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Introduction

Let K ⊂ Rn be a symmetric convex body, a ∈ Sn−1 ⊂ Rn and t ∈ R.

A(a, t) := voln−1({x ∈ K | 〈x , a〉 = t}) parallel section function,

P(a, t) := voln−2({x ∈ ∂K | 〈x , a〉 = t}) perimeter function.

Non-central sections for t > 0.

Theorem 1

(a) K = [−1
2 ,

1
2 ]n, d :=

√
n−1
2 < t ≤

√
n

2 , a(n) := 1√
n

(1, . . . , 1). Then we

have for all a ∈ Sn−1 that A(a, t) ≤ A(a(n), t).

(b) K = B(ln1 ), d := 1√
2
< t ≤ 1, e1 := (1, 0, . . . , 0). Then we have for all

a ∈ Sn−1 that A(a, t) ≤ A(e1, t).

(a) is due to Moody, Stone, Zach and Zvavitch, (b) is due to Liu,
Tkocz. In both case, d is the distance of the midpoint of edges to 0. We
first consider the corresponding problem for the simplex.
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Simplex sections

Let ∆n := {x ∈ Rn+1
+ |

∑n+1
j=1 xj = 1} be the n-dimensional simplex of side-length

√
2,

voln(∆n) =
√

n+1
n!

. Then c := 1
n+1 (1, . . . , 1) is the centroid of ∆n. Let a ∈ Sn ⊂ Rn+1 be

such that
∑n+1

j=1 aj = 0. Then c ∈ a⊥. Similar as in the symmetric case we define

A(a, t) := voln−1({x ∈ ∆n | 〈x , a〉 = t}) parallel section function,

P(a, t) := voln−2({x ∈ ∂∆n | 〈x , a〉 = t}) perimeter function.

Then t is the distance of the hyperplanes [〈x , a〉 = 0] through c and [〈x , a〉 = t],
d :=

√
n−1

2(n+1) is the distance of the midpoint of edges of ∆n to the centroid c and

D :=
√

n
n+1 is the distance of vertices of ∆n to the centroid c.

Let a[n] := (
√

n
n+1 ,−

1√
n(n+1)

, . . . ,− 1√
n(n+1)

) ∈ Sn be the unit vector in the direction

from c to the vertex e1. Then (a[n])⊥ is a hyperplane through c parallel to a face.
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Simplex sections

Central simplex sections

Theorem 2
Let K = ∆n, ã := 1√

2
(1,−1, 0, . . . , 0). Then for all a ∈ Sn−1 with∑n+1

j=1 aj = 0

A(a, 0) ≤ A(ã, 0) =

√
n + 1

(n − 1)!

1√
2
.

Thus the maximal volume hyperplanes through c pass through the
midpoint of an edge and the other vertices. This theorem is due to Webb.

a[n] probably yields the minimal volume hyperplane through c , as claimed
by Filliman (no published proof).
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Simplex sections

Non-central simplex sections

Theorem 3

Let n ≥ 3, K = ∆n, d :=
√

n−1
2(n+1) < t ≤ D :=

√
n

n+1 and

a[n] := (
√

n
n+1 ,−

1√
n(n+1)

, . . . ,− 1√
n(n+1)

) ∈ Sn. Then for all a ∈ Sn−1 with
∑n+1

j=1 aj = 0

A(a, t) ≤ A(a[n], t) =

√
n + 1

(n − 1)!
(

n

n + 1
)n/2 (

√
n

n + 1
− t)n−1.

For n = 2 we have the same result, if 5
4

1√
6
≤ t ≤

√
2
3 . For 1√

6
< t < 5

4
1√
6

the
statement does not hold.

The hyperplanes of maximal volume at distance t to the centroid c are those parallel to
faces.
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Simplex sections

Abbildung: Case n = 2
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Simplex sections

Idea of proof.

(a) ||a||2 = 1,
∑n+1

j=1 aj = 0, d(n) :=
√

n−1
2(n+1) = ||c − e1+ej

2 ||2 < t. If

{x ∈ ∆n | 〈x , a〉 = t} is non-trivial, 〈a, ei 〉 > t for some i , say 〈a, e1〉 > t.
Then 〈a, ej〉 < t for all other j ∈ {2, . . . , n + 1}.

Claim: A(a, t) =
√
n+1

(n−1)!
∏n+1

j=2
1

a1−aj (a1 − t)n−1 .
Let vj = sje1 + (1− sj)ej ∈ [〈a, x〉 = t] ∩ span(e1, ej),
vj − e1 = (1− sj)(ej − e1). Then P := {x ∈ ∆n | 〈a, x〉 ≥ t} is a pyramid
spanned by the vectors vj − e1, j = 2, . . . , n + 1. Hence

voln(P) =

√
n + 1
n!

n+1∏
j=2

(1− sj) =

√
n + 1
n!

n+1∏
j=2

a1 − t

a1 − aj
,

yielding the formula for A(a, t), since a1 − t = height of the pyramid P .
Only needed: a1 > t > aj , j = 2, . . . , n + 1.
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Simplex sections

Claim: If a ∈ Sn attains the maximum of A(a, t) with a1 > t > d(n), we
have a2 = · · · = an+1.
This, together with

∑n+1
j=1 aj = 0 implies a = a[n]. Hence for each vertex,

there is a unique maximal hyperplane, which is parallel to a face.

Use the Lagrange multiplier equations for
f (a, t) := (n − 1) ln(a1 − t)−

∑n+1
j=2 ln(a1 − aj) with ||a||22 = 1,∑n+1

j=1 aj = 0 to show that the coordinates aj satisfy a quadratic equation
a2
j − paj − q = 0, with p, q independent of j ∈ {2, . . . , n + 1}, the larger
solution of which does not satisfy aj < t if t > d(n).

The only possible critical value then is a[n] which is a relative maximum.
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Simplex sections

Theorem 4

Let n ≥ 3, K = ∆n, − 1√
n(n+1)

< t < d(n), c(n) = 2n+1
n(n+2)

√
n

n+1 .

Then a[n] is
(a) a local maximum of A(., t) if c(n) < t < d(n) and
(b) a local minimum of A(., t) if − 1√

n(n+1)
< t < c(n).

In particular, a[n] yields a local minimum for the centroid section A(., 0).

Note that c(n) is of order 2
n+1 .
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Perimeter of simplex sections

Perimeter of simplex sections

We have the formula for P(a, t), if a1 > t, t > aj for j = 1, . . . , n + 1,

P(a, t) =
1

(n − 2)!

n+1∑
j=2

√
n − (n + 1)a2j

n+1∏
k=2,k 6=j

1
a1 − ak

(a1 − t)n−2 .

There is no term for j = 1 since [〈a, x〉 = t] does not meet [x1 = 0].

Theorem 5

Let n ≥ 4, d(n) :=
√

n−1
2(n+1) < t ≤ a1 ≤

√
n

n+1 . Then for all a ∈ Sn ⊂ Rn+1 with∑n+1
j=1 aj = 0

P(a, t) ≤ P(a[n], t) =
n
√
n − 1

(n − 2)!
(

n

n + 1
)(n−2)/2 (

√
n

n + 1
− t)n−2 .

For n = 4, we need to assume 0.671 ' 3√
20
< t ≤

√
4
5 .
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Perimeter of simplex sections

P(a, t) ≤ P(a[n], t) =
n
√
n − 1

(n − 2)!
(

n

n + 1
)(n−2)/2 (

√
n

n + 1
− t)n−2 .

For n = 3, P(a, t) ≤ P(a[3], t) is not true for t close to d(3) = 1
2 , as the

example of an distorted triangle shows.

Proposition 1

Assume n ≥ 4, c(n) = 3n+2
n(n+2)

√
n

n+1 < t <
√

n−1
2(n+1) .

Then a[n] is a local maximum of P(., t).

Note that c(n) ' 3
n+1 .
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Perimeter of simplex sections

The central hyperplane yielding the minimal perimeter of the simplex for t = 0 seems to
depend on the dimension n. For n = 3 it is the section of the simplex ∆3 by
ā = 1

2 (1,−1, 1,−1). In this case, {x ∈ ∂∆3 | 〈ā, x〉 = 0} is a square of side-length 1√
2
,

thus P(ā, 0) = 2
√
2, whereas for a[3] = (

√
3
2 ,−

1
2
√
3
,− 1

2
√
3
,− 1

2
√
3

) we have

P(a[3], 0) = 9
4

√
2, when the section is a triangle. Therefore

A(ā, 0) =
1
2
> A(a[3], 0) =

9
32

√
3 , P(ā, 0) = 2

√
2 < P(a[3], 0) =

9
4

√
2 .

Corresponding examples do not extend beyond dimension n > 9.

Question: Is it true that for all n ≥ 3 and all a ∈ Sn with
∑n+1

j=1 aj = 0

P(a, 0) ≤ P(ã, 0) =

√
n − 1

(n − 2)!
(

√
n(n − 1)

2
+ 1) , ã =

1√
2

(1,−1, 0, . . . , 0) ?

This would be the perimeter analogue of Webb’s result for the section area. I can prove
at least

P(a, 0) ≤ P(ã, 0)(1 +
1
n

) .
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Parallel section function for the cross-polytope

Parallel section function of the cross-polytope
For central sections of the ln1 -ball, Meyer, Pajor showed

Theorem 6
Let K = B(ln1 ). Then for all a ∈ Sn−1

A(a, 0) ≤ A(e1, 0) =
2n−1

(n − 1)!
.

The maximal volume hyperplanes are orthogonal to the coordinate directions.

For
non-central sections of the ln1 -ball, we have by Liu, Tkocz

Theorem 7
Let K = B(ln1 ), n ≥ 3, 1√

2
< t ≤ 1 and a ∈ Sn−1 ⊂ Rn with a1 > t > aj , j = 2, . . . , n.

Then

A(a, t) ≤ A(e1, t) =
2n−1

(n − 1)!
(1− t)n−1 .

For n = 2, one needs 3
4 < t ≤ 1 for the same result.

Again the maximal volume hyperplanes are orthogonal to the coordinate directions.
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Parallel section function for the cross-polytope

Theorem 8
Let n ≥ 3, 0 < t ≤ 1√

2
. Then e1 is a local maximum of the parallel section

function A(., t) of the cross-polytope, if 3
n+2 < t ≤ 1√

2
and a local

minimum if 0 < t < 3
n+2 . For n = 2, we have a local minimum for

0 < t < 3
4 .

An easy explicit example for t = 2
n is ã = (n−2

n , 2
n , . . . ,

2
n ) with

A(ã,
2
n

) > A(e1,
2
n

).

.
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Perimeter of ln1-sections

Perimeter of sections of the cross-polytope.

Let ||a||2 = 1, a1 > t > aj , j = 2, . . . , n and t > 1√
2
. Using the method of

Liu, Tkocz one finds the formula for the perimeter

P(a, t) =

√
n

(n − 2)!

∑
ε∈{−1,1}n

√
1− 1

n
〈a, ε〉2

n∏
j=2

1
a1 − εjaj

(a1 − t)n−2 .

The distance from the center of the face Conv(e1, ε2e2, . . . , εnen) to the

intersection with the hyperplane is given by tε =
t− 1

n
〈a,ε〉√

1− 1
n
〈a,ε〉2

.
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Perimeter of ln1-sections

P(a, t) =

√
n

(n − 2)!

∑
ε∈{−1,1}n

√
1− 1

n
〈a, ε〉2

n∏
j=2

1
a1 − εjaj

(a1 − t)n−2 .

Theorem 9
We have for n ≥ 4 and t > 1√

2

P(a, t) ≤ P(e1, t) =

√
n − 1

(n − 2)!
2n−1 (1− t)n−2 .

For n = 3, this is true at least if t > 4
5 .

The proof relies on the Cauchy-Schwarz inequality, the log-convexity of
√
1+x
1−x

and
differentiation techniques.
Numerical evidence: The result is true also for n = 3 and all t > 1√

2
.

There is also a local maximum result for the perimeter for n ≥ 6 and t > 4
n
.

As mentioned, Meyer, Pajor showed that for all a ∈ Sn−1, A(a, 0) ≤ A(e1, 0). For the
perimeter of the cross-polytope there is at least the asymptotic estimate for all a ∈ Sn−1

P(a, 0) ≤ (
n

n − 1
)1/2 P(e1, 0) .
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Parallel section function of the cube

Cubic sections

Let Qn := [− 1
2 ,

1
2 ]n. For the central section of the cube we have the well-known result of

Ball:

Theorem 10
For all n ≥ 2 and all a ∈ Sn−1

A(a, 0) ≤ A(ã, 0) , ã =
1√
2

(1, 1, 0, . . . , 0) .

For non-central sections we have by Moody, Stone, Zach and Zvavitch

Theorem 11
Let n ≥ 3,

√
n−1
2 < t ≤

√
n
2 and a(n) = 1√

n
(1, . . . , 1). Then

A(a, t) ≤ A(a(n), t) =
nn/2

(n − 1)!
(

√
n

2
− t)n−1 .

If n = 2, this holds for t > 3
8

√
2 ' 0.53. It is false for 1

2 < t < 3
8

√
2.
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Parallel section function of the cube

Let
√
n−1
2 < t ≤

√
n

2 and f := 1
2(1, . . . , 1). Suppose that 〈a, f 〉 > t. Then

〈a, fi 〉 < t for all fi := (1, . . . , 1,−1, 1, . . . , 1), i = 1, . . . , n. Let
vi = {x ∈ Qn | 〈a, x〉 = t} ∩ span(f , fi ). Then P := Convex(f , v1, . . . , vn)
is a pyramid spanned by the vectors v1 − f , . . . , vn − f and

A(a, t) = n
voln(P)

1
2
∑n

i=1 ai − t

since h = 1
2
∑n

i=1 ai − t is the height of P .

voln(P) =
1
n!

det(v1 − f , . . . , vn − f ) =
1
n!

1
2
∑n

i=1 ai − t∏n
i=1 ai

.

Note that ai > 0 since 0 < 〈a, f − fi 〉 = 2ai . Hence under the conditions
〈a, f 〉 > t and 〈a, fi 〉 < t and ai > 0,

A(a, t) =
1

(n − 1)!

(1
2
∑n

i=1 ai − t)n−1∏n
i=1 ai

.
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Parallel section function of the cube

A(a, t) =
1

(n − 1)!

(1
2
∑n

i=1 ai − t)n−1∏n
i=1 ai

.

The diagonals provide the unique solutions in the result of Moody, Stone,
Zach and Zvavitch. It has a local extension for slightly smaller values of t:

Theorem 12

Let n ≥ 5 and n−2
2
√
n
< t ≤

√
n−1
2 . Then a(n) is at least a local maximum of

A(., t).

The restriction n−2
2
√
n
< t is needed since [〈a(n), x〉 = n−2

2
√
n

] hits the vertices fi
closest to f and a different formula for A(a, x) is needed for smaller t.

For n = 3, 4 we have a local maximum in a more restricted range of
t-values closer to

√
n−1
2 . The result does not hold for n = 2 or n = 3 for

values of t closer to n−2
2
√
n
.
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Perimeter of sections of the cube

Perimeter of cubic sections

An analogue of Ball’s result for perimeters was shown by Koldobsky, K.

Theorem 13
Let n ≥ 3 and ã := 1√

2
(1, 1, 0, · · · , 0). Then for any a ∈ Sn−1

P(a, 0) ≤ P(ã, 0) = 2((n − 2)
√
2 + 1).

Pełczyński had asked this question and proved it for n = 3 when
vol1(∂Q3 ∩ a⊥) is the perimeter of the quadrangle or hexagon of
intersection.
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Perimeter of sections of the cube

We now consider upper estimates for the perimeter of non-central sections
of the cube at distance t,

√
n−1
2 < t ≤

√
n

2 . Assume 〈a, x〉 = t. On the
boundary face x1 = 1

2 centered at 1
2(1, 0, . . . , 0) with x̃ = (x2, . . . , xn)

〈ã, x̃〉 = 〈a, x〉 − 1
2a1 = 2t−a1

2 , b̃ := x̃√
1−a21

, ||b̃||2 = 1 .

Then 〈b̃, x̃〉 = 2t−a1√
1−a21

=: s is the distance from the face center to

{x ∈ ∂Qn | x1 = 1
2 , 〈a, x〉 = t}.

Perimeter formula for t > 1
2

√
n − 1

P(a, t) =
1

(n − 2)!

n∑
k=1

ak

√
1− a2

k

(1
2
∑n

j=1 aj − t)n−2∏n
j=1 aj

.

The term without the weights is maximal for a(n). A concavity estimate for
the weights implies
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Perimeter of sections of the cube

Perimeter of non-central cubic sections

Theorem 14
Let Qn = [− 1

2 ,
1
2 ]n, n ≥ 4. Then for all t with

√
n−1
2 < t ≤

√
n
2 and all a ∈ Sn−1

P(a, t) ≤ P(a(n), t) =

√
n − 1

(n − 2)!
nn/2 (

1
2
√
n − t)n−2 .

The result is also true for n = 3 if 0.725 < t ≤
√
3
2 .

Numerical Evidence: The statement is true for n = 3, for
√
2
2 < t ≤ 0.725, too.

Again: a(n) is also a local maximum of P(., t) if n−2√
n
< t ≤

√
n−1
2 , n ≥ 6. This is true for

n = 3, 4, 5 for some values t close to
√
n−1
2 , too. E.g. for n = 3, a(3) is a local maximum

of P(., t) if 0.635 < t ≤
√
3
2 , but a local minimum if 1√

3
< t < 0.635.
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