Moments of random vectors

Rafał Latała (University of Warsaw) (based on joint works with Piotr Nayar and Marta Strzelecka)

Banff, February 11 2020

Strong and weak moments

Let X be an *n*-dimensional random vector. In many problems one needs to estimate *strong moments of* X with respect to a norm structure $(\mathbb{R}^n, \|\cdot\|)$, i.e.

$$M_p(X,\|\cdot\|):=(\mathbb{E}\|X\|^p)^{1/p}=\left(\mathbb{E}\sup_{\|t\|_*\leq 1}|\langle t,X
angle|^p
ight)^{1/p},\quad p\geq 1.$$

Usually it is much easier to bound weak moments of X, defined as

$$\sigma_p(X,\|\cdot\|) := \sup_{\|t\|_* \leq 1} (\mathbb{E}|\langle t,X
angle|^p)^{1/p}, \quad p \geq 1.$$

It is natural to investigate relations between these quantities.

Remark. Equivalently one may take bounded nonempty subsets $T \subset \mathbb{R}^n$ and define

$$M_p(X,T) := \left(\mathbb{E} \sup_{t \in T} |\langle t, X \rangle|^p \right)^{1/p}, \quad \sigma_p(X,T) := \sup_{t \in T} (\mathbb{E} |\langle t, X \rangle|^p)^{1/p}.$$

Strong and weak moments

Let X be an *n*-dimensional random vector. In many problems one needs to estimate *strong moments of* X with respect to a norm structure $(\mathbb{R}^n, \|\cdot\|)$, i.e.

$$M_p(X, \|\cdot\|) := (\mathbb{E} \|X\|^p)^{1/p} = \left(\mathbb{E} \sup_{\|t\|_* \leq 1} |\langle t, X \rangle|^p \right)^{1/p}, \quad p \geq 1.$$

Usually it is much easier to bound weak moments of X, defined as

$$\sigma_p(X,\|\cdot\|) := \sup_{\|t\|_* \leq 1} (\mathbb{E}|\langle t,X
angle|^p)^{1/p}, \quad p \geq 1.$$

It is natural to investigate relations between these quantities.

Remark. Equivalently one may take bounded nonempty subsets $T \subset \mathbb{R}^n$ and define

$$M_p(X,T) := \left(\mathbb{E} \sup_{t \in T} |\langle t, X \rangle|^p \right)^{1/p}, \quad \sigma_p(X,T) := \sup_{t \in T} (\mathbb{E} |\langle t, X \rangle|^p)^{1/p}.$$

Question 1

Obviously weak moments are smaller than strong moments. What about the reverse inequality?

Namely, for fixed *n* and *p* what is the best constant $C_{n,p}$ such that for any random vector *X* and any bounded nonempty $T \subset \mathbb{R}^n$

$$(\mathbb{E}\sup_{t\in T}|\langle t,X
angle|^p)^{1/p}\leq C_{n,p}\sup_{t\in T}(\mathbb{E}|\langle t,X
angle|^p)^{1/p}?$$

By homogenity we may assume that weak moments are bounded by 1, i.e.

$$T \subset \mathcal{M}_p(X) := \{t \in \mathbb{R}^n \colon \ \mathbb{E}|\langle t, X
angle|^p = 1\}$$

then for $x \in \mathbb{R}^n$

$$\sup_{t\in T} |\langle t,x\rangle| \leq ||t||_{\mathcal{Z}_p(X)} := \sup\{|\langle t,s\rangle|: \mathbb{E}|\langle t,X\rangle|^p \leq 1\}.$$

And our goal is to find best possible $C_{n,p}$ such that

$$(\mathbb{E}||X||_{Z_p(X)}^p)^{1/p} \leq C_{n,p}.$$

Question 1

Obviously weak moments are smaller than strong moments. What about the reverse inequality?

Namely, for fixed *n* and *p* what is the best constant $C_{n,p}$ such that for any random vector *X* and any bounded nonempty $T \subset \mathbb{R}^n$

$$(\mathbb{E}\sup_{t\in\mathcal{T}}|\langle t,X
angle|^p)^{1/p}\leq C_{n,p}\sup_{t\in\mathcal{T}}(\mathbb{E}|\langle t,X
angle|^p)^{1/p}?$$

By homogenity we may assume that weak moments are bounded by 1, i.e.

$$T \subset \mathcal{M}_{p}(X) := \{t \in \mathbb{R}^{n} \colon \mathbb{E}|\langle t, X
angle|^{p} = 1\}$$

then for $x \in \mathbb{R}^n$

$$\sup_{t\in T} |\langle t, x \rangle| \leq ||t||_{\mathcal{Z}_p(X)} := \sup\{|\langle t, s \rangle|: \mathbb{E}|\langle t, X \rangle|^p \leq 1\}.$$

And our goal is to find best possible $C_{n,p}$ such that

$$(\mathbb{E}\|X\|_{Z_p(X)}^p)^{1/p} \leq C_{n,p}.$$

The unit ball in norm $\|\cdot\|_{\mathcal{Z}_p(X)}$ is denoted by $\mathcal{Z}_p(X)$ and is called the L_p -centroid body of (the distribution of) X. It was introduced (under a different normalization) for uniform distributions on convex bodies by Lutvak and Zhang (1997).

- If X is isotropic then $\mathcal{Z}_2(X) = B_2^n$
- If X is the standard Gaussian then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n$
- If X has the product symmetric exponential distribution then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n + pB_1^n$
- If X is uniformly distributed on $\{-1,1\}^n$ or $[-1,1]^n$ then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n \cap B_\infty^n$
- If X has a symmetric log-concave distrubution (i.e. has the density e^{-h} where h: ℝⁿ → (-∞, ∞] is convex) then

$$\mathcal{Z}_p(X) \sim \{t \colon \Lambda^*_X(t) \leq p\},$$

$$\Lambda_X^* := \sup_s (\langle s, t \rangle - \Lambda_X(s)), \quad \Lambda_X(s) := \log \mathbb{E} \exp(\langle s, X \rangle).$$

The unit ball in norm $\|\cdot\|_{\mathcal{Z}_p(X)}$ is denoted by $\mathcal{Z}_p(X)$ and is called the L_p -centroid body of (the distribution of) X. It was introduced (under a different normalization) for uniform distributions on convex bodies by Lutvak and Zhang (1997).

- If X is isotropic then $\mathcal{Z}_2(X) = B_2^n$
- If X is the standard Gaussian then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n$
- If X has the product symmetric exponential distribution then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n + pB_1^n$
- If X is uniformly distributed on $\{-1,1\}^n$ or $[-1,1]^n$ then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n \cap B_\infty^n$
- If X has a symmetric log-concave distrubution (i.e. has the density e^{-h} where h: ℝⁿ → (-∞, ∞] is convex) then

$$\mathcal{Z}_p(X) \sim \{t \colon \Lambda^*_X(t) \leq p\},$$

$$\Lambda_X^* := \sup_s (\langle s, t \rangle - \Lambda_X(s)), \quad \Lambda_X(s) := \log \mathbb{E} \exp(\langle s, X \rangle).$$

The unit ball in norm $\|\cdot\|_{\mathcal{Z}_p(X)}$ is denoted by $\mathcal{Z}_p(X)$ and is called the L_p -centroid body of (the distribution of) X. It was introduced (under a different normalization) for uniform distributions on convex bodies by Lutvak and Zhang (1997).

- If X is isotropic then $\mathcal{Z}_2(X) = B_2^n$
- If X is the standard Gaussian then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n$
- If X has the product symmetric exponential distribution then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n + pB_1^n$
- If X is uniformly distributed on $\{-1,1\}^n$ or $[-1,1]^n$ then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n \cap B_\infty^n$
- If X has a symmetric log-concave distrubution (i.e. has the density e^{-h} where h: ℝⁿ → (-∞, ∞] is convex) then

$$\mathcal{Z}_p(X) \sim \{t \colon \Lambda^*_X(t) \leq p\},$$

$$\Lambda_X^* := \sup_s (\langle s, t \rangle - \Lambda_X(s)), \quad \Lambda_X(s) := \log \mathbb{E} \exp(\langle s, X \rangle).$$

The unit ball in norm $\|\cdot\|_{\mathcal{Z}_p(X)}$ is denoted by $\mathcal{Z}_p(X)$ and is called the L_p -centroid body of (the distribution of) X. It was introduced (under a different normalization) for uniform distributions on convex bodies by Lutvak and Zhang (1997).

- If X is isotropic then $\mathcal{Z}_2(X) = B_2^n$
- If X is the standard Gaussian then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n$
- If X has the product symmetric exponential distribution then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n + pB_1^n$
- If X is uniformly distributed on $\{-1,1\}^n$ or $[-1,1]^n$ then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n \cap B_\infty^n$
- If X has a symmetric log-concave distrubution (i.e. has the density e^{-h} where h: ℝⁿ → (-∞, ∞] is convex) then

$$\mathcal{Z}_p(X) \sim \{t \colon \Lambda^*_X(t) \leq p\},$$

$$\Lambda_X^* := \sup_s (\langle s, t \rangle - \Lambda_X(s)), \quad \Lambda_X(s) := \log \mathbb{E} \exp(\langle s, X \rangle).$$

The unit ball in norm $\|\cdot\|_{\mathcal{Z}_p(X)}$ is denoted by $\mathcal{Z}_p(X)$ and is called the L_p -centroid body of (the distribution of) X. It was introduced (under a different normalization) for uniform distributions on convex bodies by Lutvak and Zhang (1997).

- If X is isotropic then $\mathcal{Z}_2(X) = B_2^n$
- If X is the standard Gaussian then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n$
- If X has the product symmetric exponential distribution then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n + pB_1^n$
- If X is uniformly distributed on $\{-1,1\}^n$ or $[-1,1]^n$ then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n \cap B_\infty^n$
- If X has a symmetric log-concave distrubution (i.e. has the density e^{-h} where h: ℝⁿ → (-∞, ∞] is convex) then

$$\mathcal{Z}_p(X) \sim \{t \colon \Lambda^*_X(t) \leq p\},\$$

$$\Lambda_X^* := \sup_s (\langle s, t \rangle - \Lambda_X(s)), \quad \Lambda_X(s) := \log \mathbb{E} \exp(\langle s, X \rangle).$$

The unit ball in norm $\|\cdot\|_{\mathcal{Z}_p(X)}$ is denoted by $\mathcal{Z}_p(X)$ and is called the L_p -centroid body of (the distribution of) X. It was introduced (under a different normalization) for uniform distributions on convex bodies by Lutvak and Zhang (1997).

- If X is isotropic then $\mathcal{Z}_2(X) = B_2^n$
- If X is the standard Gaussian then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n$
- If X has the product symmetric exponential distribution then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n + pB_1^n$
- If X is uniformly distributed on $\{-1,1\}^n$ or $[-1,1]^n$ then $\mathcal{Z}_p(X) \sim \sqrt{p}B_2^n \cap B_\infty^n$
- If X has a symmetric log-concave distrubution (i.e. has the density e^{-h} where h: ℝⁿ → (-∞, ∞] is convex) then

$$\mathcal{Z}_p(X) \sim \{t \colon \Lambda^*_X(t) \leq p\},$$

$$\Lambda^*_X := \sup_s (\langle s,t
angle - \Lambda_X(s)), \quad \Lambda_X(s) := \log \mathbb{E} \exp(\langle s,X
angle).$$

Rotationally invariant vectors

Consider first a vector X with rotationally invariant distribution. Then X = RU, where U has a uniform distribution on S^{n-1} and R = |X| is a nonnegative random variable, independent of U. We have for any vector $t \in \mathbb{R}^n$ and $p \ge 2$,

$$(\mathbb{E}|\langle t,U
angle|^p)^{1/p}=|t|(\mathbb{E}|U_1|^p)^{1/p}\sim\sqrt{rac{p}{n+p}}|t|.$$

Therefore

 $(\mathbb{E}|\langle t, X \rangle||^{p})^{1/p} = ||R||_{L_{p}}||U_{1}||_{L_{p}}|t|$ and $||t||_{\mathcal{Z}_{p}(X)} = ||U_{1}||_{L_{p}}^{-1}||R||_{L_{p}}^{-1}|t|.$ So

$$\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{p}\right)^{1/p} = \|U_{1}\|_{L_{p}}^{-1}\|R\|_{L_{p}}^{-1}(\mathbb{E}|X|^{p})^{1/p} = \|U_{1}\|_{L_{p}}^{-1} \sim \sqrt{\frac{n+p}{p}}.$$

Consider first a vector X with rotationally invariant distribution. Then X = RU, where U has a uniform distribution on S^{n-1} and R = |X| is a nonnegative random variable, independent of U. We have for any vector $t \in \mathbb{R}^n$ and $p \ge 2$,

$$(\mathbb{E}|\langle t,U
angle|^p)^{1/p}=|t|(\mathbb{E}|U_1|^p)^{1/p}\sim\sqrt{rac{p}{n+p}}|t|.$$

Therefore

 $(\mathbb{E}|\langle t, X \rangle \|^{p})^{1/p} = \|R\|_{L_{p}} \|U_{1}\|_{L_{p}} |t| \quad \text{and} \quad \|t\|_{\mathcal{Z}_{p}(X)} = \|U_{1}\|_{L_{p}}^{-1} \|R\|_{L_{p}}^{-1} |t|.$ So

$$\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{p}\right)^{1/p} = \|U_{1}\|_{L_{p}}^{-1}\|R\|_{L_{p}}^{-1}(\mathbb{E}|X|^{p})^{1/p} = \|U_{1}\|_{L_{p}}^{-1} \sim \sqrt{\frac{n+p}{p}}.$$

Consider first a vector X with rotationally invariant distribution. Then X = RU, where U has a uniform distribution on S^{n-1} and R = |X| is a nonnegative random variable, independent of U. We have for any vector $t \in \mathbb{R}^n$ and $p \ge 2$,

$$(\mathbb{E}|\langle t,U
angle|^p)^{1/p}=|t|(\mathbb{E}|U_1|^p)^{1/p}\sim\sqrt{rac{p}{n+p}}|t|.$$

Therefore

$$(\mathbb{E}|\langle t, X \rangle \|^{p})^{1/p} = \|R\|_{L_{p}} \|U_{1}\|_{L_{p}} |t|$$
 and $\|t\|_{\mathcal{Z}_{p}(X)} = \|U_{1}\|_{L_{p}}^{-1} \|R\|_{L_{p}}^{-1} |t|.$
So

$$\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{p}\right)^{1/p} = \|U_{1}\|_{L_{p}}^{-1}\|R\|_{L_{p}}^{-1}(\mathbb{E}|X|^{p})^{1/p} = \|U_{1}\|_{L_{p}}^{-1} \sim \sqrt{\frac{n+p}{p}}.$$

Theorem (L-Nayar'19+)

For any n-dimensional random vector X and any nonempty set T in \mathbb{R}^n and $p \ge 2$ we have

$$\left(\mathbb{E}\sup_{t\in T}|\langle t,X\rangle|^p\right)^{1/p}\leq 2\sqrt{e}\sqrt{\frac{n+p}{p}}\sup_{t\in T}\left(\mathbb{E}|\langle t,X\rangle|^p\right)^{1/p}.$$

Equivalently,

$$(\mathbb{E}\|X\|_{\mathcal{Z}_p(X)}^p)^{1/p} \leq 2\sqrt{e}\sqrt{rac{n+p}{p}}$$

The constant is of optimal order for rotationally invariant vectors.

However for some distributions it might be smaller **Example** Let $\mathbb{P}(X_i = \pm e_i) = 1/(2n)$ i = 1, ..., n then

$$\|t\|_{\mathcal{M}_{p}(X)} = \|\langle t, X \rangle\|_{L_{p}} = n^{-1/p} \|t\|_{p}, \quad \|t\|_{\mathcal{Z}_{p}(X)} = n^{1/p} \|t\|_{q}$$

o $\|X\|_{\mathcal{Z}_{p}(X)} = n^{1/p}.$

Theorem (L-Nayar'19+)

For any n-dimensional random vector X and any nonempty set T in \mathbb{R}^n and $p \ge 2$ we have

$$\left(\mathbb{E}\sup_{t\in T}|\langle t,X\rangle|^p\right)^{1/p}\leq 2\sqrt{e}\sqrt{\frac{n+p}{p}}\sup_{t\in T}\left(\mathbb{E}|\langle t,X\rangle|^p\right)^{1/p}.$$

Equivalently,

$$(\mathbb{E}\|X\|_{\mathcal{Z}_p(X)}^p)^{1/p} \leq 2\sqrt{e}\sqrt{\frac{n+p}{p}}$$

The constant is of optimal order for rotationally invariant vectors. However for some distributions it might be smaller **Example** Let $\mathbb{P}(X_i = \pm e_i) = 1/(2n)$ i = 1, ..., n then

$$\|t\|_{\mathcal{M}_{p}(X)} = \|\langle t, X \rangle\|_{L_{p}} = n^{-1/p} \|t\|_{p}, \quad \|t\|_{\mathcal{Z}_{p}(X)} = n^{1/p} \|t\|_{q}$$

so $\|X\|_{\mathcal{Z}_{p}(X)} = n^{1/p}.$

The concentration of measure phenomenon for the canonical Gaussian measure γ_n on \mathbb{R}^n yields:

$$\gamma_n(A) \geq \frac{1}{2} \Rightarrow \forall_{p\geq 2} 1 - \gamma_n(A + C\sqrt{p}B_2^n) \leq e^{-p}(1 - \gamma_n(A)),$$

Talagrand's two-level concentration for the product exponential measure states that:

$$u^n(A) \ge \frac{1}{2} \implies \forall_{p\ge 2} 1 - \nu^n(A + C\sqrt{p}B_2^n + CpB_1^n) \le e^{-p}(1 - \nu^n(A)).$$

Both results have the form

$$\mu(A) \geq \frac{1}{2} \Rightarrow \forall_{p\geq 2} \ 1 - \mu(A + C\mathcal{Z}_p(\mu)) \leq e^{-p}(1 - \mu(A)).$$

The concentration of measure phenomenon for the canonical Gaussian measure γ_n on \mathbb{R}^n yields:

$$\gamma_n(A) \geq \frac{1}{2} \Rightarrow \forall_{p\geq 2} 1 - \gamma_n(A + C\sqrt{p}B_2^n) \leq e^{-p}(1 - \gamma_n(A)),$$

Talagrand's two-level concentration for the product exponential measure states that:

$$\nu^{n}(A) \geq \frac{1}{2} \Rightarrow \forall_{p\geq 2} 1 - \nu^{n}(A + C\sqrt{p}B_{2}^{n} + CpB_{1}^{n}) \leq e^{-p}(1 - \nu^{n}(A)).$$

Both results have the form

$$\mu(A) \geq \frac{1}{2} \Rightarrow \forall_{p\geq 2} \ 1 - \mu(A + C\mathcal{Z}_p(\mu)) \leq e^{-p}(1 - \mu(A)).$$

The concentration of measure phenomenon for the canonical Gaussian measure γ_n on \mathbb{R}^n yields:

$$\gamma_n(A) \geq \frac{1}{2} \Rightarrow \forall_{p\geq 2} 1 - \gamma_n(A + C\sqrt{p}B_2^n) \leq e^{-p}(1 - \gamma_n(A)),$$

Talagrand's two-level concentration for the product exponential measure states that:

$$\nu^n(A) \geq \frac{1}{2} \Rightarrow \forall_{p\geq 2} 1 - \nu^n(A + C\sqrt{p}B_2^n + CpB_1^n) \leq e^{-p}(1 - \nu^n(A)).$$

Both results have the form

$$\mu(A) \geq rac{1}{2} \; \Rightarrow \; orall_{p\geq 2} \; 1 - \mu(A + C\mathcal{Z}_p(\mu)) \leq e^{-p}(1-\mu(A)).$$

It is not hard to show that if μ is a symmetric distribution on \mathbb{R}^n (and 1-dimensional marginals of μ behave in a regular way) $p \ge p_0$ and K is a convex set such that for any halfspace H

$$1-\mu(H+K)\leq e^{-p}$$

then $K \supset c\mathcal{Z}_p(\mu)$.

Therefore we say that a measure μ satisfies the optimal concentration with constant C if

$$\mu(A) \geq \frac{1}{2} \Rightarrow \forall_{p\geq 2} 1 - \mu(A + C\mathcal{Z}_p(\mu)) \leq e^{-p}(1 - \mu(A)).$$

All centered product log-concave measures satisfy the optimal concentration inequality with a universal constant (L-Wojtaszczyk 2008).

A natural conjecture states that this is true also for nonproduct log-concave measures. Since $\mathcal{Z}_p(X) \subset CpB_2^n$ for isotropic log-concave vectors, this is stronger than the celebrated KLS conjecture on the boundedness of the Cheeger constant for isotropic log-concave measures .

It is known that KLS holds with constant $n^{1/4}$ (Lee-Vempala), we are able to show the optimal concentration with a worse constant (but better than \sqrt{n}).

Corollary (L.-Nayar)

Every centered log-concave probability measure on \mathbb{R}^n satisfies the optimal concentration inequality with constant $Cn^{5/12}$.

All centered product log-concave measures satisfy the optimal concentration inequality with a universal constant (L-Wojtaszczyk 2008).

A natural conjecture states that this is true also for nonproduct log-concave measures. Since $\mathcal{Z}_p(X) \subset CpB_2^n$ for isotropic log-concave vectors, this is stronger than the celebrated KLS conjecture on the boundedness of the Cheeger constant for isotropic log-concave measures .

It is known that KLS holds with constant $n^{1/4}$ (Lee-Vempala), we are able to show the optimal concentration with a worse constant (but better than \sqrt{n}).

Corollary (L.-Nayar)

Every centered log-concave probability measure on \mathbb{R}^n satisfies the optimal concentration inequality with constant $Cn^{5/12}$.

p-summing operators

A linear operator T between Banach spaces F_1 and F_2 is *p*-summing if there exists a constant $\alpha < \infty$, such that

$$\forall_{x_1,\dots,x_m \in F_1} \left(\sum_{i=1}^m \| Tx_i \|^p \right)^{1/p} \le \alpha \sup_{x^* \in F_1^*, \|x^*\| \le 1} \left(\sum_{i=1}^m |x^*(x_i)|^p \right)^{1/p}$$

The smallest constant α in the above inequality is called the *p*-summing norm of *T* and denoted by $\pi_p(T)$. For a Banach space *F* by $\pi_p(F)$ we denote the *p*-summing constant of the identity map of *F*.

It is well known that $\pi_p(F) < \infty$ if and only if F is finite dimensional. Moreover $\pi_2(F) = \sqrt{\dim F}$. Summing constants of some finite dimensional spaces were computed by Gordon. In particular he showed that

$$\pi_p(\ell_2^n) = (\mathbb{E}|U_1|^p)^{-1/p} \sim \sqrt{\frac{n+p}{p}}.$$

p-summing operators

A linear operator T between Banach spaces F_1 and F_2 is *p*-summing if there exists a constant $\alpha < \infty$, such that

$$\forall_{x_1,\dots,x_m \in F_1} \left(\sum_{i=1}^m \| Tx_i \|^p \right)^{1/p} \le \alpha \sup_{x^* \in F_1^*, \|x^*\| \le 1} \left(\sum_{i=1}^m |x^*(x_i)|^p \right)^{1/p}$$

The smallest constant α in the above inequality is called the *p*-summing norm of *T* and denoted by $\pi_p(T)$. For a Banach space *F* by $\pi_p(F)$ we denote the *p*-summing constant of the identity map of *F*.

It is well known that $\pi_p(F) < \infty$ if and only if F is finite dimensional. Moreover $\pi_2(F) = \sqrt{\dim F}$. Summing constants of some finite dimensional spaces were computed by Gordon. In particular he showed that

$$\pi_p(\ell_2^n) = (\mathbb{E}|U_1|^p)^{-1/p} \sim \sqrt{\frac{n+p}{p}}.$$

Corollary

For any finite dimensional Banach space F and $p \ge 2$ we have

$$\pi_p(F) \leq 2\sqrt{e}\sqrt{rac{\dim F + p}{p}} \leq C\pi_p(\ell_2^{\dim F}).$$

Proof. We apply the weak-strong comparison theorem for random vectors uniformly distributed on finite subsets of F and T the unit ball in F^* .

Corollary

Let T be a finite rank linear operator between Banach spaces F_1 and F_2 . Then the p-absolutely summing constant of T satisfies

$$\pi_{p}(T) \leq 2\sqrt{e}\sqrt{\frac{\operatorname{rk}(T)+p}{p}} \|T\|.$$

Corollary

For any finite dimensional Banach space F and $p \ge 2$ we have

$$\pi_p(F) \leq 2\sqrt{e}\sqrt{rac{\dim F + p}{p}} \leq C\pi_p(\ell_2^{\dim F}).$$

Proof. We apply the weak-strong comparison theorem for random vectors uniformly distributed on finite subsets of F and T the unit ball in F^* .

Corollary

Let T be a finite rank linear operator between Banach spaces F_1 and F_2 . Then the p-absolutely summing constant of T satisfies

$$\pi_{p}(T) \leq 2\sqrt{e}\sqrt{\frac{\operatorname{rk}(T)+p}{p}} \|T\|.$$

Strong and weak moments for Gaussian vectors

Let $G = (g_1, \ldots, g_n)$, where g_i are i.i.d. $\mathcal{N}(0, 1)$. Gaussian concentration states that for any *L*-Lipschitz function f,

$$\mathbb{P}(|f(G) - \mathbb{E}f(G)| \ge t) \le \exp(-\frac{t^2}{2L^2})$$

Integrating by parts we get for $p \ge 1$,

$$(\mathbb{E}|f(G) - \mathbb{E}f(G)|^p)^{1/p} \le C\sqrt{p}L$$

Hence by the triangle inequality in L_p ,

$$\|f(G)\|_{L_p} \leq |\mathbb{E}f(G)| + C\sqrt{p}L.$$

The function $x \mapsto \sup_{t \in T} |\langle t, x \rangle|$ has the Lipschitz constant $\sup_{t \in T} |t|$, moreover $\|\sum_i t_i g_i\|_{L_p} = |t| \|g_1\|_{L_p} \sim |t| \sqrt{p}$, therefore

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}|\langle t,G\rangle|^{p}\right)^{1/p}\leq\mathbb{E}\sup_{t\in\mathcal{T}}|\langle t,G\rangle|+C\sup_{t\in\mathcal{T}}\left(\mathbb{E}|\langle t,G\rangle|^{p}\right)^{1/p}.$$

Strong and weak moments for Gaussian vectors

Let $G = (g_1, \ldots, g_n)$, where g_i are i.i.d. $\mathcal{N}(0, 1)$. Gaussian concentration states that for any *L*-Lipschitz function f,

$$\mathbb{P}(|f(G) - \mathbb{E}f(G)| \ge t) \le \exp(-\frac{t^2}{2L^2})$$

Integrating by parts we get for $p \ge 1$,

$$(\mathbb{E}|f(G) - \mathbb{E}f(G)|^p)^{1/p} \leq C\sqrt{p}L$$

Hence by the triangle inequality in L_p ,

$$\|f(G)\|_{L_p} \leq |\mathbb{E}f(G)| + C\sqrt{p}L.$$

The function $x \mapsto \sup_{t \in T} |\langle t, x \rangle|$ has the Lipschitz constant $\sup_{t \in T} |t|$, moreover $\|\sum_i t_i g_i\|_{L_p} = |t| \|g_1\|_{L_p} \sim |t| \sqrt{p}$, therefore

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}|\langle t,G\rangle|^{p}\right)^{1/p}\leq\mathbb{E}\sup_{t\in\mathcal{T}}|\langle t,G\rangle|+C\sup_{t\in\mathcal{T}}\left(\mathbb{E}|\langle t,G\rangle|^{p}\right)^{1/p}.$$

Strong and weak moments for Gaussian vectors

Let $G = (g_1, \ldots, g_n)$, where g_i are i.i.d. $\mathcal{N}(0, 1)$. Gaussian concentration states that for any *L*-Lipschitz function f,

$$\mathbb{P}(|f(G) - \mathbb{E}f(G)| \ge t) \le \exp(-\frac{t^2}{2L^2})$$

Integrating by parts we get for $p \ge 1$,

$$(\mathbb{E}|f(G) - \mathbb{E}f(G)|^p)^{1/p} \leq C\sqrt{p}L$$

Hence by the triangle inequality in L_p ,

$$\|f(G)\|_{L_p} \leq |\mathbb{E}f(G)| + C\sqrt{p}L.$$

The function $x \mapsto \sup_{t \in T} |\langle t, x \rangle|$ has the Lipschitz constant $\sup_{t \in T} |t|$, moreover $\|\sum_i t_i g_i\|_{L_p} = |t| \|g_1\|_{L_p} \sim |t| \sqrt{p}$, therefore

$$\left(\mathbb{E}\sup_{t\in T}|\langle t,G\rangle|^p\right)^{1/p}\leq \mathbb{E}\sup_{t\in T}|\langle t,G\rangle|+C\sup_{t\in T}\left(\mathbb{E}|\langle t,G\rangle|^p\right)^{1/p}.$$

What should we assume about distribution of random *n*-dimensional vector X in order to have for any nonempty bounded $T \subset \mathbb{R}^n$ and any $p \ge 2$,

$$\left(\mathbb{E}\sup_{t\in T}|\langle t,X\rangle|^{p}\right)^{1/p}\leq C_{1}\mathbb{E}\sup_{t\in T}|\langle t,X\rangle|+C_{2}\sup_{t\in T}\left(\mathbb{E}|\langle t,X\rangle|^{p}\right)^{1/p}.$$

with some universal constants C_1, C_2 ?

In the case when X_i is the Rademacher sequence (i.e. sequence of i.i.d. symmetric ± 1 -valued r.v's) Dilworth and Montgomery-Smith (1993) showed that

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}}$$

This inequality was generalized (L. 1996) to the case when X_i are symmetric with log-concave tails (i.e. $t \mapsto \ln \mathbb{P}(|X_i| \ge t)$ is concave from $[0, \infty)$ to $[-\infty, 0]$).

Strzelecka, Strzelecki and Tkocz (2017) showed that for symmetric variables with log-concave tails the inequality holds with $C_1 = 1$.

Estimates discussed above are strictly connected with concentration inequalities (two-level Talagrand's concetration, concentration for convex functions on discrete cube).

In the case when X_i is the Rademacher sequence (i.e. sequence of i.i.d. symmetric ± 1 -valued r.v's) Dilworth and Montgomery-Smith (1993) showed that

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}}$$

This inequality was generalized (L. 1996) to the case when X_i are symmetric with log-concave tails (i.e. $t \mapsto \ln \mathbb{P}(|X_i| \ge t)$ is concave from $[0, \infty)$ to $[-\infty, 0]$).

Strzelecka, Strzelecki and Tkocz (2017) showed that for symmetric variables with log-concave tails the inequality holds with $C_1 = 1$.

Estimates discussed above are strictly connected with concentration inequalities (two-level Talagrand's concetration, concentration for convex functions on discrete cube).

In the case when X_i is the Rademacher sequence (i.e. sequence of i.i.d. symmetric ± 1 -valued r.v's) Dilworth and Montgomery-Smith (1993) showed that

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}}$$

This inequality was generalized (L. 1996) to the case when X_i are symmetric with log-concave tails (i.e. $t \mapsto \ln \mathbb{P}(|X_i| \ge t)$ is concave from $[0, \infty)$ to $[-\infty, 0]$).

Strzelecka, Strzelecki and Tkocz (2017) showed that for symmetric variables with log-concave tails the inequality holds with $C_1 = 1$.

Estimates discussed above are strictly connected with concentration inequalities (two-level Talagrand's concetration, concentration for convex functions on discrete cube).

In the case when X_i is the Rademacher sequence (i.e. sequence of i.i.d. symmetric ± 1 -valued r.v's) Dilworth and Montgomery-Smith (1993) showed that

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}}$$

This inequality was generalized (L. 1996) to the case when X_i are symmetric with log-concave tails (i.e. $t \mapsto \ln \mathbb{P}(|X_i| \ge t)$ is concave from $[0, \infty)$ to $[-\infty, 0]$).

Strzelecka, Strzelecki and Tkocz (2017) showed that for symmetric variables with log-concave tails the inequality holds with $C_1 = 1$.

Estimates discussed above are strictly connected with concentration inequalities (two-level Talagrand's concertration, concentration for convex functions on discrete cube).

One may show that for a r.v's X with log-concave tails $||X||_{L_p} \leq 2\frac{p}{q} ||X||_{L_q}$ for $p \geq q \geq 1$. L.-Tkocz (2015) proved that if X_i are independent, centered and

$$\|X_i\|_{L_p} \leq \alpha \frac{p}{q} \|X_i\|_{L_q}$$
 for $p \geq q \geq 1$,

then

$$\left(\mathbb{E}\sup_{t\in T}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1}(\alpha)\mathbb{E}\sup_{t\in T}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}(\alpha)\sup_{t\in T}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}}$$

Strzelecki, Strzelecka, Tkocz (2017) constructed an example showing that $C_1(\alpha) > 1$ for $\alpha \ge 3$.

One may show that for a r.v's X with log-concave tails $||X||_{L_p} \leq 2\frac{p}{q} ||X||_{L_q}$ for $p \geq q \geq 1$. L.-Tkocz (2015) proved that if X_i are independent, centered and

$$\|X_i\|_{L_p} \leq \alpha \frac{p}{q} \|X_i\|_{L_q}$$
 for $p \geq q \geq 1$,

then

$$\left(\mathbb{E}\sup_{t\in T}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C_{1}(\alpha)\mathbb{E}\sup_{t\in T}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}(\alpha)\sup_{t\in T}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}}$$

Strzelecki, Strzelecka, Tkocz (2017) constructed an example showing that $C_1(\alpha) > 1$ for $\alpha \ge 3$.

Theorem (L-Strzelecka'18)

Let X_1, \ldots, X_n be centered, independent and

 $\|X_i\|_{L_{2p}} \le \alpha \|X_i\|_{L_p} \quad \text{for } p \ge 2 \text{ and } i = 1, \dots, n, \quad (1)$

where α is a finite positive constant. Then for $p \ge 1$ and $T \subset \mathbb{R}^n$,

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C(\alpha)\left[\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + \sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}}\right],$$
(2)

where $C(\alpha)$ is a constant depending only on α .

Remark. Symmetric r.v's such that $\mathbb{P}(|X_i| \ge t) = \exp(-t^r)$, $r \in (0, 1)$ satisfy the asumptions, but do not have exponential moments, so there are no dimension-free concentration inequalities for (X_1, \ldots, X_n) .

Theorem (L-Strzelecka'18)

Let X_1, \ldots, X_n be centered, independent and

$$\|X_i\|_{L_{2p}} \le \alpha \|X_i\|_{L_p}$$
 for $p \ge 2$ and $i = 1, \dots, n$, (1)

where α is a finite positive constant. Then for $p \ge 1$ and $T \subset \mathbb{R}^n$,

$$\left(\mathbb{E}\sup_{t\in T}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}} \leq C(\alpha)\left[\mathbb{E}\sup_{t\in T}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + \sup_{t\in T}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{\frac{1}{p}}\right],$$
(2)
where $C(\alpha)$ is a constant depending only on α .

Remark. Symmetric r.v's such that $\mathbb{P}(|X_i| \ge t) = \exp(-t^r)$, $r \in (0, 1)$ satisfy the asumptions, but do not have exponential moments, so there are no dimension-free concentration inequalities for (X_1, \ldots, X_n) .

It turns out that in the i.i.d case the result may be reversed, i.e. condition (2) implies (1).

Theorem (L-Strzelecka)

Let X_1, X_2, \ldots be i.i.d. random variables. Assume that there exists a constant L such that for every $p \ge 1$, every n and every non-empty set $T \subset \mathbb{R}^n$ we have

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leq L\left[\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + \sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}\right]$$

Then

$$\|X_1\|_{L_{2p}} \leq \alpha(L) \|X_1\|_{L_p} \quad \text{for } p \geq 2,$$

where $\alpha(L)$ is a constant which depends only on $L \ge 1$.

The seminal result of Paouris shows that one may compare strong and weak ℓ_2 -norms of log-concave random vectors.

Theorem (Paouris 2006)

Let X be a log-concave vector. Then for $p \ge 1$,

$$(\mathbb{E}|X|^p)^{1/p} \leq C_1\mathbb{E}|X| + C_2 \sup_{|t|\leq 1} (\mathbb{E}|\langle t,X
angle|^p)^{1/p},$$

where C_1, C_2 are universal constants.

It is not known if one may take $C_1 = 1$ and whether the inequality holds for all norms.

The seminal result of Paouris shows that one may compare strong and weak ℓ_2 -norms of log-concave random vectors.

Theorem (Paouris 2006)

Let X be a log-concave vector. Then for $p \ge 1$,

$$(\mathbb{E}|X|^p)^{1/p} \leq C_1\mathbb{E}|X| + C_2 \sup_{|t|\leq 1} (\mathbb{E}|\langle t,X
angle|^p)^{1/p},$$

where C_1, C_2 are universal constants.

It is not known if one may take $C_1 = 1$ and whether the inequality holds for all norms.

Example

Let X = gY, where Y has uniform distribution S^{n-1} and g is N(0, 1) r.v. independent of Y. Then

$$(\mathbb{E}|gY|^p)^{1/p} = \|g\|_{L_p} \sim \sqrt{p},$$

and

$$\|\langle t, gY
angle\|_{L_p} = \|g\|_{L_p} \|\langle t, Y
angle\|_{L_p} \sim p|t|/\sqrt{n}$$
 for $p \leq n$.

If we take $p = \sqrt{n}$ we see that if Paouris-type inequality holds for X:

$$(\mathbb{E}|X|^p)^{1/p} \leq C\left(\mathbb{E}|X| + \sup_{|t|\leq 1} (\mathbb{E}|\langle t,X\rangle|^p)^{1/p}\right),$$

then $\max\{C_1, C_2\} \ge cn^{1/4}$. On the other hand random variables $\langle t, X \rangle$ are very regular.

Open problem. Characterize (or at least state quite general sufficient conditions) all random vectors that satisfy the Paouris inequality.

Example

Let X = gY, where Y has uniform distribution S^{n-1} and g is N(0, 1) r.v. independent of Y. Then

$$(\mathbb{E}|gY|^p)^{1/p} = \|g\|_{L_p} \sim \sqrt{p},$$

and

$$\|\langle t, gY \rangle\|_{L_p} = \|g\|_{L_p} \|\langle t, Y \rangle\|_{L_p} \sim p|t|/\sqrt{n}$$
 for $p \leq n$.

If we take $p = \sqrt{n}$ we see that if Paouris-type inequality holds for X:

$$(\mathbb{E}|X|^p)^{1/p} \leq C\left(\mathbb{E}|X| + \sup_{|t|\leq 1} (\mathbb{E}|\langle t,X\rangle|^p)^{1/p}\right),$$

then $\max\{C_1, C_2\} \ge cn^{1/4}$. On the other hand random variables $\langle t, X \rangle$ are very regular.

Open problem. Characterize (or at least state quite general sufficient conditions) all random vectors that satisfy the Paouris inequality.

Theorem (L, Strzelecka 2016)

Let X be a log-concave random vector, $r < \infty$ and $\|\cdot\|$ be a norm on \mathbb{R}^n such that $(\mathbb{R}^n, \|\cdot\|)$ embeds isometrically in ℓ_r . Then

$$(\mathbb{E}||X||^p)^{1/p} \leq Cr\left(\mathbb{E}||X|| + \sup_{\|t\|_* \leq 1} (\mathbb{E}|\langle t, X \rangle|^p)^{1/p}\right), \quad (3)$$

where C is a universal constant and $\|\cdot\|_*$ denotes the dual norm.

Conjecture. Inequality holds with universal constant *C* instead of *Cr* for log-concave vectors and arbitrary norm.

Theorem (L, Strzelecka 2016)

Let X be a log-concave random vector, $r < \infty$ and $\|\cdot\|$ be a norm on \mathbb{R}^n such that $(\mathbb{R}^n, \|\cdot\|)$ embeds isometrically in ℓ_r . Then

$$(\mathbb{E}||X||^p)^{1/p} \leq Cr\left(\mathbb{E}||X|| + \sup_{\|t\|_* \leq 1} (\mathbb{E}|\langle t, X \rangle|^p)^{1/p}\right), \quad (3)$$

where C is a universal constant and $\|\cdot\|_*$ denotes the dual norm.

Conjecture. Inequality holds with universal constant *C* instead of *Cr* for log-concave vectors and arbitrary norm.

Thank you for your attention!

Bibliograhy

- S. J. Dilworth, S. J. Montgomery-Smith, *The distribution of vector-valued Rademacher series*, AoP **21** (1993), 2046–2052.
- Rafał Latała, Tail and moment estimates for sums of independent random vectors with logarithmically concave tails, Studia Math. 118 (1996), 301–304.
- R. Latała, P. Nayar, Hadamard products and moments of random vector, arXiv:1907.09812.
- R. Latała, M. Strzelecka, Weak and strong moments of I_r-norms of log-concave vectors, Proc. AMS 144 (2016), 3597–3608.
- R. Latała, M. Strzelecka, Comparison of weak and strong moments for vectors with independent coordinates, Mathematika 64 (2018), 211–229.
- R. Latała, T. Tkocz, A note on suprema of canonical processes based on random variables with regular moments, Electron. J. Probab. 20 (2015), no. 36, 1–17.
- G. Paouris, *Concentration of mass on convex bodies*, Geom. Funct. Anal. **16** (2006), 1021–1049.
- M. Strzelecka, M. Strzelecki, T. Tkocz, On the convex infimum convolution inequality with optimal cost function, ALEA 14 (2017), 903–915.