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Strong and weak moments

Let X be an n-dimensional random vector. In many problems one
needs to estimate strong moments of X with respect to a norm
structure (R, ]| - ||), i.e.

1/p
Mo(X, |- [1) := (EIIX|]P)/P = <E sup |<t,X)!"> , p>1
llell-<1
Usually it is much easier to bound weak moments of X , defined as

op(X, 1) = HTQI(EI(LX>|”)1/”, p=>1
t)|x<

It is natural to investigate relations between these quantities.
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needs to estimate strong moments of X with respect to a norm
structure (R, ]| - ||), i.e.

1/p
Mp(X, || - 1) = (E||IX||P)Y/P = (E”fluril|<t7X>!”> . p>1

Usually it is much easier to bound weak moments of X , defined as

op(X, 1) = HTQI(EI(LX>|”)1/”, p=>1
t)|x<

It is natural to investigate relations between these quantities.

Remark. Equivalently one may take bounded nonempty subsets
T C R” and define

1/p
My(X, T) := (E sup |(t,X>|p> , op(X,T):= sup(E|(t,X>|p)1/p.
teT teT



Obviously weak moments are smaller than strong moments. What
about the reverse inequality?

Namely, for fixed n and p what is the best constant C, , such that
for any random vector X and any bounded nonempty T C R”

(Esup|(t, X)[P)/P < Copsup(E|(t, X)|P)!/P?
teT teT



Obviously weak moments are smaller than strong moments. What
about the reverse inequality?

Namely, for fixed n and p what is the best constant C, , such that
for any random vector X and any bounded nonempty T C R”

(Esup [(t, X)[P)'/P < Copsup(El(t, X)|P)"/P?

teT teT
By homogenity we may assume that weak moments are bounded
by 1, i.e.

T C Mp(X) ={teR": E[(t,X)|P =1}
then for x € R”

sup |(£.)] < ez, 1= sup{|{£.)]: E(£.X)]° < 1.

And our goal is to find best possible C, , such that

EIXNG x)V? < Cop.

p
Zp(X)



Examples of Z,(X)-norms/bodies

The unit ball in norm || - || z,(x) is denoted by Z,(X) and is called
the L,-centroid body of (the distribution of) X. It was introduced
(under a different normalization) for uniform distributions on
convex bodies by Lutvak and Zhang (1997).
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Examples of Z,(X)-norms/bodies

The unit ball in norm || - || z,(x) is denoted by Z,(X) and is called
the L,-centroid body of (the distribution of) X. It was introduced
(under a different normalization) for uniform distributions on
convex bodies by Lutvak and Zhang (1997).
e If X is isotropic then Z>(X) = BS
o If X is the standard Gaussian then Z,(X) ~ \/pBj
@ If X has the product symmetric exponential distribution then
Z,(X) ~ /pB3 + pBf
e If X is uniformly distributed on {—1,1}" or [—1,1]" then
Z,(X) ~ /B3 N BL,
e If X has a symmetric log-concave distrubution (i.e. has the
density e=" where h: R" — (—00, 0] is convex) then

Zp(X) ~ {t: Ax(t) < p},
where

Ny = sup((s. ) = Ax(5),  Ax(s) = log Bexp((s, X))



Rotationally invariant vectors

Consider first a vector X with rotationally invariant distribution.
Then X = RU, where U has a uniform distribution on S"~1 and
R = |X| is a nonnegative random variable, independent of U.
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Rotationally invariant vectors

Consider first a vector X with rotationally invariant distribution.
Then X = RU, where U has a uniform distribution on S"~1 and

= |X] is a nonnegative random variable, independent of U. We
have for any vector t € R” and p > 2,

E|(t, U)|P)Y/P = |t|(E|U;|P)Y/P ~ t
(E[(t, U)|P) [t|(E|UL]P) +p\|

Therefore
(B, X)[P)P = IR, | Ul It] and  [|t]|z,(x) = Il RN -

So

1/p _ _ _ n+p
EIX]1Z (x = [|GLICHIRICHEIX[PYYP = Uy} ~ ~
»(X) p p "



Answer to Question 1

Theorem (L-Nayar'19+)

For any n-dimensional random vector X and any nonempty set T
in R" and p > 2 we have

P sup (E|(t, X)|P)/P.

teT teT

(Esup|<t X)| > <2\e

Equivalently,

n—+p
(E”X||%p(x))1/p <2Ve B

The constant is of optimal order for rotationally invariant vectors.



Answer to Question 1

Theorem (L-Nayar'19+)

For any n-dimensional random vector X and any nonempty set T
in R" and p > 2 we have

P sup (E|(t, X)|P)/P.

teT teT

(Esup|<t X)| > <2\e

Equivalently,

n—+p
(E”X||%p(x))1/p <2Ve B

The constant is of optimal order for rotationally invariant vectors.
However for some distributions it might be smaller
Example Let P(X; = +¢;) =1/(2n) i =1,...,n then

It a0 = 148 X)L, = 07 Plltlp, Nt 2,00 = 7Pt

so ||X||z.(x) = n*/P.



Concentration for Gaussian and exponential measures

The concentration of measure phenomenon for the canonical
Gaussian measure v, on R” yields:

[y

(A) = 5 = Vo2 1= 7(A+ CypB;) < e P(1 - 7a(A)),
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Concentration for Gaussian and exponential measures

The concentration of measure phenomenon for the canonical
Gaussian measure v, on R” yields:

1
"(A) 2 5 = Vez2 1= 7n(A+ CVpB;) < e7P(1—7(A)),

Talagrand's two-level concentration for the product exponential
measure states that:

1
V'(A) 2 5 = Vo2 1-"(A+C/pBS+CpBY) < e P(1-v"(A)).

Both results have the form

HA) 2 5 = Voo 1— p(A+ C2p(1) < e P(1 — (A).



Optimal concentration

It is not hard to show that if u is a symmetric distribution on R”
(and 1-dimensional marginals of x behave in a regular way) p > po
and K is a convex set such that for any halfspace H

l1-p(H+K)<e?®

then K D cZ,(p).

Therefore we say that a measure pu satisfies the optimal
concentration with constant C if

HA) > 5 = Vpza 1— p(A+ CZ,(1) < e P(1— (A)).



Optimal concentration for log-concave vectors

All centered product log-concave measures satisfy the optimal
concentration inequality with a universal constant (L-Wojtaszczyk
2008).

A natural conjecture states that this is true also for nonproduct
log-concave measures. Since Z,(X) C CpBj for isotropic
log-concave vectors, this is stronger than the celebrated KLS
conjecture on the boundedness of the Cheeger constant for
isotropic log-concave measures .



Optimal concentration for log-concave vectors

All centered product log-concave measures satisfy the optimal
concentration inequality with a universal constant (L-Wojtaszczyk
2008).

A natural conjecture states that this is true also for nonproduct
log-concave measures. Since Z,(X) C CpBj for isotropic
log-concave vectors, this is stronger than the celebrated KLS
conjecture on the boundedness of the Cheeger constant for
isotropic log-concave measures .

It is known that KLS holds with constant n/* (Lee-Vempala), we
are able to show the optimal concentration with a worse constant
(but better than /n).

Corollary (L.-Nayar)

Every centered log-concave probability measure on R" satisfies the
optimal concentration inequality with constant Cn®/12.




p-summing operators

A linear operator T between Banach spaces F; and F> is
p-summing if there exists a constant o < oo, such that

1/p 1/p
V1, xmER (Z”TXIHP> <a sup (Z X (xi) ) .

xreFy Jlx)|<1

The smallest constant « in the above inequality is called the
p-summing norm of T and denoted by 7,(T). For a Banach space

F by m,(F) we denote the p-summing constant of the identity
map of F.



p-summing operators

A linear operator T between Banach spaces F; and F> is
p-summing if there exists a constant o < oo, such that

1/p 1/p
V1, xmER (Z”TXIHP> <a sup (Z X (xi) ) .

xreFy Jlx)|<1

The smallest constant « in the above inequality is called the
p-summing norm of T and denoted by 7,(T). For a Banach space
F by m,(F) we denote the p-summing constant of the identity
map of F.

It is well known that 7,(F) < oo if and only if F is finite
dimensional. Moreover m(F) = v/dim F. Summing constants of
some finite dimensional spaces were computed by Gordon. In
particular he showed that

, _ [n+
mp(05) = (E[th]P) P ~ Tp'



p-summing constants of finite rank operators

For any finite dimensional Banach space F and p > 2 we have

Proof. We apply the weak-strong comparison theorem for random
vectors uniformly distributed on finite subsets of F and T the unit
ball in F*.



p-summing constants of finite rank operators

For any finite dimensional Banach space F and p > 2 we have

Proof. We apply the weak-strong comparison theorem for random
vectors uniformly distributed on finite subsets of F and T the unit
ball in F*.

Let T be a finite rank linear operator between Banach spaces F;
and F,. Then the p-absolutely summing constant of T satisfies

wo(7) < 2v8 LR 7




Strong and weak moments for Gaussian vectors

Let G =(g1,-.-,8n), Where g; are i.i.d. N(0,1). Gaussian
concentration states that for any L-Lipschitz function f,

t2

P(If(G) — Ef(G)| = t) < exp(—73)
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Strong and weak moments for Gaussian vectors

Let G =(g1,-.-,8n), Where g; are i.i.d. N(0,1). Gaussian
concentration states that for any L-Lipschitz function f,

B(IF(G) ~ EA(G)] > ©) < exp(— 1)
Integrating by parts we get for p > 1,
(E|f(G) — Ef(G)|P)/P < C\/pL.
Hence by the triangle inequality in L,
(6L, < [EF(G)[ + Cy/pL.

The function x — sup,c 1 |(t, x)| has the Lipschitz constant
supse |t|, moreover || 3= tigillL, = |t|l|g1llL, ~ |t|\/P. therefore

1/p 1/p
(Esup e, G>!”) < Esup |(t, G)| + Csup(mt, Gw’) |
teT teT teT



What should we assume about distribution of random

n-dimensional vector X in order to have for any nonempty bounded
T CR" and any p > 2,

1/p 1/p
(Esup \<t,x>v’) < GEsup|(t. X)| + G, sup(Er<t,x>r") |
teT teT teT

with some universal constants Cy, (57



Rademachers and variables with log-concave tails

In the case when X; is the Rademacher sequence (i.e. sequence of
i.i.d. symmetric +1-valued r.v's) Dilworth and Montgomery-Smith
(1993) showed that

)

1
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teT
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teT
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In the case when X; is the Rademacher sequence (i.e. sequence of

i.i.d. symmetric +1-valued r.v's) Dilworth and Montgomery-Smith
(1993) showed that

1

P> p

(IE sup‘z ti X

teT
This inequality was generalized (L. 1996) to the case when X; are
symmetric with log-concave tails (i.e. t — InP(|X;| > t) is concave
from [0, o0) to [—o0, 0]).

1
i p>p < ClESUP‘Z tl

teT

<IE‘Z £X;
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teT

Strzelecka, Strzelecki and Tkocz (2017) showed that for symmetric
variables with log-concave tails the inequality holds with C; = 1.

Estimates discussed above are strictly connected with
concentration inequalities (two-level Talagrand's concetration,
concentration for convex functions on discrete cube).



Variables with sublinear growths of moments

One may show that for a r.v’s X with log-concave tails
XL, < 28)1X][1, for p>q > 1.
L.-Tkocz (2015) proved that if X; are independent, centered and

p
Xl < aBIil, for p> g2 1

then

(E sup’Z t; X;

teT

|

sup(]E’Z t; X;

teT
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Variables with sublinear growths of moments

One may show that for a r.v’s X with log-concave tails
XL, < 28)1X][1, for p>q > 1.
L.-Tkocz (2015) proved that if X; are independent, centered and

p
Xl < aBIil, for p> g2 1

then
(Esup’Z t; ,p) < Ga Esup‘z t; X sup(]E’Z t; X; )
teT teT teT

Strzelecki, Strzelecka, Tkocz (2017) constructed an example
showing that Ci(a) > 1 for av > 3.



Answer to Question 2 under independence of coordinates

Theorem (L-Strzelecka'18)

Let Xi,...,X, be centered, independent and
1 Xill Lo, < | XillL, forp>2andi=1,...,n, (1)

where « is a finite positive constant. Then for p > 1 and T C R”,

< tET

where C(«) is a constant depending only on c.
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teT




Answer to Question 2 under independence of coordinates

Theorem (L-Strzelecka'18)

Let Xi,...,X, be centered, independent and
1 Xill Lo, < | XillL, forp>2andi=1,...,n, (1)

where « is a finite positive constant. Then for p > 1 and T C R”,

(B 1]

(2)
where C(«) is a constant depending only on c.

) < C(a) lEsup)ZtX‘—i—sup(

teT teT

Remark. Symmetric r.v's such that P(|X;| > t) = exp(—t"),

r € (0,1) satisfy the asumptions, but do not have exponential
moments, so there are no dimension-free concentration inequalities
for (X1,...,Xn).



Optimality of the assumptions

It turns out that in the i.i.d case the result may be reversed, i.e.
condition (2) implies (1).

Theorem (L-Strzelecka)

Let X1, Xo, ... be i.i.d. random variables. Assume that there exists
a constant L such that for every p > 1, every n and every
non-empty set T C R" we have

1/p
p) <1

n p 1/p
+SUp<E‘Z t,'X,') ) ]
i=1

n
E sup‘z t; X;
teT'i5 teT

X1l < a(L)[Xall, — forp>2,

where (L) is a constant which depends only on L > 1.




Paouris inequality

The seminal result of Paouris shows that one may compare strong
and weak #£>-norms of log-concave random vectors.

Theorem (Paouris 2006)
Let X be a log-concave vector. Then for p > 1,

(EIX|P)MP < GEIX| + G sup (E[(t, X)[P)?,
[t

where Cy, G, are universal constants.




Paouris inequality

The seminal result of Paouris shows that one may compare strong
and weak #£>-norms of log-concave random vectors.

Theorem (Paouris 2006)
Let X be a log-concave vector. Then for p > 1,

(EIX|P)MP < GEIX| + G sup (E[(t, X)[P)?,
[t

where Cy, G, are universal constants.

It is not known if one may take C; = 1 and whether the inequality
holds for all norms.



Let X = gV, where Y has uniform distribution S"! and g is
N(0,1) r.v. independent of Y. Then

(ElgY (") = llgllt, ~ v/P,

and

1<t gY)Ie, = gl It Y)lle, ~ pltl/v/n for p < n.
If we take p = /n we see that if Paouris-type inequality holds for
X:

(E|X|P)/P < C (E\XI + Sup(El<t7X>!”)1/”> :
tl<1

then max{Cy, G} > cnt/*. On the other hand random variables
(t, X) are very regular.



Let X = gV, where Y has uniform distribution S"! and g is
N(0,1) r.v. independent of Y. Then

(ElgY (") = llgllt, ~ v/P,

and

IKt, 8Y)le, = llglle, IKt, Y)lle, ~ pltl/v/n for p < n.

If we take p = /n we see that if Paouris-type inequality holds for
X:
(EIX|P)/P < C <E\X| + SUP(E|<1-‘7X>!”)1/”> :
[t|<1
then max{Cy, G} > cnt/*. On the other hand random variables
(t, X) are very regular.

Open problem. Characterize (or at least state quite general
sufficient conditions) all random vectors that satisfy the Paouris
inequality.



Paouris-type inequality for ¢,-norms

Theorem (L, Strzelecka 2016)

Let X be a log-concave random vector, r < oo and || - || be a norm
on R" such that (R",|| - ||) embeds isometrically in ¢,. Then

(EIX|P)P < Cr (EHXH+ sup (EHRXH”)”"), (3)

llell«<1

where C is a universal constant and | - || denotes the dual norm.

V.




Paouris-type inequality for ¢,-norms

Theorem (L, Strzelecka 2016)

Let X be a log-concave random vector, r < oo and || - || be a norm
on R" such that (R",|| - ||) embeds isometrically in ¢,. Then

llell«<1

(EIX|P)P < Cr (EHXH+ sup (EHRXH”)”"), (3)

where C is a universal constant and | - || denotes the dual norm.

V.

Conjecture. Inequality holds with universal constant C instead of
Cr for log-concave vectors and arbitrary norm.



Thank you for your attention!
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