On the Comparison of Measures of Convex Bodies via Projections and Sections

Johannes Hosle

University of California, Los Angeles

Banff, AB
February 2020.

- \mathbb{R}^{n} denotes the standard n-dimensional Euclidean space.
- Given $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n},|x|=\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{\frac{1}{2}}$ is the norm of x.
- $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$ is the unit ball in \mathbb{R}^{n}.
- $S^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$ is the unit sphere in \mathbb{R}^{n}.
- A convex body is a compact, convex set in Euclidean space with nonempty interior.
- Given a convex body K in $\mathbb{R}^{n},|K|$ denotes the Lebesgue measure of K.
- ω_{n} denotes $\left|B_{2}^{n}\right|$.
- K is in John's position if the unique ellipsoid of maximal volume contained within it is the unit ball.

The Busemann-Petty problem

If K, L are origin-symmetric convex bodies in \mathbb{R}^{n} with

$$
\left|K \cap \theta^{\perp}\right| \leq\left|L \cap \theta^{\perp}\right|
$$

for all $\theta \in S^{n-1}$, does it follow that $|K| \leq|L|$?

$\boldsymbol{K} \cap \boldsymbol{\theta}$

$L \cap \theta^{+}$

Answer

- Yes, if $n \leq 4$ and no if $n>4$ (Gardner, Koldobsky, Schlumprecht; Zhang; Papadimitrakis).
- $|K| \leq c L_{K}|L|$ where L_{K} is the isotropic constant of K (Milman and Pajor).
- Best currently known bound on L_{K} is $c n^{\frac{1}{4}}$ (Bourgain; Klartag; Lee-Vempala).

The Shephard problem

If K, L are origin-symmetric convex bodies in \mathbb{R}^{n} with

$$
|K| \theta^{\perp}\left|\leq|L| \theta^{\perp}\right|
$$

for all $\theta \in S^{n-1}$, does it follow that $|K| \leq|L|$?

Answer

- Yes, if $n \leq 2$ and no if $n>2$ (Petty; Schneider; Koldobsky, Ryabogin, Zvavitch).
- $|K| \leq(1+o(1)) \sqrt{n}|L|$ and this bound is optimal (Ball).

V. Milman's variant of the Busemann-Petty and Shephard problem

If K, L are origin-symmetric convex bodies in \mathbb{R}^{n} with

$$
|K| \theta^{\perp}\left|\leq\left|L \cap \theta^{\perp}\right|\right.
$$

for all $\theta \in S^{n-1}$, does it follow that $|K| \leq|L|$?

- Hypotheses are stronger than those of the Busemann-Petty and Shephard problems.

Answer

Yes! (Giannopoulos and Koldobsky)

Reversal of Milman's question

If K, L are origin-symmetric convex bodies in \mathbb{R}^{n} such that

$$
\left|K \cap \theta^{\perp}\right| \leq|L| \theta^{\perp} \mid
$$

for all $\theta \in S^{n-1}$, how can we compare $|K|$ and $|L|$?

- Hypotheses are weaker than those of the Busemann-Petty and Shephard problems.
- We cannot conclude $|K| \leq|L|$ for dimensions $n>2$ by the solution of the Shephard problem. But even if $n=2$ we can cannot conclude this inequality, as can be shown by a perturbation argument.

Theorem

Let K, L be origin-symmetric convex bodies in \mathbb{R}^{n} such that

$$
\left|K \cap \theta^{\perp}\right| \leq|L| \theta^{\perp} \mid
$$

for all $\theta \in S^{n-1}$. If $K \subset R B_{2}^{n}$ and $r B_{2}^{n} \subset L$, then

$$
|K| \leq \frac{R}{r}|L| .
$$

Corollary

If K and L are in John's position, then $|K| \leq \sqrt{n}|L|$.

- Let $\rho_{K}: S^{n-1} \rightarrow \mathbb{R}_{+}$denote the radial function of K defined by $\rho_{K}(\theta)=\max \{t \geq 0: t \theta \in K\}$.
- Polar coordinates:

$$
|K|=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n}(\theta) d \theta
$$

- The $(n-1)$-dimensional version of this formula is

$$
\left|K \cap \xi^{\perp}\right|=\frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_{K}^{n-1}(\theta) d \theta
$$

for any $\xi \in S^{n-1}$.

- To relate these formulas we shall use the following formula valid for all continuous f on the sphere:

$$
\int_{G_{n, k}}\left(\int_{S^{n-1} \cap H} f(\xi) d \xi\right) d \nu_{n, k}(H)=\frac{\left|S^{k-1}\right|}{\left|S^{n-1}\right|} \int_{S^{n-1}} f(\xi) d \xi
$$

where $\nu_{n, k}$ denotes the Haar probability measure on the Grassmanian $G_{n, k}$.

Proof.

- Using $K \subset R B_{2}^{n}$ and the formulas on the previous slide,

$$
\begin{aligned}
|K| & =\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n}(\theta) d \theta \\
& \leq \frac{R}{n} \int_{S^{n-1}} \rho_{K}^{n-1}(\theta) d \theta \\
& =\frac{R}{n\left|S^{n-2}\right|} \int_{S^{n-1}}\left(\int_{S^{n-1} \cap \xi^{\perp}} \rho_{K}^{n-1}(\theta) d \theta\right) d \xi \\
& =\frac{R}{n \omega_{n-1}} \int_{S^{n-1}}\left|K \cap \xi^{\perp}\right| d \xi
\end{aligned}
$$

Proof.

- Since $\left|K \cap \theta^{\perp}\right| \leq|L| \theta^{\perp} \mid$ for all $\theta \in S^{n-1}$,

$$
\begin{aligned}
|K| & \leq \frac{R}{n \omega_{n-1}} \int_{S^{n-1}}\left|K \cap \theta^{\perp}\right| d \theta \\
& \left.\leq \frac{R}{n \omega_{n-1}} \int_{S^{n-1}}|L| \theta^{\perp} \right\rvert\, d \theta .
\end{aligned}
$$

- Cauchy's surface area formula tells us that $\left.|\partial L|=\frac{1}{\omega_{n-1}} \int_{S^{n-1}}|L| \theta^{\perp} \right\rvert\, d \theta$ and therefore

$$
|K| \leq \frac{R}{n}|\partial L|
$$

- Since $r B_{2}^{n} \subset L$, we have

$$
\begin{aligned}
|\partial L| & =\liminf _{\varepsilon \rightarrow 0} \frac{\left|L+\varepsilon r B_{2}^{n}\right|-|L|}{r \varepsilon} \\
& \leq \liminf _{\varepsilon \rightarrow 0} \frac{|L(1+\varepsilon)|-|L|}{r \varepsilon}=\frac{n|L|}{r} .
\end{aligned}
$$

- Therefore $|K| \leq \frac{R}{r}|L|$ as desired.

Alternative estimate

Proposition

Our above assumptions also imply

$$
|K| \leq c L_{K}^{\frac{1}{2}} n^{\frac{3}{4}}\left(\frac{R}{r}\right)^{\frac{n}{2 n-1}}|L|
$$

Proof.

- Define the parallel section function $A_{K, \theta}(t)=\left|K \cap\left\{\theta^{\perp}+t \theta\right\}\right|$.
- By Fubini,

$$
|K|=\int_{-R}^{R} A_{K, \theta}(t) d t
$$

- Since K is origin-symmetric, $A_{K, \theta}(t)$ is maximized for $t=0$, and so

$$
\begin{aligned}
|K| & \leq 2 R \min _{\theta \in S^{n-1}}\left|K \cap \theta^{\perp}\right| \\
& \leq 2 R \min _{\theta \in S^{n-1}}|L| \theta^{\perp} \mid \\
& \leq c R \sqrt{n}|L|^{\frac{n-1}{n}}
\end{aligned}
$$

Alternative estimate

Proof.

- Milman and Pajor proved that

$$
|K|^{\frac{n-1}{n}} \leq c L_{K} \max _{\theta \in S^{n-1}}\left|K \cap \theta^{\perp}\right|
$$

- Therefore,

$$
\begin{aligned}
|K|^{\frac{n-1}{n}} & \leq c L_{K} \max _{\theta \in S^{n-1}}|L| \theta^{\perp} \mid \\
& \leq c L_{K}|\partial L| \\
& \leq \frac{c L_{K} n}{r}|L|
\end{aligned}
$$

- Multiplying the two bounds gives

$$
|K||K|^{\frac{n-1}{n}} \leq \frac{c L_{K} R n^{\frac{3}{2}}}{r}|L|^{\frac{n-1}{n}}|L|
$$

which implies

$$
|K| \leq c L_{K}^{\frac{1}{2}} n^{\frac{3}{4}}\left(\frac{R}{r}\right)^{\frac{n}{2 n-1}}|L| .
$$

Definition

Given μ an absolutely continuous measure and K a convex body, we can define

$$
P_{\mu, K}(\theta)=\frac{n}{2} \int_{0}^{1} \mu_{1}(t K,[-\theta, \theta]) d t
$$

where $\mu_{1}(A, B)$ is the mixed μ-measure of A and B,

$$
\mu_{1}(A, B)=\liminf _{\varepsilon \rightarrow 0} \frac{\mu(A+\varepsilon B)-\mu(A)}{\varepsilon}
$$

- This is a natural generalization of the formula

$$
|K| \theta^{\perp} \left\lvert\,=\frac{1}{2} \liminf _{\varepsilon \rightarrow 0} \frac{|K+\varepsilon[-\theta, \theta]|-|K|}{\varepsilon}\right.
$$

for Lebesgue measure.

- Livshyts introduced this notion and proved a version of the Shephard problem for measures with a positive degree of concavity and homogeneity.

Theorem

Let μ be a log-concave measure with continuous ray-decreasing g. Assume that K, L are origin-symmetric convex bodies in \mathbb{R}^{n} such that

$$
P_{\mu, K}(\theta) \leq \mu_{n-1}\left(L \cap \theta^{\perp}\right)
$$

for all $\theta \in S^{n-1}$. Let $r>0$ be a fixed-parameter.
(a) If $\frac{1}{e} \mu\left(r B_{2}^{n}\right) \leq \mu(K) \leq \mu\left(r B_{2}^{n}\right)$, then

$$
\mu(K) \log \frac{\mu\left(r B_{2}^{n}\right)}{\mu(K)} \leq r \omega^{\frac{1}{n}}\|g\|_{\infty}^{\frac{1}{n}} \mu(L)^{\frac{n-1}{n}}
$$

(b) If $\mu(K) \leq \frac{1}{e} \mu\left(r B_{2}^{n}\right)$, then

$$
\mu(K) \leq\left(\frac{e r^{n} \omega_{n}\|g\|_{\infty}}{\mu\left(r B_{2}^{n}\right)}\right)^{\frac{1}{n-1}} \mu(L)
$$

- Recall that a measure μ is log-concave if for all measurable K, L and $\lambda \in[0,1]$ we have

$$
\mu((1-\lambda) K+\lambda L) \geq \mu(K)^{1-\lambda} \mu(L)^{\lambda} .
$$

- A function f is called \log-concave if $\log f$ is concave. A measure with a log-concave density is log-concave.

Definition

A density $g: \mathbb{R}^{n} \rightarrow[0, \infty)$ is ray-decreasing if $g(t x) \geq g(x)$ for all $t \in[0,1]$ and $x \in \mathbb{R}^{n}$.

Log-concave lemma

Let μ be a log-concave measure and E, F be measurable sets. Then

$$
\mu_{1}(E, F) \geq \mu_{1}(E, E)+\mu(E) \log \frac{\mu(F)}{\mu(E)}
$$

Ray-decreasing lemma

Let μ be a measure with a ray-decreasing density g.

- If $t \in[0,1]$ and K is measurable, $\mu(t K) \geq t^{n} \mu(K)$.
- Moreover, we have the limits

$$
\lim _{s \rightarrow \infty} \frac{\mu_{1}\left(s B_{1}^{n}, B_{2}^{n}\right)}{\mu\left(s B_{2}^{n}\right)}=0, \lim _{s \rightarrow 0} \frac{\mu_{1}\left(s B_{2}^{n}, B_{2}^{n}\right)}{\mu\left(s B_{2}^{n}\right)}=\infty .
$$

Theorem (Dann, Paouris, Pivovarov)

Let $1 \leq k \leq n-1$ and f be a nonnegative, bounded, integrable function on \mathbb{R}^{n}. Then

$$
\int_{G_{n, k}} \frac{\left(\int_{E} f(x) d x\right)^{n}}{\|f \mid E\|_{\infty}^{n-k}} d \nu_{n, k}(E) \leq \frac{\omega_{k}^{n}}{\omega_{n}^{k}}\left(\int_{\mathbb{R}^{n}} f(x) d x\right)^{k}
$$

- $\|f \mid E\|_{\infty}$ is the L^{∞} - norm of f restricted to the k-dimensional subspace E.

Proof of (a).

- For $t \in[0,1]$ and $s>0$ to be chosen later, the Log-concave lemma tells us that

$$
\begin{aligned}
\mu_{1}\left(t K, B_{2}^{n}\right) & \geq \mu_{1}\left(t K, s B_{2}^{n}\right) \\
& \geq \mu_{1}(t K, t K)+\mu(t K) \log \frac{\mu\left(s B_{2}^{n}\right)}{\mu(t K)} \\
& =t \frac{d}{d t} \mu(t K)+\mu(t K) \log \frac{\mu\left(s B_{2}^{n}\right)}{\mu(t K)}
\end{aligned}
$$

- Integrate both sides in t from 0 to 1 to get

$$
\mu(K) \leq s \int_{0}^{1} \mu_{1}\left(t K, B_{2}^{n}\right) d t+\int_{0}^{1} \mu(t K) \log \frac{e \mu(t K)}{\mu\left(s B_{2}^{n}\right)} d t
$$

Proof of (a).

- Using Parseval's formula on the sphere, an analog of the Cauchy surface area formula for measures can be proven:

$$
\int_{0}^{1} \mu_{1}\left(t K, B_{2}^{n}\right) d t=\frac{1}{n \omega_{n-1}} \int_{S^{n-1}} P_{\mu, K}(u) d u
$$

- Thus,

$$
\mu(K) \leq \frac{s}{n \omega_{n-1}} \int_{S^{n-1}} P_{\mu, K}(u) d u+\int_{0}^{1} \mu(t K) \log \frac{e \mu(t K)}{\mu\left(s B_{2}^{n}\right)} d t
$$

Proof of (a).

- Using our assumption $P_{\mu, K}(\theta) \leq \mu_{n-1}\left(L \cap \theta^{\perp}\right)$ along with Jensen's inequality, we have

$$
\begin{aligned}
\frac{1}{n \omega_{n-1}} \int_{S^{n-1}} P_{\mu, K}(u) d u & \leq \frac{1}{n \omega_{n-1}} \int_{S^{n-1}} \mu_{n-1}\left(L \cap \theta^{\perp}\right) d \theta \\
& =\frac{\omega_{n}}{\omega_{n-1}} \int_{S^{n-1}} \mu_{n-1}\left(L \cap \theta^{\perp}\right) d \sigma(\theta) \\
& \leq \frac{\omega_{n}}{\omega_{n-1}}\left(\int_{S^{n-1}} \mu_{n-1}\left(L \cap \theta^{\perp}\right)^{n} d \sigma(\theta)\right)^{\frac{1}{n}}
\end{aligned}
$$

where $\sigma(\theta)=d \frac{\theta}{\left|S^{n-1}\right|}$ is the normalized probability measure on the sphere.

Proof of (a).

- By the theorem of Dann, Paouris, and Pivovarov, we write

$$
\begin{aligned}
\left(\int_{S^{n-1}} \mu_{n-1}\left(L \cap \theta^{\perp}\right)^{n} d \sigma(\theta)\right)^{\frac{1}{n}} & =\left(\int_{S^{n-1}}\left(\int_{\theta^{\perp}} g(x) \chi_{L}(x) d x\right)^{n} d \sigma(\theta)\right)^{\frac{1}{n}} \\
& \leq\left(\|g\|_{\infty} \frac{\omega_{n-1}^{n}}{\omega_{n}^{n-1}}\right)^{\frac{1}{n}} \mu(L)^{\frac{n-1}{n}}
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
\mu(K) & \leq s \omega_{n}^{\frac{1}{n}}\|g\|_{\infty}^{\frac{1}{n}} \mu(L)^{\frac{n-1}{n}}+\int_{0}^{1} \mu(t K) \log e \mu(t K) d t \\
& +\left(\int_{0}^{1} \mu(t K) d t\right) \log \frac{1}{\mu\left(s B_{2}^{n}\right)}
\end{aligned}
$$

Proof of (a).

- We now choose s to optimize the previous inequality, namely

$$
\frac{\mu_{1}\left(s B_{2}^{n}, B_{2}^{n}\right)}{\mu\left(s B_{2}^{n}\right)}=\frac{\omega_{n}^{\frac{1}{n}}\|g\|_{\infty}^{\frac{1}{n}} \mu(L)^{\frac{n-1}{n}}}{\int_{0}^{1} \mu(t K) d t}
$$

- This s is guaranteed to exist by the Ray-decreasing lemma.
- With this choice of s and with r as in the statement of the theorem, we may bound

$$
\log \frac{1}{\mu\left(s B_{2}^{n}\right)} \leq \frac{\omega_{n}^{\frac{1}{n}}\|g\|_{\infty}^{\frac{1}{n}} \mu(L)^{\frac{n-1}{n}}}{\int_{0}^{1} \mu(t K) d t}(r-s)-\log \mu\left(r B_{2}^{n}\right)
$$

using the Log-concave lemma.

- Thus,

$$
\mu(K) \leq r \omega_{n}^{\frac{1}{n}}\|g\|_{\infty}^{\frac{1}{n}} \mu(L)^{\frac{n-1}{n}}+\int_{0}^{1} \mu(t K) \log \frac{e \mu(t K)}{\mu\left(r B_{2}^{n}\right)} d t
$$

Proof of (a).

- From Jensen's inequality, we derive the bound

$$
\mu(K) \leq r \omega_{n}^{\frac{1}{n}}\|g\|_{\infty}^{\frac{1}{n}} \mu(L)^{\frac{n-1}{n}}+\log \max \left(1,\left(\frac{e \mu(K)}{\mu\left(r B_{2}^{n}\right)}\right)^{\mu(K)}\right)
$$

- Recall that the assumption of Part (a) is that $\mu(K) \geq \frac{1}{e} \mu\left(r B_{2}^{n}\right)$.
- Therefore,

$$
\mu(K) \log \frac{\mu\left(r B_{2}^{n}\right)}{\mu(K)} \leq r \omega_{n}^{\frac{1}{n}}\|g\|_{\infty}^{\frac{1}{n}} \mu(L)^{\frac{n-1}{n}}
$$

finishing the proof of Part (a).

Proof of the theorem, Part (b)

Restatement of the theorem

Let μ be a log-concave measure with continuous ray-decreasing g. Assume that K, L are origin-symmetric convex bodies in \mathbb{R}^{n} such that

$$
P_{\mu, K}(\theta) \leq \mu_{n-1}\left(L \cap \theta^{\perp}\right)
$$

for all $\theta \in S^{n-1}$. Let $r>0$ be a fixed-parameter.
(b) If $\mu(K) \leq \frac{1}{e} \mu\left(r B_{2}^{n}\right)$, then

$$
\mu(K) \leq\left(\frac{e r^{n} \omega_{n}\|g\|_{\infty}}{\mu\left(r B_{2}^{n}\right)}\right)^{\frac{1}{n-1}} \mu(L)
$$

Proof of (b).

- Since $\mu(K) \leq \frac{1}{e} \mu\left(r B_{2}^{n}\right)$, for every $t \in[0,1]$ there exists $f(t) \in[0,1]$ such that $\mu\left(r f(t) B_{2}^{n}\right)=e \mu(t K)$.
- Following the same setup as part (a), we have

$$
\mu(K) \leq r \int_{0}^{1} f(t) \mu_{1}\left(t K, B_{2}^{n}\right)+\mu(t K) \log \frac{e \mu(t K)}{\mu\left(r f(t) B_{2}^{n}\right)} d t
$$

Proof of (b).

- By the choice of f, this inequality becomes

$$
\mu(K) \leq r \int_{0}^{1} f(t) \mu_{1}\left(t K, B_{2}^{n}\right) d t
$$

- Moreover, by the Ray-decreasing lemma,

$$
f(t)^{n} \mu\left(r B_{2}^{n}\right) \leq \mu\left(r f(t) B_{2}^{n}\right)=e \mu(t K) \leq e \mu(K)
$$

and so

$$
\mu(K) \leq r\left(\frac{e \mu(K)}{\mu\left(r B_{2}^{n}\right)}\right)^{\frac{1}{n}} \int_{0}^{1} \mu_{1}\left(t K, B_{2}^{n}\right) d t \leq r\left(\frac{e \mu(K)}{\mu\left(r B_{2}^{n}\right)}\right)^{\frac{1}{n}} \omega_{n}^{\frac{1}{n}}\|g\|_{\infty}^{\frac{1}{n}} \mu(L)^{\frac{n-1}{n}}
$$

which rearranges to

$$
\mu(K) \leq\left(\frac{e r^{n} \omega_{n}\|g\|_{\infty}}{\mu\left(r B_{2}^{n}\right)}\right)^{\frac{1}{n-1}} \mu(L)
$$

- The Loomis-Whitney inequality states that if u_{1}, \ldots, u_{n} form an orthonormal basis of \mathbb{R}^{n} and K is a convex body in \mathbb{R}^{n}, then

$$
|K|^{n-1} \leq \prod_{i=1}^{n}|K| u_{i}^{\perp} \mid
$$

with equality if and only if K is a box with faces parallel to the hyperplanes u_{i}^{\perp}.

- This was extended by Ball, who showed that $u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}$ and c_{1}, \ldots, c_{m} are positive constants such that

$$
\sum_{i=1}^{m} c_{i} u_{i} \otimes u_{i}=I_{n}
$$

then

$$
|K|^{n-1} \leq\left.\prod_{i=1}^{m}|K| u_{i}^{\perp}\right|^{c_{i}}
$$

- A function $f: \mathbb{R}^{n} \rightarrow[0, \infty]$ is p-concave if f^{p} is concave on the support of f.
- A function $f: \mathbb{R}^{n} \rightarrow[0, \infty]$ is r-homogeneous if $f(a x)=a^{r} f(x)$ for all $a>0$ and $x \in \mathbb{R}^{n}$.
- We will be interested in functions g that are both s-concave for some $s>0$ and $\frac{1}{p}$-homogeneous for some $p>0$. Such functions will necessarily be p-concave. Moreover, with the exception of the constant functions, all such g will be supported on convex cones. E.g. $g(x)=1_{\langle x, \theta\rangle>0}\langle x, \theta\rangle^{\frac{1}{p}}$.
- $\tilde{g}(x)=g(x)+g(-x)$.
- Measures with such densities were studied by Milman and Rotem.

Lemma (Borell)

Let μ be a measure with a p-concave density g. Then, for $q=\frac{1}{n+\frac{1}{p}}, \mu$ is q-concave, that is for measurable E, F and $\lambda \in[0,1]$ we have

$$
\mu(\lambda E+(1-\lambda) F) \geq\left(\lambda \mu(E)^{q}+(1-\lambda) \mu(F)^{q}\right)^{\frac{1}{q}}
$$

- Moreover, by a change of variables, if μ has $\frac{1}{p}$-homogeneous density, then μ is $\frac{1}{q}$-homogeneous, that is

$$
\mu(t E)=t^{\frac{1}{9}} \mu(E)
$$

for $t>0$.

Theorem

Let μ be a measure with a p-concave, $\frac{1}{p}$-homogeneous density g for some $p>0$. Then, for any convex body K and an orthonormal basis $\left(u_{i}\right)_{i=1}^{n}$ with $\left[-u_{i}, u_{i}\right] \cap \operatorname{supp}(g) \neq \varnothing$ for each $1 \leq i \leq n$,

$$
\mu(K)^{n+\frac{1}{p}-1} \leq 2^{n+\frac{1}{p}}\left(1+\frac{1}{p n}\right)^{n}\left(\sum_{k=1}^{n} \tilde{g}^{p}\left(u_{k}\right)\right)^{-\frac{1}{p}} \prod_{i=1}^{n} P_{\mu, K}\left(u_{i}\right)^{1+\frac{\tilde{\varepsilon}^{p} p\left(u_{i}\right)}{\rho \sum_{k=1}^{n} \tilde{g}^{p}\left(u_{k}\right)}} .
$$

- Recall that $P_{\mu, K}(\theta)=\frac{n}{2} \int_{0}^{1} \mu_{1}(t K,[-\theta, \theta]) d t$.
- We remark that a similar extension can also be proven for Ball's inequality.

Outline of the proof

- Take the box $Z=\sum_{i=1}^{n} \alpha_{i}\left[-u_{i}, u_{i}\right]$ with $\alpha_{i}=\frac{1}{P_{\mu, K}\left(u_{i}\right)}$.
- We use Minkowski's first inequality (for q-concave measures) to write

$$
\mu(K)^{1-q} \leq q \mu(Z)^{-q} \mu_{1}(K, Z)=2 \mu(Z)^{-q}
$$

- Without loss of generality, $u_{i} \in \operatorname{supp}(g)$ and $g\left(-u_{i}\right)=0$ for all $1 \leq i \leq n$. Let us define F_{i} to be the face of Z orthogonal to and touching $\alpha_{i} u_{i}$.
- By homogeneity,

$$
\mu(Z)=q \sum_{i=1}^{n} \alpha_{i} \mu_{n-1}\left(F_{i}\right)
$$

where $\mu_{n-1}\left(F_{i}\right)$ denotes the integral of g over the $(n-1)$-dimensional set F_{i}.

- It remains to find an appropriate lower bound for $\mu_{n-1}\left(F_{i}\right)$.

Lemma

Let $g, \mu,\left(u_{i}\right)_{i=1}^{n}, F_{i}$ be as above. Then,

$$
\begin{aligned}
\mu_{n-1}\left(F_{i}\right) & \geq\left(\frac{p n}{p n+1}\right)^{n}\left(1+\frac{\tilde{g}^{p}\left(u_{i}\right)}{p \sum_{k=1}^{n} \tilde{g}^{p}\left(u_{k}\right)}\right)\left(\sum_{i=1}^{n} \tilde{g}^{p}\left(u_{i}\right)\right)^{\frac{1}{p}} \\
& \times \alpha_{i}^{-1} \prod_{j=1}^{n} \alpha_{j}^{1+\frac{\tilde{g}^{p}\left(u_{j}\right)}{p \sum_{i=1}^{n} \tilde{g}^{p}\left(u_{i}\right)}}
\end{aligned}
$$

Proof of lemma.

- Without of loss of generality, we consider $i=1$.
- We begin by writing $\mu_{n-1}\left(F_{1}\right)$ as an integral of g over F_{1}, subdividing the domain of integration, and using homogeneity:

$$
\begin{aligned}
\mu_{n-1}\left(F_{1}\right) & :=\int_{v=\alpha_{1} u_{1}+\sum_{j=2}^{n} \beta_{j} u_{j}} g(v) d v \\
& =\sum_{\sigma=(\pm 1, \ldots, \pm 1)} \int_{0}^{\beta_{j} \mid \leq \alpha_{j}} \\
& =\sum_{0}^{\alpha_{n}} \sum_{0}^{\alpha_{2}} g\left(\alpha_{1} u_{1}+\sum_{j=2}^{n} \beta_{j} \sigma(j) u_{j}\right) d \beta_{2} \ldots d \beta_{n} \\
& \int_{0}^{\alpha_{n}} \cdots \int_{0}^{\alpha_{2}}\left(\alpha_{1}+\sum_{j=2}^{n} \beta_{j}\right)^{\frac{1}{p}} \\
& \times g\left(\frac{\alpha_{1}}{\alpha_{1}+\sum_{j=2}^{n} \beta_{j}} u_{1}+\sum_{j=2}^{n} \frac{\beta_{j}}{\alpha_{1}+\sum_{j=2}^{n} \beta_{j}} \sigma(j) u_{j}\right) d \beta_{2} \ldots d \beta_{n}
\end{aligned}
$$

Proof of lemma.

- Since $u_{i} \in \operatorname{supp}(g)$ for $1 \leq i \leq n$, we can only use concavity to estimate from below the integral where σ is the identity permutation. This accounts for the factor of 2^{n} in the Theorem.
- We have the inequality

$$
\begin{aligned}
\mu_{n-1}\left(F_{1}\right) & \geq \int_{0}^{\alpha_{n}} \ldots \int_{0}^{\alpha_{2}}\left(\alpha_{1}+\sum_{j=2}^{n} \beta_{j}\right)^{\frac{1}{p}} \\
& \times g\left(\frac{\alpha_{1}}{\alpha_{1}+\sum_{j=2}^{n} \beta_{j}} u_{1}+\sum_{j=2}^{n} \frac{\beta_{j}}{\alpha_{1}+\sum_{j=2}^{n} \beta_{j}} u_{j}\right) d \beta_{2} \ldots d \beta_{n} .
\end{aligned}
$$

Proof of lemma.

- By p-concavity of g,

$$
\begin{aligned}
& \mu_{n-1}\left(F_{1}\right) \geq \int_{0}^{\alpha_{n}} \ldots \int_{0}^{\alpha_{2}}\left(\alpha_{1}+\sum_{j=2}^{n} \beta_{j}\right)^{\frac{1}{p}} \\
& \times\left(\frac{\alpha_{1}}{\alpha_{1}+\sum_{j=2}^{n} \beta_{j}} g^{p}\left(u_{1}\right)+\sum_{j=2}^{n} \frac{\beta_{j}}{\alpha_{1}+\sum_{j=2}^{n} \beta_{j}} g^{p}\left(u_{j}\right)\right)^{\frac{1}{p}} d \beta_{2} \ldots d \beta_{n} \\
& =\int_{0}^{\alpha_{n}} \ldots \int_{0}^{\alpha_{2}}\left(\alpha_{1} g^{p}\left(u_{1}\right)+\sum_{j=2}^{n} \beta_{j} g^{p}\left(u_{j}\right)\right)^{\frac{1}{p}} d \beta_{2} \ldots d \beta_{n} \\
& =\left(\sum_{i=1}^{n} g^{p}\left(u_{i}\right)\right)^{\frac{1}{p}} \int_{0}^{\alpha_{n}} . . \int_{0}^{\alpha_{2}}\left(\alpha_{1} \frac{g^{p}\left(u_{1}\right)}{\sum_{i=1}^{n} g^{p}\left(u_{i}\right)}+\sum_{j=2}^{n} \beta_{j} \frac{g^{p}\left(u_{j}\right)}{\sum_{i=1}^{n} g^{p}\left(u_{i}\right)}\right)^{\frac{1}{p}} \\
& d \beta_{2} . . d \beta_{n} .
\end{aligned}
$$

Proof of lemma.

- From the arithmetic-mean geometric-mean inequality,

$$
\alpha_{1} \frac{g^{p}\left(u_{1}\right)}{\sum_{i=1}^{n} g^{p}\left(u_{i}\right)}+\sum_{j=2}^{n} \beta_{j} \frac{g^{p}\left(u_{j}\right)}{\sum_{i=1}^{n} g^{p}\left(u_{i}\right)} \geq \alpha_{1}^{\sum_{i=1}^{\frac{g^{p}\left(u_{1}\right)}{n} g^{p}\left(u_{i}\right)}} \prod_{j=2}^{n} \beta_{j}^{\frac{g^{p}\left(u_{j}\right)}{\sum_{i=1}^{n} g^{p}\left(u_{i}\right)}}
$$

- Substituting this product under the integral, evaluating, and applying one more arithmetic-mean geometric-mean inequality, we conclude the proof of the lemma and the theorem.

Thanks for your attention!

