usually it is much easier to bound weak moments of X, defined as

$$
\sigma_{p}(X,\|\cdot\|):=\sup _{\|t\|_{*} \leq 1}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}, \quad p \geq 1
$$

It is natural to investigate relations between these quantities.
Remark. Equivalently one may take bounded nonempty subsets $T \subset \mathbb{R}^{n}$ and define
$M_{p}(X, T):=\left(\mathbb{E} \sup _{t \in T}|\langle t, X\rangle|^{p}\right)^{1 / p}, \quad \sigma_{p}(X, T):=\sup _{t \in T}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}$.

Question 1

Obviously weak moments are smaller than strong moments. What about the reverse inequality?
Namely, for fixed n and p what is the best constant $C_{n, p}$ such that for any random vector X and any bounded nonempty $T \subset \mathbb{R}^{n}$

$$
\left(\mathbb{E} \sup _{T}|\langle t, X\rangle|^{p}\right)^{1 / p} \leq C_{n, p} \sup ^{1}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p} ?
$$

By homogenity we may assume that weak moments are bounded by 1, i.e.

$$
T \subset \mathcal{M}_{p}(X):=\left\{t \in \mathbb{R}^{n}: \mathbb{E}|\langle t, X\rangle|^{p}=1\right\}
$$

then for $x \in \mathbb{R}^{n}$

And our goal is to find best possible $C_{n, p}$ such that

Question 1

Obviously weak moments are smaller than strong moments. What about the reverse inequality?
Namely, for fixed n and p what is the best constant $C_{n, p}$ such that for any random vector X and any bounded nonempty $T \subset \mathbb{R}^{n}$

$$
\left(\mathbb{E} \sup _{t \in T}|\langle t, X\rangle|^{p}\right)^{1 / p} \leq C_{n, p} \sup _{t \in T}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p} ?
$$

By homogenity we may assume that weak moments are bounded by 1 , i.e.

$$
T \subset \mathcal{M}_{p}(X):=\left\{t \in \mathbb{R}^{n}: \mathbb{E}|\langle t, X\rangle|^{p}=1\right\}
$$

then for $x \in \mathbb{R}^{n}$

$$
\sup _{t \in T}|\langle t, x\rangle| \leq\|t\|_{\mathcal{Z}_{p}(X)}:=\sup \left\{|\langle t, s\rangle|: \mathbb{E}|\langle t, X\rangle|^{p} \leq 1\right\}
$$

And our goal is to find best possible $C_{n, p}$ such that

$$
\left(\mathbb{E}\|X\|_{Z_{p}(X)}^{p}\right)^{1 / p} \leq C_{n, p}
$$

Examples of $\mathcal{Z}_{p}(X)$-norms $/$ bodies

The unit ball in norm $\|\cdot\|_{\mathcal{Z}_{p}(X)}$ is denoted by $\mathcal{Z}_{p}(X)$ and is called the L_{p}-centroid body of (the distribution of) X. It was introduced (under a different normalization) for uniform distributions on convex bodies by Lutvak and Zhang (1997).

- If X is isotropic then $\mathcal{Z}_{2}(X)=B_{2}^{n}$
- If X is the standard Gaussian then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n}$
- If X has the product symmetric exponential distribution then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n}+p B_{1}^{n}$
- If X is uniformly distributed on $\{-1,1\}^{n}$ or $[-1,1]^{n}$ then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n} \cap B_{\infty}^{n}$
- If X has a symmetric log-concave distrubution (i.e. has the density e^{-h} where $h: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ is convex) then

$$
\mathcal{Z}_{p}(X) \sim\left\{t: \wedge_{X}^{*}(t) \leq p\right\}
$$

where

Examples of $\mathcal{Z}_{p}(X)$-norms $/$ bodies

The unit ball in norm $\|\cdot\|_{\mathcal{Z}_{p}(X)}$ is denoted by $\mathcal{Z}_{p}(X)$ and is called the L_{p}-centroid body of (the distribution of) X. It was introduced (under a different normalization) for uniform distributions on convex bodies by Lutvak and Zhang (1997).

- If X is isotropic then $\mathcal{Z}_{2}(X)=B_{2}^{n}$
- If X is the standard Gaussian then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n}$
- If X has the product symmetric exponential distribution then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n}+p B_{1}^{n}$
If X is uniformly distri
$\mathcal{Z}_{p}(X) \sim \sqrt{p B_{2}^{n} \cap B_{\infty}^{n}}$
- If X has a symmetric log-concave distrubution (i.e. has the density e^{-h} where $h: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ is convex) then

$$
\mathcal{Z}_{p}(X) \sim\left\{t: \wedge_{X}^{*}(t) \leq p\right\}
$$

where

Examples of $\mathcal{Z}_{p}(X)$-norms $/$ bodies

The unit ball in norm $\|\cdot\|_{\mathcal{Z}_{p}(X)}$ is denoted by $\mathcal{Z}_{p}(X)$ and is called the L_{p}-centroid body of (the distribution of) X. It was introduced (under a different normalization) for uniform distributions on convex bodies by Lutvak and Zhang (1997).

- If X is isotropic then $\mathcal{Z}_{2}(X)=B_{2}^{n}$
- If X is the standard Gaussian then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n}$
- If X has the product symmetric exponential distribution then

- If X has a symmetric log-concave distrubution (i.e. has the density e^{-h} where $h: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ is convex) then

where

Examples of $\mathcal{Z}_{p}(X)$-norms/bodies

The unit ball in norm $\|\cdot\|_{\mathcal{Z}_{p}(X)}$ is denoted by $\mathcal{Z}_{p}(X)$ and is called the L_{p}-centroid body of (the distribution of) X. It was introduced (under a different normalization) for uniform distributions on convex bodies by Lutvak and Zhang (1997).

- If X is isotropic then $\mathcal{Z}_{2}(X)=B_{2}^{n}$
- If X is the standard Gaussian then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n}$
- If X has the product symmetric exponential distribution then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n}+p B_{1}^{n}$
- If X has a symmetric log-concave distrubution (i.e. has the density e^{-h} where $h: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ is convex $)$ then

where

Examples of $\mathcal{Z}_{p}(X)$-norms $/$ bodies

The unit ball in norm $\|\cdot\|_{\mathcal{Z}_{p}(X)}$ is denoted by $\mathcal{Z}_{p}(X)$ and is called the L_{p}-centroid body of (the distribution of) X. It was introduced (under a different normalization) for uniform distributions on convex bodies by Lutvak and Zhang (1997).

- If X is isotropic then $\mathcal{Z}_{2}(X)=B_{2}^{n}$
- If X is the standard Gaussian then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n}$
- If X has the product symmetric exponential distribution then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n}+p B_{1}^{n}$
- If X is uniformly distributed on $\{-1,1\}^{n}$ or $[-1,1]^{n}$ then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n} \cap B_{\infty}^{n}$
- If X has a symmetric log-concave distrubution (i.e. has the density e^{-h} where $h: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ is convex $)$ then

where

Examples of $\mathcal{Z}_{p}(X)$-norms/bodies

The unit ball in norm $\|\cdot\|_{\mathcal{Z}_{p}(X)}$ is denoted by $\mathcal{Z}_{p}(X)$ and is called the L_{p}-centroid body of (the distribution of) X. It was introduced (under a different normalization) for uniform distributions on convex bodies by Lutvak and Zhang (1997).

- If X is isotropic then $\mathcal{Z}_{2}(X)=B_{2}^{n}$
- If X is the standard Gaussian then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n}$
- If X has the product symmetric exponential distribution then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n}+p B_{1}^{n}$
- If X is uniformly distributed on $\{-1,1\}^{n}$ or $[-1,1]^{n}$ then $\mathcal{Z}_{p}(X) \sim \sqrt{p} B_{2}^{n} \cap B_{\infty}^{n}$
- If X has a symmetric log-concave distrubution (i.e. has the density e^{-h} where $h: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ is convex $)$ then

$$
\mathcal{Z}_{p}(X) \sim\left\{t: \wedge_{X}^{*}(t) \leq p\right\},
$$

where

$$
\Lambda_{X}^{*}:=\sup _{s}\left(\langle s, t\rangle-\Lambda_{X}(s)\right), \quad \Lambda_{X}(s):=\log \mathbb{E} \exp (\langle s, X\rangle)
$$

Rotationally invariant vectors

Consider first a vector X with rotationally invariant distribution. Then $X=R U$, where U has a uniform distribution on S^{n-1} and $R=|X|$ is a nonnegative random variable, independent of U.
have for any vector $t \in \mathbb{R}^{n}$ and $p \geq 2$,

Therefore
$\left(\mathbb{E} \mid\langle t, X\rangle \|^{p}\right)^{1 / p}=\|R\|_{L_{p}}\left\|U_{1}\right\|_{L_{p}}|t|$ and $\|t\|_{Z_{p}(X)}=\left\|U_{1}\right\|_{L_{p}^{1}}^{-1}\|R\|_{L_{p}^{-1}}^{-1}|t|$
So

Rotationally invariant vectors

Consider first a vector X with rotationally invariant distribution. Then $X=R U$, where U has a uniform distribution on S^{n-1} and $R=|X|$ is a nonnegative random variable, independent of U. We have for any vector $t \in \mathbb{R}^{n}$ and $p \geq 2$,

$$
\left(\mathbb{E}|\langle t, U\rangle|^{p}\right)^{1 / p}=|t|\left(\mathbb{E}\left|U_{1}\right|^{p}\right)^{1 / p} \sim \sqrt{\frac{p}{n+p}}|t| .
$$

Therefore
$\left(\mathbb{E} \mid\langle t, X\rangle \|^{p}\right)^{1 / p}=\|R\|_{L_{p}}\left\|U_{1}\right\|_{L_{p}}|t| \quad$ and $\quad\|t\|_{\mathcal{Z}_{p}(X)}=\left\|U_{1}\right\|_{L_{p}}^{-1}\|R\|_{L_{p}}^{-1}|t|$.

Rotationally invariant vectors

Consider first a vector X with rotationally invariant distribution. Then $X=R U$, where U has a uniform distribution on S^{n-1} and $R=|X|$ is a nonnegative random variable, independent of U. We have for any vector $t \in \mathbb{R}^{n}$ and $p \geq 2$,

$$
\left(\mathbb{E}|\langle t, U\rangle|^{p}\right)^{1 / p}=|t|\left(\mathbb{E}\left|U_{1}\right|^{p}\right)^{1 / p} \sim \sqrt{\frac{p}{n+p}}|t| .
$$

Therefore
$\left(\mathbb{E} \mid\langle t, X\rangle \|^{p}\right)^{1 / p}=\|R\|_{L_{p}}\left\|U_{1}\right\|_{L_{p}}|t| \quad$ and $\quad\|t\|_{\mathcal{Z}_{p}(X)}=\left\|U_{1}\right\|_{L_{p}}^{-1}\|R\|_{L_{p}}^{-1}|t|$.
So
$\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{p}\right)^{1 / p}=\left\|U_{1}\right\|_{L_{p}}^{-1}\|R\|_{L_{p}}^{-1}\left(\mathbb{E}|X|^{p}\right)^{1 / p}=\left\|U_{1}\right\|_{L_{p}}^{-1} \sim \sqrt{\frac{n+p}{p}}$.

Answer to Question 1

Theorem (L-Nayar'19+)

For any n-dimensional random vector X and any nonempty set T in \mathbb{R}^{n} and $p \geq 2$ we have

$$
\left(\mathbb{E} \sup _{t \in T}|\langle t, X\rangle|^{p}\right)^{1 / p} \leq 2 \sqrt{e} \sqrt{\frac{n+p}{p}} \sup _{t \in T}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}
$$

Equivalently,

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{p}\right)^{1 / p} \leq 2 \sqrt{e} \sqrt{\frac{n+p}{p}} .
$$

The constant is of optimal order for rotationally invariant vectors.
However for some distributions it might be smaller Example Let $\mathbb{P}\left(X_{i}= \pm e_{i}\right)=1 /(2 n) i=1, \ldots, n$ then

Answer to Question 1

Theorem (L-Nayar'19+)

For any n-dimensional random vector X and any nonempty set T in \mathbb{R}^{n} and $p \geq 2$ we have

$$
\left(\mathbb{E} \sup _{t \in T}|\langle t, X\rangle|^{p}\right)^{1 / p} \leq 2 \sqrt{e} \sqrt{\frac{n+p}{p}} \sup _{t \in T}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}
$$

Equivalently,

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{p}\right)^{1 / p} \leq 2 \sqrt{e} \sqrt{\frac{n+p}{p}}
$$

The constant is of optimal order for rotationally invariant vectors. However for some distributions it might be smaller Example Let $\mathbb{P}\left(X_{i}= \pm e_{i}\right)=1 /(2 n) i=1, \ldots, n$ then

$$
\|t\|_{\mathcal{M}_{p}(X)}=\|\langle t, X\rangle\|_{L_{p}}=n^{-1 / p}\|t\|_{p}, \quad\|t\|_{\mathcal{Z}_{p}(X)}=n^{1 / p}\|t\|_{q}
$$

$$
\text { so }\|X\|_{\mathcal{Z}_{p}(X)}=n^{1 / p} .
$$

Concentration for Gaussian and exponential measures

The concentration of measure phenomenon for the canonical Gaussian measure γ_{n} on \mathbb{R}^{n} yields:

$$
\gamma_{n}(A) \geq \frac{1}{2} \Rightarrow \forall_{p \geq 2} 1-\gamma_{n}\left(A+C \sqrt{p} B_{2}^{n}\right) \leq e^{-p}\left(1-\gamma_{n}(A)\right)
$$

Talagrand's two-level concentration for the product exponential measure states that:

Both results have the form

Concentration for Gaussian and exponential measures

The concentration of measure phenomenon for the canonical Gaussian measure γ_{n} on \mathbb{R}^{n} yields:

$$
\gamma_{n}(A) \geq \frac{1}{2} \Rightarrow \forall_{p \geq 2} 1-\gamma_{n}\left(A+C \sqrt{p} B_{2}^{n}\right) \leq e^{-p}\left(1-\gamma_{n}(A)\right)
$$

Talagrand's two-level concentration for the product exponential measure states that:
$\nu^{n}(A) \geq \frac{1}{2} \Rightarrow \forall_{p \geq 2} 1-\nu^{n}\left(A+C \sqrt{p} B_{2}^{n}+C p B_{1}^{n}\right) \leq e^{-p}\left(1-\nu^{n}(A)\right)$.
Both results have the form

Concentration for Gaussian and exponential measures

The concentration of measure phenomenon for the canonical Gaussian measure γ_{n} on \mathbb{R}^{n} yields:

$$
\gamma_{n}(A) \geq \frac{1}{2} \Rightarrow \forall_{p \geq 2} 1-\gamma_{n}\left(A+C \sqrt{p} B_{2}^{n}\right) \leq e^{-p}\left(1-\gamma_{n}(A)\right),
$$

Talagrand's two-level concentration for the product exponential measure states that:
$\nu^{n}(A) \geq \frac{1}{2} \Rightarrow \forall_{p \geq 2} 1-\nu^{n}\left(A+C \sqrt{p} B_{2}^{n}+C p B_{1}^{n}\right) \leq e^{-p}\left(1-\nu^{n}(A)\right)$.
Both results have the form

$$
\mu(A) \geq \frac{1}{2} \Rightarrow \forall_{p \geq 2} 1-\mu\left(A+C \mathcal{Z}_{p}(\mu)\right) \leq e^{-p}(1-\mu(A))
$$

Optimal concentration

It is not hard to show that if μ is a symmetric distribution on \mathbb{R}^{n} (and 1-dimensional marginals of μ behave in a regular way) $p \geq p_{0}$ and K is a convex set such that for any halfspace H

$$
1-\mu(H+K) \leq e^{-p}
$$

then $K \supset c \mathcal{Z}_{p}(\mu)$.
Therefore we say that a measure μ satisfies the optimal concentration with constant C if

$$
\mu(A) \geq \frac{1}{2} \Rightarrow \forall_{p \geq 2} 1-\mu\left(A+C \mathcal{Z}_{p}(\mu)\right) \leq e^{-p}(1-\mu(A))
$$

Optimal concentration for log-concave vectors

All centered product log-concave measures satisfy the optimal concentration inequality with a universal constant (L-Wojtaszczyk 2008).

A natural conjecture states that this is true also for nonproduct log-concave measures. Since $\mathcal{Z}_{p}(X) \subset C p B_{2}^{n}$ for isotropic log-concave vectors, this is stronger than the celebrated KLS conjecture on the boundedness of the Cheeger constant for isotropic log-concave measures .
It is known that KLS holds with constant $n^{1 / 4}$ (Lee-Vempala), we are able to show the optimal concentration with a worse constant (but better than \sqrt{n}).

Corollary (L.-Nayar)

Every centered log-concave probability measure on \mathbb{R}^{n} satisfies the
optimal concentration inequality with constant $C n^{5 / 12}$

Optimal concentration for log-concave vectors

All centered product log-concave measures satisfy the optimal concentration inequality with a universal constant (L-Wojtaszczyk 2008).

A natural conjecture states that this is true also for nonproduct log-concave measures. Since $\mathcal{Z}_{p}(X) \subset C p B_{2}^{n}$ for isotropic log-concave vectors, this is stronger than the celebrated KLS conjecture on the boundedness of the Cheeger constant for isotropic log-concave measures .
It is known that KLS holds with constant $n^{1 / 4}$ (Lee-Vempala), we are able to show the optimal concentration with a worse constant (but better than \sqrt{n}).

Corollary (L.-Nayar)

Every centered log-concave probability measure on \mathbb{R}^{n} satisfies the optimal concentration inequality with constant $\mathrm{Cn}^{5 / 12}$.

p-summing operators

A linear operator T between Banach spaces F_{1} and F_{2} is p-summing if there exists a constant $\alpha<\infty$, such that

$$
\forall_{x_{1}, \ldots x_{m} \in F_{1}}\left(\sum_{i=1}^{m}\left\|T x_{i}\right\|^{p}\right)^{1 / p} \leq \alpha \sup _{x^{*} \in F_{1}^{*},\left\|x^{*}\right\| \leq 1}\left(\sum_{i=1}^{m}\left|x^{*}\left(x_{i}\right)\right|^{p}\right)^{1 / p}
$$

The smallest constant α in the above inequality is called the p-summing norm of T and denoted by $\pi_{p}(T)$. For a Banach space F by $\pi_{p}(F)$ we denote the p-summing constant of the identity map of F.
It is well known that $\pi_{p}(F)<\infty$ if and only if F is finite
dimensional. Moreover $\pi_{2}(F)=\sqrt{\operatorname{dim} F}$. Summing constants of some finite dimensional spaces were computed by Gordon. In particular he showed that

p-summing operators

A linear operator T between Banach spaces F_{1} and F_{2} is p-summing if there exists a constant $\alpha<\infty$, such that

$$
\forall_{x_{1}, \ldots x_{m} \in F_{1}}\left(\sum_{i=1}^{m}\left\|T x_{i}\right\|^{p}\right)^{1 / p} \leq \alpha \sup _{x^{*} \in F_{1}^{*},\left\|x^{*}\right\| \leq 1}\left(\sum_{i=1}^{m}\left|x^{*}\left(x_{i}\right)\right|^{p}\right)^{1 / p}
$$

The smallest constant α in the above inequality is called the p-summing norm of T and denoted by $\pi_{p}(T)$. For a Banach space F by $\pi_{p}(F)$ we denote the p-summing constant of the identity map of F.
It is well known that $\pi_{p}(F)<\infty$ if and only if F is finite dimensional. Moreover $\pi_{2}(F)=\sqrt{\operatorname{dim} F}$. Summing constants of some finite dimensional spaces were computed by Gordon. In particular he showed that

$$
\pi_{p}\left(\ell_{2}^{n}\right)=\left(\mathbb{E}\left|U_{1}\right|^{p}\right)^{-1 / p} \sim \sqrt{\frac{n+p}{p}}
$$

p-summing constants of finite rank operators

Corollary

For any finite dimensional Banach space F and $p \geq 2$ we have

$$
\pi_{p}(F) \leq 2 \sqrt{e} \sqrt{\frac{\operatorname{dim} F+p}{p}} \leq C \pi_{p}\left(\ell_{2}^{\operatorname{dim} F}\right) .
$$

Proof. We apply the weak-strong comparison theorem for random vectors uniformly distributed on finite subsets of F and T the unit ball in F^{*}.

```
Corollary
Let T be a finite rank linear operator between Banach spaces F}\mp@subsup{F}{1}{
and F2. Then the p-absolutely summing constant of T satisfies
```


p-summing constants of finite rank operators

Corollary

For any finite dimensional Banach space F and $p \geq 2$ we have

$$
\pi_{p}(F) \leq 2 \sqrt{e} \sqrt{\frac{\operatorname{dim} F+p}{p}} \leq C \pi_{p}\left(\ell_{2}^{\operatorname{dim} F}\right) .
$$

Proof. We apply the weak-strong comparison theorem for random vectors uniformly distributed on finite subsets of F and T the unit ball in F^{*}.

Corollary

Let T be a finite rank linear operator between Banach spaces F_{1} and F_{2}. Then the p-absolutely summing constant of T satisfies

$$
\pi_{\rho}(T) \leq 2 \sqrt{e} \sqrt{\frac{\mathrm{rk}(T)+p}{p}}\|T\| .
$$

Strong and weak moments for Gaussian vectors

Let $G=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} are i.i.d. $\mathcal{N}(0,1)$. Gaussian concentration states that for any L-Lipschitz function f,

$$
\mathbb{P}(|f(G)-\mathbb{E} f(G)| \geq t) \leq \exp \left(-\frac{t^{2}}{2 L^{2}}\right)
$$

Integrating by parts we get for $p \geq 1$,

$$
\left(\mathbb{E}|f(G)-\mathbb{E} f(G)|^{p}\right)^{1 / p} \leq C \sqrt{p} L .
$$

Hence by the triangle inequality in L_{p},

$$
\|f(G)\|_{L_{p}} \leq|\mathbb{E} f(G)|+C \sqrt{p} L .
$$

The function $x \mapsto \sup _{t \in T}|\langle t, x\rangle|$ has the Lipschitz constant $\sup _{t \in T}|t|$, moreover $\left\|\sum_{i} t_{i} g_{i}\right\|_{L_{p}}=|t|\left\|g_{1}\right\|_{L_{p}} \sim|t| \sqrt{p}$, therefore

Strong and weak moments for Gaussian vectors

Let $G=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} are i.i.d. $\mathcal{N}(0,1)$. Gaussian concentration states that for any L-Lipschitz function f,

$$
\mathbb{P}(|f(G)-\mathbb{E} f(G)| \geq t) \leq \exp \left(-\frac{t^{2}}{2 L^{2}}\right)
$$

Integrating by parts we get for $p \geq 1$,

$$
\left(\mathbb{E}|f(G)-\mathbb{E} f(G)|^{p}\right)^{1 / p} \leq C \sqrt{p} L .
$$

Hence by the triangle inequality in L_{p},

$$
\|f(G)\|_{L_{p}} \leq|\mathbb{E} f(G)|+C \sqrt{p} L
$$

The function $x \mapsto \sup _{t \in T}|\langle t, x\rangle|$ has the Lipschitz constant $\sup _{t \in T}|t|$, moreover $\left\|\sum_{i} t_{i} g_{i}\right\|_{L_{p}}=|t|\left\|g_{1}\right\|_{L_{p}} \sim|t| \sqrt{p}$, therefore

Strong and weak moments for Gaussian vectors

Let $G=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} are i.i.d. $\mathcal{N}(0,1)$. Gaussian concentration states that for any L-Lipschitz function f,

$$
\mathbb{P}(|f(G)-\mathbb{E} f(G)| \geq t) \leq \exp \left(-\frac{t^{2}}{2 L^{2}}\right)
$$

Integrating by parts we get for $p \geq 1$,

$$
\left(\mathbb{E}|f(G)-\mathbb{E} f(G)|^{p}\right)^{1 / p} \leq C \sqrt{p} L .
$$

Hence by the triangle inequality in L_{p},

$$
\|f(G)\|_{L_{p}} \leq|\mathbb{E} f(G)|+C \sqrt{p} L .
$$

The function $x \mapsto \sup _{t \in T}|\langle t, x\rangle|$ has the Lipschitz constant $\sup _{t \in T}|t|$, moreover $\left\|\sum_{i} t_{i} g_{i}\right\|_{L_{p}}=|t|\left\|g_{1}\right\|_{L_{p}} \sim|t| \sqrt{p}$, therefore

$$
\left(\mathbb{E} \sup _{t \in T}|\langle t, G\rangle|^{p}\right)^{1 / p} \leq \mathbb{E} \sup _{t \in T}|\langle t, G\rangle|+C \sup _{t \in T}\left(\mathbb{E}|\langle t, G\rangle|^{p}\right)^{1 / p}
$$

Question 2

What should we assume about distribution of random n-dimensional vector X in order to have for any nonempty bounded $T \subset \mathbb{R}^{n}$ and any $p \geq 2$,
$\left(\mathbb{E} \sup _{t \in T}|\langle t, X\rangle|^{p}\right)^{1 / p} \leq C_{1} \mathbb{E} \sup _{t \in T}|\langle t, X\rangle|+C_{2} \sup _{t \in T}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}$.
with some universal constants C_{1}, C_{2} ?

Rademachers and variables with log-concave tails

In the case when X_{i} is the Rademacher sequence (i.e. sequence of i.i.d. symmetric ± 1-valued r.v's) Dilworth and Montgomery-Smith (1993) showed that
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1} \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+C_{2} \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}$.

This inequality was generalized (L. 1996) to the case when X_{i} are symmetric with log-concave tails (i.e. $t \mapsto \ln \mathbb{P}\left(\left|X_{i}\right| \geq t\right)$ is concave from $[0, \infty)$ to $[-\infty, 0]$)

Strzelecka, Strzelecki and Tkocz (2017) showed that for symmetric variables with log-concave tails the inequality holds with $C_{1}=1$.

Estimates discussed above are strictly connected with
concentration inequalities (two-level Talagrand's concetration,
concentration for convex functions on discrete cube)

Rademachers and variables with log-concave tails

In the case when X_{i} is the Rademacher sequence (i.e. sequence of i.i.d. symmetric ± 1-valued r.v's) Dilworth and Montgomery-Smith (1993) showed that
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1} \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+C_{2} \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}$.
This inequality was generalized (L. 1996) to the case when X_{i} are symmetric with log-concave tails (i.e. $t \mapsto \ln \mathbb{P}\left(\left|X_{i}\right| \geq t\right)$ is concave from $[0, \infty)$ to $[-\infty, 0]$).

Strzelecka, Strzelecki and Tkocz (2017) showed that for symmetric variables with log-concave tails the inequality holds with $C_{1}=1$.

Fstimates discussed above are strictly connected with
concentration inequalities (two-level Talagrand's concetration,
concentration for convex functions on discrete cube)

Rademachers and variables with log-concave tails

In the case when X_{i} is the Rademacher sequence (i.e. sequence of i.i.d. symmetric ± 1-valued r.v's) Dilworth and Montgomery-Smith (1993) showed that
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1} \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+C_{2} \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}$.
This inequality was generalized (L. 1996) to the case when X_{i} are symmetric with log-concave tails (i.e. $t \mapsto \ln \mathbb{P}\left(\left|X_{i}\right| \geq t\right)$ is concave from $[0, \infty)$ to $[-\infty, 0]$).

Strzelecka, Strzelecki and Tkocz (2017) showed that for symmetric variables with log-concave tails the inequality holds with $C_{1}=1$.

Estimates discussed above are strictly connected with concentration inequalities (two-level Talagrand's concetration, concentration for convex functions on discrete cube)

Rademachers and variables with log-concave tails

In the case when X_{i} is the Rademacher sequence (i.e. sequence of i.i.d. symmetric ± 1-valued r.v's) Dilworth and Montgomery-Smith (1993) showed that
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1} \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+C_{2} \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}$.
This inequality was generalized (L. 1996) to the case when X_{i} are symmetric with log-concave tails (i.e. $t \mapsto \ln \mathbb{P}\left(\left|X_{i}\right| \geq t\right)$ is concave from $[0, \infty)$ to $[-\infty, 0]$).

Strzelecka, Strzelecki and Tkocz (2017) showed that for symmetric variables with log-concave tails the inequality holds with $C_{1}=1$.

Estimates discussed above are strictly connected with concentration inequalities (two-level Talagrand's concetration, concentration for convex functions on discrete cube).

Variables with sublinear growths of moments

One may show that for a r.v's X with log-concave tails
$\|X\|_{L_{p}} \leq 2 \frac{p}{q}\|X\|_{L_{q}}$ for $p \geq q \geq 1$.
L.-Tkocz (2015) proved that if X_{i} are independent, centered and

$$
\left\|X_{i}\right\|_{L_{p}} \leq \alpha \frac{p}{q}\left\|X_{i}\right\|_{L_{q}} \text { for } p \geq q \geq 1
$$

then
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1}(\alpha) \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+C_{2}(\alpha) \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}$.
Strzelecki, Strzelecka, Tkocz (2017) constructed an example
showing that $C_{1}(\alpha)>1$ for $\alpha \geq 3$

Variables with sublinear growths of moments

One may show that for a r.v's X with log-concave tails
$\|X\|_{L_{p}} \leq 2 \frac{p}{q}\|X\|_{L_{q}}$ for $p \geq q \geq 1$.
L.-Tkocz (2015) proved that if X_{i} are independent, centered and

$$
\left\|X_{i}\right\|_{L_{p}} \leq \alpha \frac{p}{q}\left\|X_{i}\right\|_{L_{q}} \text { for } p \geq q \geq 1
$$

then
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1}(\alpha) \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+C_{2}(\alpha) \sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}$.

Strzelecki, Strzelecka, Tkocz (2017) constructed an example showing that $C_{1}(\alpha)>1$ for $\alpha \geq 3$.

Answer to Question 2 under independence of coordinates

Theorem (L-Strzelecka'18)

Let X_{1}, \ldots, X_{n} be centered, independent and

$$
\begin{equation*}
\left\|X_{i}\right\|_{L_{2 p}} \leq \alpha\left\|X_{i}\right\|_{L_{p}} \quad \text { for } p \geq 2 \text { and } i=1, \ldots, n, \tag{1}
\end{equation*}
$$

where α is a finite positive constant. Then for $p \geq 1$ and $T \subset \mathbb{R}^{n}$,
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C(\alpha)\left[\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+\sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}\right]$,
where $C(\alpha)$ is a constant depending only on α.
Remark. Symmetric r.v's such that $\mathbb{P}\left(\left|X_{i}\right| \geq t\right)=\exp \left(-t^{r}\right)$,
$r \in(0,1)$ satisfy the asumptions, but do not have exponential
moments, so there are no dimension-free concentration inequalities for $\left(X_{1}, \ldots, X_{n}\right)$.

Answer to Question 2 under independence of coordinates

Theorem (L-Strzelecka'18)

Let X_{1}, \ldots, X_{n} be centered, independent and

$$
\begin{equation*}
\left\|X_{i}\right\|_{L_{2 p}} \leq \alpha\left\|X_{i}\right\|_{L_{p}} \quad \text { for } p \geq 2 \text { and } i=1, \ldots, n \tag{1}
\end{equation*}
$$

where α is a finite positive constant. Then for $p \geq 1$ and $T \subset \mathbb{R}^{n}$,
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C(\alpha)\left[\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+\sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{\frac{1}{p}}\right]$,
where $C(\alpha)$ is a constant depending only on α.
Remark. Symmetric r.v's such that $\mathbb{P}\left(\left|X_{i}\right| \geq t\right)=\exp \left(-t^{r}\right)$, $r \in(0,1)$ satisfy the asumptions, but do not have exponential moments, so there are no dimension-free concentration inequalities for $\left(X_{1}, \ldots, X_{n}\right)$.

Optimality of the assumptions

It turns out that in the i.i.d case the result may be reversed, i.e. condition (2) implies (1).

Theorem (L-Strzelecka)

Let X_{1}, X_{2}, \ldots be i.i.d. random variables. Assume that there exists a constant L such that for every $p \geq 1$, every n and every non-empty set $T \subset \mathbb{R}^{n}$ we have
$\left(\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{1 / p} \leq L\left[\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|+\sup _{t \in T}\left(\mathbb{E}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|^{p}\right)^{1 / p}\right]$.
Then

$$
\left\|X_{1}\right\|_{L_{2 p}} \leq \alpha(L)\left\|X_{1}\right\|_{L_{p}} \quad \text { for } p \geq 2
$$

where $\alpha(L)$ is a constant which depends only on $L \geq 1$.

The seminal result of Paouris shows that one may compare strong and weak ℓ_{2}-norms of log-concave random vectors.

Theorem (Paouris 2006)

Let X be a log-concave vector. Then for $p \geq 1$,

$$
\left(\mathbb{E}|X|^{p}\right)^{1 / p} \leq C_{1} \mathbb{E}|X|+C_{2} \sup _{|t| \leq 1}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}
$$

where C_{1}, C_{2} are universal constants.
It is not known if one may take $C_{1}=1$ and whether the inequality holds for all norms.

Paouris inequality

The seminal result of Paouris shows that one may compare strong and weak ℓ_{2}-norms of log-concave random vectors.

Theorem (Paouris 2006)

Let X be a log-concave vector. Then for $p \geq 1$,

$$
\left(\mathbb{E}|X|^{p}\right)^{1 / p} \leq C_{1} \mathbb{E}|X|+C_{2} \sup _{|t| \leq 1}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p},
$$

where C_{1}, C_{2} are universal constants.
It is not known if one may take $C_{1}=1$ and whether the inequality holds for all norms.

Example

Let $X=g Y$, where Y has uniform distribution S^{n-1} and g is $N(0,1)$ r.v. independent of Y. Then

$$
\left(\mathbb{E}|g Y|^{p}\right)^{1 / p}=\|g\|_{L_{p}} \sim \sqrt{p},
$$

and

$$
\|\langle t, g Y\rangle\|_{L_{p}}=\|g\|_{L_{p}}\|\langle t, Y\rangle\|_{L_{p}} \sim p|t| / \sqrt{n} \quad \text { for } p \leq n .
$$

If we take $p=\sqrt{n}$ we see that if Paouris-type inequality holds for X :

$$
\left(\mathbb{E}|X|^{p}\right)^{1 / p} \leq C\left(\mathbb{E}|X|+\sup _{|t| \leq 1}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}\right)
$$

then $\max \left\{C_{1}, C_{2}\right\} \geq c n^{1 / 4}$. On the other hand random variables $\langle t, X\rangle$ are very regular.
Open problem. Characterize (or at least state quite general sufficient conditions) all random vectors that satisfy the Paouris inequality.

Example

Let $X=g Y$, where Y has uniform distribution S^{n-1} and g is $N(0,1)$ r.v. independent of Y. Then

$$
\left(\mathbb{E}|g Y|^{p}\right)^{1 / p}=\|g\|_{L_{p}} \sim \sqrt{p},
$$

and

$$
\|\langle t, g Y\rangle\|_{L_{p}}=\|g\|_{L_{p}}\|\langle t, Y\rangle\|_{L_{p}} \sim p|t| / \sqrt{n} \quad \text { for } p \leq n .
$$

If we take $p=\sqrt{n}$ we see that if Paouris-type inequality holds for X :

$$
\left(\mathbb{E}|X|^{p}\right)^{1 / p} \leq C\left(\mathbb{E}|X|+\sup _{|t| \leq 1}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}\right)
$$

then $\max \left\{C_{1}, C_{2}\right\} \geq c n^{1 / 4}$. On the other hand random variables $\langle t, X\rangle$ are very regular.

Open problem. Characterize (or at least state quite general sufficient conditions) all random vectors that satisfy the Paouris inequality.

Paouris-type inequality for ℓ_{r}-norms

Theorem (L, Strzelecka 2016)

Let X be a log-concave random vector, $r<\infty$ and $\|\cdot\|$ be a norm on \mathbb{R}^{n} such that $\left(\mathbb{R}^{n},\|\cdot\|\right)$ embeds isometrically in ℓ_{r}. Then

$$
\begin{equation*}
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leq C r\left(\mathbb{E}\|X\|+\sup _{\|t\|_{*} \leq 1}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}\right) \tag{3}
\end{equation*}
$$

where C is a universal constant and $\|\cdot\|_{*}$ denotes the dual norm.
Conjecture. Inequality holds with universal constant C instead of Cr for log-concave vectors and arbitrary norm.

Theorem (L, Strzelecka 2016)

Let X be a log-concave random vector, $r<\infty$ and $\|\cdot\|$ be a norm on \mathbb{R}^{n} such that $\left(\mathbb{R}^{n},\|\cdot\|\right)$ embeds isometrically in ℓ_{r}. Then

$$
\begin{equation*}
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leq C r\left(\mathbb{E}\|X\|+\sup _{\|t\|_{*} \leq 1}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}\right) \tag{3}
\end{equation*}
$$

where C is a universal constant and $\|\cdot\|_{*}$ denotes the dual norm.
Conjecture. Inequality holds with universal constant C instead of Cr for log-concave vectors and arbitrary norm.

Thank you for your attention!

Bibliograhy

S．J．Dilworth，S．J．Montgomery－Smith，The distribution of vector－valued Rademacher series，AoP 21 （1993），2046－2052．
Rafał Latała，Tail and moment estimates for sums of independent random vectors with logarithmically concave tails，Studia Math． 118 （1996），301－304．
围 R．Latała，P．Nayar，Hadamard products and moments of random vector，arXiv：1907．09812．
目 R．Latała，M．Strzelecka，Weak and strong moments of I_{r}－norms of log－concave vectors，Proc．AMS 144 （2016），3597－3608．
圊 R．Latała，M．Strzelecka，Comparison of weak and strong moments for vectors with independent coordinates，Mathematika 64 （2018）， 211－229．
國 R．Latała，T．Tkocz，A note on suprema of canonical processes based on random variables with regular moments，Electron．J． Probab． 20 （2015），no．36，1－17．
国 G．Paouris，Concentration of mass on convex bodies，Geom．Funct． Anal． 16 （2006），1021－1049．
囦 M．Strzelecka，M．Strzelecki，T．Tkocz，On the convex infimum convolution inequality with optimal cost function，ALEA 14 （2017）， 903－915．

