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Strong and weak moments
Let X be an n-dimensional random vector. In many problems one
needs to estimate strong moments of X with respect to a norm
structure (Rn, ‖ · ‖), i.e.

Mp(X , ‖ · ‖) := (E‖X‖p)1/p =
(
E sup
‖t‖∗≤1

|〈t,X 〉|p
)1/p

, p ≥ 1.

Usually it is much easier to bound weak moments of X , defined as

σp(X , ‖ · ‖) := sup
‖t‖∗≤1

(E|〈t,X 〉|p)1/p, p ≥ 1.

It is natural to investigate relations between these quantities.

Remark. Equivalently one may take bounded nonempty subsets
T ⊂ Rn and define

Mp(X ,T ) :=
(
E sup

t∈T
|〈t,X 〉|p

)1/p

, σp(X ,T ) := sup
t∈T

(E|〈t,X 〉|p)1/p.
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Question 1
Obviously weak moments are smaller than strong moments. What
about the reverse inequality?
Namely, for fixed n and p what is the best constant Cn,p such that
for any random vector X and any bounded nonempty T ⊂ Rn

(E sup
t∈T
|〈t,X 〉|p)1/p ≤ Cn,p sup

t∈T
(E|〈t,X 〉|p)1/p?

By homogenity we may assume that weak moments are bounded
by 1, i.e.

T ⊂Mp(X ) := {t ∈ Rn : E|〈t,X 〉|p = 1}

then for x ∈ Rn

sup
t∈T
|〈t, x〉| ≤ ‖t‖Zp(X) := sup{|〈t, s〉| : E|〈t,X 〉|p ≤ 1}.

And our goal is to find best possible Cn,p such that

(E‖X‖pZp(X))
1/p ≤ Cn,p.
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Examples of Zp(X )-norms/bodies
The unit ball in norm ‖ · ‖Zp(X) is denoted by Zp(X ) and is called
the Lp-centroid body of (the distribution of) X . It was introduced
(under a different normalization) for uniform distributions on
convex bodies by Lutvak and Zhang (1997).

If X is isotropic then Z2(X ) = Bn
2

If X is the standard Gaussian then Zp(X ) ∼ √pBn
2

If X has the product symmetric exponential distribution then
Zp(X ) ∼ √pBn

2 + pBn
1

If X is uniformly distributed on {−1, 1}n or [−1, 1]n then
Zp(X ) ∼ √pBn

2 ∩ Bn
∞

If X has a symmetric log-concave distrubution (i.e. has the
density e−h where h : Rn → (−∞,∞] is convex) then

Zp(X ) ∼ {t : Λ∗X (t) ≤ p},

where

Λ∗X := sup
s

(〈s, t〉 − ΛX (s)), ΛX (s) := logE exp(〈s,X 〉).
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Rotationally invariant vectors

Consider first a vector X with rotationally invariant distribution.
Then X = RU, where U has a uniform distribution on Sn−1 and
R = |X | is a nonnegative random variable, independent of U. We
have for any vector t ∈ Rn and p ≥ 2,

(E|〈t,U〉|p)1/p = |t|(E|U1|p)1/p ∼
√ p

n + p |t|.

Therefore

(E|〈t,X 〉‖p)1/p = ‖R‖Lp‖U1‖Lp |t| and ‖t‖Zp(X) = ‖U1‖−1
Lp
‖R‖−1

Lp
|t|.

So

(
E‖X‖pZp(X)

)1/p
= ‖U1‖−1

Lp
‖R‖−1

Lp
(E|X |p)1/p = ‖U1‖−1

Lp
∼
√

n + p
p .
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Answer to Question 1

Theorem (L-Nayar’19+)
For any n-dimensional random vector X and any nonempty set T
in Rn and p ≥ 2 we have(

E sup
t∈T
|〈t,X 〉|p

)1/p

≤ 2
√
e
√

n + p
p sup

t∈T
(E|〈t,X 〉|p)1/p .

Equivalently,

(E‖X‖pZp(X))
1/p ≤ 2

√
e
√

n + p
p .

The constant is of optimal order for rotationally invariant vectors.
However for some distributions it might be smaller
Example Let P(Xi = ±ei ) = 1/(2n) i = 1, . . . , n then
‖t‖Mp(X) = ‖〈t,X 〉‖Lp = n−1/p‖t‖p, ‖t‖Zp(X) = n1/p‖t‖q

so ‖X‖Zp(X) = n1/p.
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Concentration for Gaussian and exponential measures

The concentration of measure phenomenon for the canonical
Gaussian measure γn on Rn yields:

γn(A) ≥ 1
2 ⇒ ∀p≥2 1− γn(A + C√pBn

2 ) ≤ e−p(1− γn(A)),

Talagrand’s two-level concentration for the product exponential
measure states that:

νn(A) ≥ 1
2 ⇒ ∀p≥2 1−νn(A+C√pBn

2 +CpBn
1 ) ≤ e−p(1−νn(A)).

Both results have the form

µ(A) ≥ 1
2 ⇒ ∀p≥2 1− µ(A + CZp(µ)) ≤ e−p(1− µ(A)).
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Optimal concentration

It is not hard to show that if µ is a symmetric distribution on Rn

(and 1-dimensional marginals of µ behave in a regular way) p ≥ p0
and K is a convex set such that for any halfspace H

1− µ(H + K ) ≤ e−p

then K ⊃ cZp(µ).

Therefore we say that a measure µ satisfies the optimal
concentration with constant C if

µ(A) ≥ 1
2 ⇒ ∀p≥2 1− µ(A + CZp(µ)) ≤ e−p(1− µ(A)).



Optimal concentration for log-concave vectors

All centered product log-concave measures satisfy the optimal
concentration inequality with a universal constant (L-Wojtaszczyk
2008).
A natural conjecture states that this is true also for nonproduct
log-concave measures. Since Zp(X ) ⊂ CpBn

2 for isotropic
log-concave vectors, this is stronger than the celebrated KLS
conjecture on the boundedness of the Cheeger constant for
isotropic log-concave measures .
It is known that KLS holds with constant n1/4 (Lee-Vempala), we
are able to show the optimal concentration with a worse constant
(but better than

√
n).

Corollary (L.-Nayar)
Every centered log-concave probability measure on Rn satisfies the
optimal concentration inequality with constant Cn5/12.
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p-summing operators
A linear operator T between Banach spaces F1 and F2 is
p-summing if there exists a constant α <∞, such that

∀x1,...xm∈F1

( m∑
i=1
‖Txi‖p

)1/p

≤ α sup
x∗∈F ∗

1 ,‖x∗‖≤1

( m∑
i=1
|x∗(xi )|p

)1/p

.

The smallest constant α in the above inequality is called the
p-summing norm of T and denoted by πp(T ). For a Banach space
F by πp(F ) we denote the p-summing constant of the identity
map of F .
It is well known that πp(F ) <∞ if and only if F is finite
dimensional. Moreover π2(F ) =

√
dimF . Summing constants of

some finite dimensional spaces were computed by Gordon. In
particular he showed that

πp(`n2) = (E|U1|p)−1/p ∼
√

n + p
p .
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p-summing constants of finite rank operators

Corollary

For any finite dimensional Banach space F and p ≥ 2 we have

πp(F ) ≤ 2
√
e
√

dimF + p
p ≤ Cπp(`dimF

2 ).

Proof. We apply the weak-strong comparison theorem for random
vectors uniformly distributed on finite subsets of F and T the unit
ball in F ∗.
Corollary
Let T be a finite rank linear operator between Banach spaces F1
and F2. Then the p-absolutely summing constant of T satisfies

πp(T ) ≤ 2
√
e
√

rk(T ) + p
p ‖T‖.
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Strong and weak moments for Gaussian vectors
Let G = (g1, . . . , gn), where gi are i.i.d. N (0, 1). Gaussian
concentration states that for any L-Lipschitz function f ,

P(|f (G)− Ef (G)| ≥ t) ≤ exp(− t2

2L2 )

Integrating by parts we get for p ≥ 1,

(E|f (G)− Ef (G)|p)1/p ≤ C√pL.

Hence by the triangle inequality in Lp,

‖f (G)‖Lp ≤ |Ef (G)|+ C√pL.

The function x 7→ supt∈T |〈t, x〉| has the Lipschitz constant
supt∈T |t|, moreover ‖

∑
i tigi‖Lp = |t|‖g1‖Lp ∼ |t|

√p, therefore

(
E sup

t∈T
|〈t,G〉|p

)1/p
≤ E sup

t∈T
|〈t,G〉|+ C sup

t∈T

(
E|〈t,G〉|p

)1/p
.
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Question 2

What should we assume about distribution of random
n-dimensional vector X in order to have for any nonempty bounded
T ⊂ Rn and any p ≥ 2,(
E sup

t∈T
|〈t,X 〉|p

)1/p
≤ C1E sup

t∈T
|〈t,X 〉|+ C2 sup

t∈T

(
E|〈t,X 〉|p

)1/p
.

with some universal constants C1,C2?



Rademachers and variables with log-concave tails

In the case when Xi is the Rademacher sequence (i.e. sequence of
i.i.d. symmetric ±1-valued r.v’s) Dilworth and Montgomery-Smith
(1993) showed that

(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣p) 1

p
≤ C1E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣+ C2 sup

t∈T

(
E
∣∣∣ n∑
i=1

tiXi
∣∣∣p) 1

p
.

This inequality was generalized (L. 1996) to the case when Xi are
symmetric with log-concave tails (i.e. t 7→ lnP(|Xi | ≥ t) is concave
from [0,∞) to [−∞, 0]).

Strzelecka, Strzelecki and Tkocz (2017) showed that for symmetric
variables with log-concave tails the inequality holds with C1 = 1.

Estimates discussed above are strictly connected with
concentration inequalities (two-level Talagrand’s concetration,
concentration for convex functions on discrete cube).
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(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣p) 1

p
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.

This inequality was generalized (L. 1996) to the case when Xi are
symmetric with log-concave tails (i.e. t 7→ lnP(|Xi | ≥ t) is concave
from [0,∞) to [−∞, 0]).

Strzelecka, Strzelecki and Tkocz (2017) showed that for symmetric
variables with log-concave tails the inequality holds with C1 = 1.

Estimates discussed above are strictly connected with
concentration inequalities (two-level Talagrand’s concetration,
concentration for convex functions on discrete cube).
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Variables with sublinear growths of moments

One may show that for a r.v’s X with log-concave tails
‖X‖Lp ≤ 2p

q‖X‖Lq for p ≥ q ≥ 1.
L.-Tkocz (2015) proved that if Xi are independent, centered and

‖Xi‖Lp ≤ α
p
q ‖Xi‖Lq for p ≥ q ≥ 1,

then(
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Strzelecki, Strzelecka, Tkocz (2017) constructed an example
showing that C1(α) > 1 for α ≥ 3.
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Answer to Question 2 under independence of coordinates

Theorem (L-Strzelecka’18)

Let X1, . . . ,Xn be centered, independent and

‖Xi‖L2p ≤ α‖Xi‖Lp for p ≥ 2 and i = 1, . . . , n, (1)

where α is a finite positive constant. Then for p ≥ 1 and T ⊂ Rn,

(
E sup
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∣∣∣ n∑
i=1
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∣∣∣p) 1

p
≤ C(α)
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∣∣∣p) 1

p
]
,

(2)
where C(α) is a constant depending only on α.

Remark. Symmetric r.v’s such that P(|Xi | ≥ t) = exp(−tr ),
r ∈ (0, 1) satisfy the asumptions, but do not have exponential
moments, so there are no dimension-free concentration inequalities
for (X1, . . . ,Xn).
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Optimality of the assumptions

It turns out that in the i.i.d case the result may be reversed, i.e.
condition (2) implies (1).

Theorem (L-Strzelecka)
Let X1,X2, . . . be i.i.d. random variables. Assume that there exists
a constant L such that for every p ≥ 1, every n and every
non-empty set T ⊂ Rn we have
(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣p)1/p

≤ L
[
E sup

t∈T

∣∣∣ n∑
i=1

tiXi
∣∣∣+sup

t∈T

(
E
∣∣∣ n∑
i=1

tiXi
∣∣∣p)1/p]

.

Then
‖X1‖L2p ≤ α(L)‖X1‖Lp for p ≥ 2,

where α(L) is a constant which depends only on L ≥ 1.



Paouris inequality

The seminal result of Paouris shows that one may compare strong
and weak `2-norms of log-concave random vectors.

Theorem (Paouris 2006)
Let X be a log-concave vector. Then for p ≥ 1,

(E|X |p)1/p ≤ C1E|X |+ C2 sup
|t|≤1

(E|〈t,X 〉|p)1/p,

where C1,C2 are universal constants.

It is not known if one may take C1 = 1 and whether the inequality
holds for all norms.
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Example
Let X = gY , where Y has uniform distribution Sn−1 and g is
N(0, 1) r.v. independent of Y . Then

(E|gY |p)1/p = ‖g‖Lp ∼
√p,

and

‖〈t, gY 〉‖Lp = ‖g‖Lp‖〈t,Y 〉‖Lp ∼ p|t|/
√
n for p ≤ n.

If we take p =
√
n we see that if Paouris-type inequality holds for

X :
(E|X |p)1/p ≤ C

(
E|X |+ sup

|t|≤1
(E|〈t,X 〉|p)1/p

)
,

then max{C1,C2} ≥ cn1/4. On the other hand random variables
〈t,X 〉 are very regular.

Open problem. Characterize (or at least state quite general
sufficient conditions) all random vectors that satisfy the Paouris
inequality.
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Paouris-type inequality for `r -norms

Theorem (L, Strzelecka 2016)
Let X be a log-concave random vector, r <∞ and ‖ · ‖ be a norm
on Rn such that (Rn, ‖ · ‖) embeds isometrically in `r . Then

(E‖X‖p)1/p ≤ Cr
(
E‖X‖+ sup

‖t‖∗≤1
(E|〈t,X 〉|p)1/p

)
, (3)

where C is a universal constant and ‖ · ‖∗ denotes the dual norm.

Conjecture. Inequality holds with universal constant C instead of
Cr for log-concave vectors and arbitrary norm.
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Thank you for your attention!
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