Volume estimates for some random convex sets

Apostolos Giannopoulos

University of Athens

February 11, 2020

A question of V . Milman

Let K be a symmetric convex body in \mathbb{R}^{n}.

A question of V . Milman

Let K be a symmetric convex body in \mathbb{R}^{n}. For any s-tuple $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ of symmetric convex bodies C_{j} in \mathbb{R}^{n} we consider the norm on \mathbb{R}^{s}, defined by

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\frac{1}{\prod_{j=1}^{s}\left|C_{j}\right|} \int_{C_{1}} \cdots \int_{C_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1}
$$

where $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right)$.

A question of V . Milman

Let K be a symmetric convex body in \mathbb{R}^{n}. For any s-tuple $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ of symmetric convex bodies C_{j} in \mathbb{R}^{n} we consider the norm on \mathbb{R}^{s}, defined by

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\frac{1}{\prod_{j=1}^{s}\left|C_{j}\right|} \int_{C_{1}} \cdots \int_{C_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1}
$$

where $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right)$. If $\mathcal{C}=(C, \ldots, C)$ then we write $\|\mathbf{t}\|_{C^{s}, K}$ instead of $\|\mathbf{t}\|_{\mathcal{C}, K}$.

A question of V . Milman

Let K be a symmetric convex body in \mathbb{R}^{n}. For any s-tuple $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ of symmetric convex bodies C_{j} in \mathbb{R}^{n} we consider the norm on \mathbb{R}^{s}, defined by

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\frac{1}{\prod_{j=1}^{s}\left|C_{j}\right|} \int_{C_{1}} \cdots \int_{C_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1}
$$

where $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right)$. If $\mathcal{C}=(C, \ldots, C)$ then we write $\|\mathbf{t}\|_{C^{s}, K}$ instead of $\|\mathbf{t}\|_{\mathcal{C}, K}$.

Question (V. Milman)

To examine if, in the case $C=K$, one has that

$$
\|\mathbf{t}\|_{K^{s}, K}=\frac{1}{|K|^{s}} \int_{K} \cdots \int_{K}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1}
$$

is equivalent to the standard Euclidean norm up to a term which is logarithmic in the dimension. In particular, if under some cotype condition on the norm induced by K to \mathbb{R}^{n} one has equivalence between $\|\cdot\| \kappa^{s}, K$ and the Euclidean norm.

A question of V. Milman

Let K be a symmetric convex body in \mathbb{R}^{n}. For any s-tuple $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ of symmetric convex bodies C_{j} in \mathbb{R}^{n} we consider the norm on \mathbb{R}^{s}, defined by

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\frac{1}{\prod_{j=1}^{s}\left|C_{j}\right|} \int_{C_{1}} \cdots \int_{C_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1}
$$

where $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right)$. If $\mathcal{C}=(C, \ldots, C)$ then we write $\|\mathbf{t}\|_{C^{s}, K}$ instead of $\|\mathbf{t}\|_{\mathcal{C}, k}$.

Question (V. Milman)

To examine if, in the case $C=K$, one has that

$$
\|\mathbf{t}\|_{K^{s}, K}=\frac{1}{|K|^{s}} \int_{K} \cdots \int_{K}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1}
$$

is equivalent to the standard Euclidean norm up to a term which is logarithmic in the dimension. In particular, if under some cotype condition on the norm induced by K to \mathbb{R}^{n} one has equivalence between $\|\cdot\| \kappa^{s}, K$ and the Euclidean norm.

- Since $\|\mathbf{t}\|_{K^{s}, K}=\|\mathbf{t}\|_{(T K)^{s}, T K}$ for any $T \in G L(n)$, we may choose any position of K.

Lower bounds

- We may assume that $\left|C_{1}\right|=\cdots=\left|C_{s}\right|=|K|=1$.

Lower bounds

- We may assume that $\left|C_{1}\right|=\cdots=\left|C_{s}\right|=|K|=1$.
- Bourgain, Meyer, V. Milman and Pajor (1987) obtained the lower bound

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant c \sqrt{s}\left(\prod_{j=1}^{s}\left|t_{j}\right|\right)^{1 / s} .
$$

Lower bounds

- We may assume that $\left|C_{1}\right|=\cdots=\left|C_{s}\right|=|K|=1$.
- Bourgain, Meyer, V. Milman and Pajor (1987) obtained the lower bound

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant c \sqrt{s}\left(\prod_{j=1}^{s}\left|t_{j}\right|\right)^{1 / s} .
$$

- Assuming, additionally, that C is isotropic they also obtained the lower bound

$$
\int_{C} \cdots \int_{C} \int_{\Omega}\left\|\sum_{j=1}^{s} g_{j}(\omega) x_{j}\right\|_{K} d \omega d x_{s} \cdots d x_{1} \geqslant c \sqrt{s} L_{c} \sqrt{n} M(K)
$$

where L_{C} is the isotropic constant of C and $M(K)=\int_{S^{n-1}}\|\xi\|_{K} d \sigma(\xi)$.

Lower bounds

- Around 2000, Gluskin and V. Milman studied the same question and obtained a better lower bound in a more general context.

Lower bounds

- Around 2000, Gluskin and V. Milman studied the same question and obtained a better lower bound in a more general context.

Gluskin-Milman

Let A_{1}, \ldots, A_{s} be measurable sets in \mathbb{R}^{n} and K be a star body in \mathbb{R}^{n} with $0 \in \operatorname{int}(K)$. Assume that $\left|A_{1}\right|=\cdots=\left|A_{s}\right|=|K|$.

Lower bounds

- Around 2000, Gluskin and V. Milman studied the same question and obtained a better lower bound in a more general context.

Gluskin-Milman

Let A_{1}, \ldots, A_{s} be measurable sets in \mathbb{R}^{n} and K be a star body in \mathbb{R}^{n} with $0 \in \operatorname{int}(K)$. Assume that $\left|A_{1}\right|=\cdots=\left|A_{s}\right|=|K|$. Then, for all $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{\mathcal{A}, K}:=\frac{1}{\prod_{j=1}^{s}\left|A_{j}\right|} \int_{A_{1}} \cdots \int_{A_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1} \geqslant c\|\mathbf{t}\|_{2} .
$$

Lower bounds

- Around 2000, Gluskin and V. Milman studied the same question and obtained a better lower bound in a more general context.

Gluskin-Milman

Let A_{1}, \ldots, A_{s} be measurable sets in \mathbb{R}^{n} and K be a star body in \mathbb{R}^{n} with $0 \in \operatorname{int}(K)$. Assume that $\left|A_{1}\right|=\cdots=\left|A_{s}\right|=|K|$. Then, for all $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{\mathcal{A}, K}:=\frac{1}{\prod_{j=1}^{s}\left|A_{j}\right|} \int_{A_{1}} \cdots \int_{A_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1} \geqslant c\|\mathbf{t}\|_{2} .
$$

- The proof uses the Brascamp-Lieb-Luttinger rearrangement inequality.

Lower bounds: alternative proof

G.-Chasapis-Skarmogiannis

Let $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ be an s-tuple of symmetric convex bodies and K be a symmetric convex body in \mathbb{R}^{n} with $\left|C_{j}\right|=|K|=1$. Then, for any $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant \frac{n}{e(n+1)}\|\mathbf{t}\|_{2} .
$$

Lower bounds: alternative proof

G.-Chasapis-Skarmogiannis

Let $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ be an s-tuple of symmetric convex bodies and K be a symmetric convex body in \mathbb{R}^{n} with $\left|C_{j}\right|=|K|=1$. Then, for any $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant \frac{n}{e(n+1)}\|\mathbf{t}\|_{2} .
$$

- Since $\|\mathbf{t}\|_{\mathcal{C}, K}$ is a norm, we may assume that $\|\mathbf{t}\|_{2}=1$. Our starting point is the next observation.

Lower bounds: alternative proof

G.-Chasapis-Skarmogiannis

Let $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ be an s-tuple of symmetric convex bodies and K be a symmetric convex body in \mathbb{R}^{n} with $\left|C_{j}\right|=|K|=1$. Then, for any $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant \frac{n}{e(n+1)}\|\mathbf{t}\|_{2} .
$$

- Since $\|\mathbf{t}\|_{\mathcal{C}, K}$ is a norm, we may assume that $\|\mathbf{t}\|_{2}=1$. Our starting point is the next observation.

An identity

Let X_{1}, \ldots, X_{s} be independent random vectors, uniformly distributed on C_{1}, \ldots, C_{s} respectively. Given $\mathbf{t}=\left(t_{1} \ldots, t_{s}\right) \in \mathbb{R}^{s}$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_{1} X_{1}+\cdots+t_{s} X_{s}$. Then,

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\int_{\mathbb{R}^{n}}\|x\|_{K} d \nu_{\mathbf{t}}(x) .
$$

Lower bounds: alternative proof

G.-Chasapis-Skarmogiannis

Let $\mathcal{C}=\left(C_{1}, \ldots, C_{s}\right)$ be an s-tuple of symmetric convex bodies and K be a symmetric convex body in \mathbb{R}^{n} with $\left|C_{j}\right|=|K|=1$. Then, for any $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \geqslant \frac{n}{e(n+1)}\|\mathbf{t}\|_{2}
$$

- Since $\|\mathbf{t}\|_{\mathcal{C}, K}$ is a norm, we may assume that $\|\mathbf{t}\|_{2}=1$. Our starting point is the next observation.

An identity

Let X_{1}, \ldots, X_{s} be independent random vectors, uniformly distributed on C_{1}, \ldots, C_{s} respectively. Given $\mathbf{t}=\left(t_{1} \ldots, t_{s}\right) \in \mathbb{R}^{s}$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_{1} X_{1}+\cdots+t_{s} X_{s}$. Then,

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\int_{\mathbb{R}^{n}}\|x\|_{K} d \nu_{\mathbf{t}}(x) .
$$

- Note that ν_{t} is an even log-concave probability measure on \mathbb{R}^{n} We write g_{t} for the density of ν_{t}.

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathrm{t}}\right\|_{\infty} \leqslant e^{n}$.

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

- Recall that the entropy of a random vector X in \mathbb{R}^{n} with density $g(x)$ is defined by $h(X)=-\int_{\mathbb{R}^{n}} g(x) \log g(x) d x$.

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

- Recall that the entropy of a random vector X in \mathbb{R}^{n} with density $g(x)$ is defined by $h(X)=-\int_{\mathbb{R}^{n}} g(x) \log g(x) d x$.

Bobkov-Madiman

If g is log-concave then

$$
\log \left(\|g\|_{\infty}^{-1}\right) \leqslant h(X) \leqslant n+\log \left(\|g\|_{\infty}^{-1}\right) .
$$

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

- Recall that the entropy of a random vector X in \mathbb{R}^{n} with density $g(x)$ is defined by $h(X)=-\int_{\mathbb{R}^{n}} g(x) \log g(x) d x$.

Bobkov-Madiman

If g is log-concave then

$$
\log \left(\|g\|_{\infty}^{-1}\right) \leqslant h(X) \leqslant n+\log \left(\|g\|_{\infty}^{-1}\right) .
$$

- Let $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$ and $t_{1}, \ldots, t_{s} \geqslant 0$. Then, if X_{1}, \ldots, X_{s} are independent random vectors with densities g_{1}, \ldots, g_{s}, by an equivalent form of the Shannon-Stam inequality, we have that $h\left(t_{1} X_{1}+\cdots+t_{s} X_{s}\right) \geqslant \sum_{j=1}^{s} t_{j}^{2} h\left(X_{j}\right)$.

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathrm{t}}\right\|_{\infty} \leqslant e^{n}$.

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

- Since the density g_{t} of $t_{1} X_{1}+\cdots+t_{s} X_{s}$ is also log-concave, we may write

$$
\sum_{j=1}^{s} t_{j}^{2} \log \left(\left\|g_{j}\right\|_{\infty}^{-1}\right) \leqslant \sum_{j=1}^{s} t_{j}^{2} h\left(X_{j}\right) \leqslant h\left(t_{1} X_{1}+\cdots+t_{s} X_{s}\right) \leqslant n+\log \left(\left\|g_{\mathbf{t}}\right\|_{\infty}^{-1}\right)
$$

which implies that $\left\|g_{\mathrm{t}}\right\|_{\infty} \leqslant e^{n} \prod_{j=1}^{s}\left\|g_{j}\right\|_{\infty}^{t_{j}^{2}}$.

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

- Since the density g_{t} of $t_{1} X_{1}+\cdots+t_{s} X_{s}$ is also log-concave, we may write

$$
\sum_{j=1}^{s} t_{j}^{2} \log \left(\left\|g_{j}\right\|_{\infty}^{-1}\right) \leqslant \sum_{j=1}^{s} t_{j}^{2} h\left(X_{j}\right) \leqslant h\left(t_{1} X_{1}+\cdots+t_{s} X_{s}\right) \leqslant n+\log \left(\left\|g_{\mathrm{t}}\right\|_{\infty}^{-1}\right)
$$

which implies that $\left\|g_{\mathrm{t}}\right\|_{\infty} \leqslant e^{n} \prod_{j=1}^{s}\left\|g_{j}\right\|_{\infty}^{t_{j}^{2}}$.

- In our case, $g_{j}=\mathbf{1}_{c_{j}}$, therefore $\left\|g_{j}\right\|_{\infty}=1$ and the lemma follows.

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

Lemma 2

Let f be a bounded positive density on \mathbb{R}^{n}. For any symmetric convex body K of volume 1 in \mathbb{R}^{n} we have

$$
\frac{n}{n+1} \leqslant\|f\|_{\infty}^{1 / n} \int_{\mathbb{R}^{n}}\|x\|_{K} f(x) d x
$$

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

Lemma 2

Let f be a bounded positive density on \mathbb{R}^{n}. For any symmetric convex body K of volume 1 in \mathbb{R}^{n} we have

$$
\frac{n}{n+1} \leqslant\|f\|_{\infty}^{1 / n} \int_{\mathbb{R}^{n}}\|x\|_{K} f(x) d x
$$

- We have assumed that $\left|C_{j}\right|=|K|=1$. We want a lower bound for

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\int_{\mathbb{R}^{n}}\|x\|_{K} d \nu_{\mathbf{t}}(x)=\int_{\mathbb{R}^{n}}\|x\|_{\kappa} g_{\mathbf{t}}(x) d x
$$

Lower bounds: alternative proof

Lemma 1

If $\|\mathbf{t}\|_{2}=1$ then $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$.

Lemma 2

Let f be a bounded positive density on \mathbb{R}^{n}. For any symmetric convex body K of volume 1 in \mathbb{R}^{n} we have

$$
\frac{n}{n+1} \leqslant\|f\|_{\infty}^{1 / n} \int_{\mathbb{R}^{n}}\|x\|_{K} f(x) d x
$$

- We have assumed that $\left|C_{j}\right|=|K|=1$. We want a lower bound for

$$
\|\mathbf{t}\|_{\mathcal{C}, K}=\int_{\mathbb{R}^{n}}\|x\|_{K} d \nu_{\mathbf{t}}(x)=\int_{\mathbb{R}^{n}}\|x\|_{\kappa} g_{\mathbf{t}}(x) d x
$$

- For any $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$ we have $\left\|g_{\mathbf{t}}\right\|_{\infty} \leqslant e^{n}$, therefore

$$
\frac{n}{n+1} \leqslant e \int_{\mathbb{R}^{n}}\|x\|_{K} d \nu_{\mathbf{t}}(x)=e\|\mathbf{t}\|_{\mathcal{C}, K}
$$

Isotropic convex bodies and log-concave measures

- A convex body C in \mathbb{R}^{n} is called isotropic if it has volume 1 , it is centered, i.e. its barycenter is at the origin, and its inertia matrix is a multiple of the identity matrix: there exists a constant $L_{C}>0$ such that

$$
\|\langle\cdot, \xi\rangle\|_{L_{2}(C)}^{2}:=\int_{C}\langle x, \xi\rangle^{2} d x=L_{C}^{2}, \quad \xi \in S^{n-1} .
$$

Isotropic convex bodies and log-concave measures

- A convex body C in \mathbb{R}^{n} is called isotropic if it has volume 1 , it is centered, i.e. its barycenter is at the origin, and its inertia matrix is a multiple of the identity matrix: there exists a constant $L_{C}>0$ such that

$$
\|\langle\cdot, \xi\rangle\|_{L_{2}(C)}^{2}:=\int_{C}\langle x, \xi\rangle^{2} d x=L_{C}^{2}, \quad \xi \in S^{n-1}
$$

- We say that a log-concave probability measure μ with density f_{μ} on \mathbb{R}^{n} is isotropic if it is centered, i.e. if

$$
\int_{\mathbb{R}^{n}}\langle x, \xi\rangle d \mu(x)=\int_{\mathbb{R}^{n}}\langle x, \xi\rangle f_{\mu}(x) d x=0
$$

for all $\xi \in S^{n-1}$, and $\operatorname{Cov}(\mu)$ is the identity matrix.

Isotropic convex bodies and log-concave measures

- A convex body C in \mathbb{R}^{n} is called isotropic if it has volume 1 , it is centered, i.e. its barycenter is at the origin, and its inertia matrix is a multiple of the identity matrix: there exists a constant $L_{C}>0$ such that

$$
\|\langle\cdot, \xi\rangle\|_{L_{2}(C)}^{2}:=\int_{C}\langle x, \xi\rangle^{2} d x=L_{C}^{2}, \quad \xi \in S^{n-1}
$$

- We say that a log-concave probability measure μ with density f_{μ} on \mathbb{R}^{n} is isotropic if it is centered, i.e. if

$$
\int_{\mathbb{R}^{n}}\langle x, \xi\rangle d \mu(x)=\int_{\mathbb{R}^{n}}\langle x, \xi\rangle f_{\mu}(x) d x=0
$$

for all $\xi \in S^{n-1}$, and $\operatorname{Cov}(\mu)$ is the identity matrix.

- If μ is an isotropic log-concave measure on \mathbb{R}^{n} with density f_{μ}, we define the isotropic constant of μ by

$$
L_{\mu}:=\left\|f_{\mu}\right\|_{\infty}^{\frac{1}{n}}
$$

Log-concave measures

- If C is a centered convex body of volume 1 in \mathbb{R}^{n} then we say that a direction $\xi \in S^{n-1}$ is a ψ_{α}-direction (where $1 \leqslant \alpha \leqslant 2$) for C with constant $\varrho>0$ if

$$
\|\langle\cdot, \xi\rangle\|_{L_{q}(C)} \leqslant \varrho q^{1 / \alpha}\|\langle\cdot, \xi\rangle\|_{L_{2}(C)},
$$

for all $q \geqslant 2$.

- Similar definitions may be given in the context of a centered log-concave probability measure μ on \mathbb{R}^{n}.

Log-concave measures

- If C is a centered convex body of volume 1 in \mathbb{R}^{n} then we say that a direction $\xi \in S^{n-1}$ is a ψ_{α}-direction (where $1 \leqslant \alpha \leqslant 2$) for C with constant $\varrho>0$ if

$$
\|\langle\cdot, \xi\rangle\|_{L_{q}(C)} \leqslant \varrho q^{1 / \alpha}\|\langle\cdot, \xi\rangle\|_{L_{2}(C)}
$$

for all $q \geqslant 2$.

- Similar definitions may be given in the context of a centered log-concave probability measure μ on \mathbb{R}^{n}.
- From log-concavity it follows that every $\xi \in S^{n-1}$ is a ψ_{1}-direction for any C or μ with an absolute constant ϱ : there exists $\varrho>0$ such that

$$
\|\langle\cdot, \xi\rangle\|_{L_{q}(\mu)} \leqslant \varrho q\|\langle\cdot, \xi\rangle\|_{L_{2}(\mu)}
$$

for all $n \geqslant 1$, all centered log-concave probability measures μ on \mathbb{R}^{n} and all $\xi \in S^{n-1}$ and $q \geqslant 2$.

Upper bounds

- We assume that C is an isotropic convex body in \mathbb{R}^{n}. We shall try to give upper estimates for $\|\mathbf{t}\|_{c^{s}, K}$, where K is a symmetric convex body in \mathbb{R}^{n}.

Upper bounds

- We assume that C is an isotropic convex body in \mathbb{R}^{n}. We shall try to give upper estimates for $\|\mathbf{t}\|_{c^{s}, K}$, where K is a symmetric convex body in \mathbb{R}^{n}.
- Let X_{1}, \ldots, X_{s} be independent random vectors, uniformly distributed on C. Given $\mathbf{t}=\left(t_{1} \ldots, t_{s}\right) \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_{1} X_{1}+\cdots+t_{s} X_{s}$. It is then easily verified that the covariance matrix $\operatorname{Cov}\left(\nu_{\mathrm{t}}\right)$ of ν_{t} is a multiple of the identity: more precisely,

$$
\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)=L_{C}^{2} I_{n}
$$

Upper bounds

- We assume that C is an isotropic convex body in \mathbb{R}^{n}. We shall try to give upper estimates for $\|\mathbf{t}\|_{c^{s}, K}$, where K is a symmetric convex body in \mathbb{R}^{n}.
- Let X_{1}, \ldots, X_{s} be independent random vectors, uniformly distributed on C. Given $\mathbf{t}=\left(t_{1} \ldots, t_{s}\right) \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_{1} X_{1}+\cdots+t_{s} X_{s}$. It is then easily verified that the covariance matrix $\operatorname{Cov}\left(\nu_{\mathrm{t}}\right)$ of ν_{t} is a multiple of the identity: more precisely,

$$
\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)=L_{C}^{2} I_{n}
$$

- It follows that if $g_{\mathbf{t}}$ is the density of $\nu_{\mathbf{t}}$ then $f_{\mathbf{t}}(x)=L_{C}^{n} g_{\mathrm{t}}\left(L_{C} x\right)$ is the density of an isotropic log-concave probability measure μ_{t} on \mathbb{R}^{n}.

Upper bounds

- We assume that C is an isotropic convex body in \mathbb{R}^{n}. We shall try to give upper estimates for $\|\mathbf{t}\|_{C^{s}, K}$, where K is a symmetric convex body in \mathbb{R}^{n}.
- Let X_{1}, \ldots, X_{s} be independent random vectors, uniformly distributed on C. Given $\mathbf{t}=\left(t_{1} \ldots, t_{s}\right) \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_{1} X_{1}+\cdots+t_{s} X_{s}$. It is then easily verified that the covariance matrix $\operatorname{Cov}\left(\nu_{\mathrm{t}}\right)$ of ν_{t} is a multiple of the identity: more precisely,

$$
\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)=L_{C}^{2} I_{n} .
$$

- It follows that if $g_{\mathbf{t}}$ is the density of $\nu_{\mathbf{t}}$ then $f_{\mathbf{t}}(x)=L_{C}^{n} g_{\mathrm{t}}\left(L_{C} x\right)$ is the density of an isotropic log-concave probability measure μ_{t} on \mathbb{R}^{n}.
- From Lemma 1 we have a bound for the isotropic constants of all these measures:

$$
L_{\mu_{\mathbf{t}}}=\left\|f_{\mathbf{t}}\right\|_{\infty}^{\frac{1}{n}}=L_{C}\left\|g_{\mathbf{t}}\right\|_{\infty}^{\frac{1}{n}} \leqslant e L_{C}
$$

for all $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$.

Upper bounds

- We assume that C is an isotropic convex body in \mathbb{R}^{n}. We shall try to give upper estimates for $\|\mathbf{t}\|_{C^{s}, K}$, where K is a symmetric convex body in \mathbb{R}^{n}.
- Let X_{1}, \ldots, X_{s} be independent random vectors, uniformly distributed on C. Given $\mathbf{t}=\left(t_{1} \ldots, t_{s}\right) \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_{1} X_{1}+\cdots+t_{s} X_{s}$. It is then easily verified that the covariance matrix $\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)$ of ν_{t} is a multiple of the identity: more precisely,

$$
\operatorname{Cov}\left(\nu_{\mathbf{t}}\right)=L_{C}^{2} I_{n} .
$$

- It follows that if $g_{\mathbf{t}}$ is the density of $\nu_{\mathbf{t}}$ then $f_{\mathbf{t}}(x)=L_{C}^{n} g_{\mathrm{t}}\left(L_{C} x\right)$ is the density of an isotropic log-concave probability measure μ_{t} on \mathbb{R}^{n}.
- From Lemma 1 we have a bound for the isotropic constants of all these measures:

$$
L_{\mu_{\mathbf{t}}}=\left\|f_{\mathbf{t}}\right\|_{\infty}^{\frac{1}{n}}=L_{C}\left\|g_{\mathbf{t}}\right\|_{\infty}^{\frac{1}{n}} \leqslant e L_{C}
$$

for all $\mathbf{t} \in \mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$.

- We also have

$$
\|\mathbf{t}\|_{C^{s}, K}=\int_{\mathbb{R}^{n}}\|x\|_{K} d \nu_{\mathbf{t}}(x)=L_{C}^{-n} \int_{\mathbb{R}^{n}}\|x\|_{K} f_{\mathbf{t}}\left(x / L_{C}\right) d x=L_{C} \int_{\mathbb{R}^{n}}\|y\|_{K} d \mu_{\mathbf{t}}(y)
$$

Upper bounds

- Since $\|\mathbf{t}\|\left\|^{s}, K=\right\| \mathbf{t} \|_{(T C)^{s}, T K}$ for any $T \in S L(n)$, we may restrict our attention to the case where C is isotropic.

Upper bounds

- Since $\|\mathbf{t}\|\left\|^{s}, K=\right\| \mathbf{t} \|_{(T C)^{s}, T K}$ for any $T \in S L(n)$, we may restrict our attention to the case where C is isotropic.
- In this case

$$
\|\mathbf{t}\| c_{c^{s}, K}=\|\mathbf{t}\|_{2} L_{c} I_{1}\left(\mu_{\mathbf{t}}, K\right),
$$

where μ_{t} is an isotropic, compactly supported log-concave probability measure depending on \mathbf{t} and

$$
I_{1}(\mu, K)=\int_{\mathbb{R}^{n}}\|x\| \kappa d \mu(x)
$$

Upper bounds

- Since $\|\mathbf{t}\|\left\|^{s}, K=\right\| \mathbf{t} \|_{(T C)^{s}, T K}$ for any $T \in S L(n)$, we may restrict our attention to the case where C is isotropic.
- In this case

$$
\|\mathbf{t}\|_{C^{s}, K}=\|\mathbf{t}\|_{2} L_{C} l_{1}\left(\mu_{\mathbf{t}}, K\right),
$$

where μ_{t} is an isotropic, compactly supported log-concave probability measure depending on \mathbf{t} and

$$
I_{1}(\mu, K)=\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu(x)
$$

- Note that if μ is isotropic and K is a symmetric convex body of volume 1 in \mathbb{R}^{n} then

$$
\begin{aligned}
\int_{O(n)} I_{1}(\mu, U(K)) d \nu(U) & =\int_{\mathbb{R}^{n}} \int_{O(n)}\|x\|_{U(K)} d \nu(U) d \mu(x) \\
& =M(K) \int_{\mathbb{R}^{n}}\|x\|_{2} d \mu(x) \approx \sqrt{n} M(K)
\end{aligned}
$$

Upper bounds

- Since $\|\mathbf{t}\| c^{s}, K=\|\mathbf{t}\|_{(T C)^{s}, T K}$ for any $T \in S L(n)$, we may restrict our attention to the case where C is isotropic.
- In this case

$$
\|\mathbf{t}\|_{c^{s}, K}=\|\mathbf{t}\|_{2} L_{C} l_{1}\left(\mu_{\mathbf{t}}, K\right),
$$

where μ_{t} is an isotropic, compactly supported log-concave probability measure depending on \mathbf{t} and

$$
I_{1}(\mu, K)=\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu(x)
$$

- Note that if μ is isotropic and K is a symmetric convex body of volume 1 in \mathbb{R}^{n} then

$$
\begin{aligned}
\int_{O(n)} I_{1}(\mu, U(K)) d \nu(U) & =\int_{\mathbb{R}^{n}} \int_{O(n)}\|x\|_{U(K)} d \nu(U) d \mu(x) \\
& =M(K) \int_{\mathbb{R}^{n}}\|x\|_{2} d \mu(x) \approx \sqrt{n} M(K)
\end{aligned}
$$

- It follows that $\int_{O(n)}\|\mathbf{t}\|_{U(C)^{s}, K} \approx\left(L_{C} \sqrt{n} M(K)\right)\|\mathbf{t}\|_{2}$.

Upper bounds

- Since $\|\mathbf{t}\| c^{s}, K=\|\mathbf{t}\|_{(T C)^{s}, T K}$ for any $T \in S L(n)$, we may restrict our attention to the case where C is isotropic.
- In this case

$$
\|\mathbf{t}\|_{c^{s}, K}=\|\mathbf{t}\|_{2} L_{c} I_{1}\left(\mu_{\mathbf{t}}, K\right),
$$

where μ_{t} is an isotropic, compactly supported log-concave probability measure depending on \mathbf{t} and

$$
I_{1}(\mu, K)=\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu(x)
$$

- Note that if μ is isotropic and K is a symmetric convex body of volume 1 in \mathbb{R}^{n} then

$$
\begin{aligned}
\int_{O(n)} I_{1}(\mu, U(K)) d \nu(U) & =\int_{\mathbb{R}^{n}} \int_{O(n)}\|x\|_{U(K)} d \nu(U) d \mu(x) \\
& =M(K) \int_{\mathbb{R}^{n}}\|x\|_{2} d \mu(x) \approx \sqrt{n} M(K)
\end{aligned}
$$

- It follows that $\int_{O(n)}\|\mathbf{t}\|_{U(C)^{s}, K} \approx\left(L_{C} \sqrt{n} M(K)\right)\|\mathbf{t}\|_{2}$.
- Therefore, our goal is to obtain a constant of the order of $L_{C} \sqrt{n} M(K)$ in our upper estimate for $\|\mathbf{t}\|_{c^{s}, K}$.

Bounds for $M\left(K_{\text {iso }}\right)$

- In particular, in the case $C=K$ we may assume that K is isotropic, and an optimal upper bound would be $O\left(L_{K} \sqrt{n} M\left(K_{\text {iso }}\right)\right)$.

Bounds for $M\left(K_{\text {iso }}\right)$

- In particular, in the case $C=K$ we may assume that K is isotropic, and an optimal upper bound would be $O\left(L_{K} \sqrt{n} M\left(K_{\text {iso }}\right)\right)$.
- The question to estimate the parameter $M(K)$ for an isotropic symmetric convex body K in \mathbb{R}^{n} remains open.

Bounds for $M\left(K_{\text {iso }}\right)$

- In particular, in the case $C=K$ we may assume that K is isotropic, and an optimal upper bound would be $O\left(L_{K} \sqrt{n} M\left(K_{\text {iso }}\right)\right)$.
- The question to estimate the parameter $M(K)$ for an isotropic symmetric convex body K in \mathbb{R}^{n} remains open.
- One may hope that $L_{K} \sqrt{n} M\left(K_{\text {iso }}\right) \leqslant c(\log n)^{b}$ for some absolute constant $b>0$.

Bounds for $M\left(K_{\text {iso }}\right)$

- In particular, in the case $C=K$ we may assume that K is isotropic, and an optimal upper bound would be $O\left(L_{K} \sqrt{n} M\left(K_{\text {iso }}\right)\right)$.
- The question to estimate the parameter $M(K)$ for an isotropic symmetric convex body K in \mathbb{R}^{n} remains open.
- One may hope that $L_{K} \sqrt{n} M\left(K_{\text {iso }}\right) \leqslant c(\log n)^{b}$ for some absolute constant $b>0$.
- However, the currently best known estimate is

$$
M\left(K_{\text {iso }}\right) \leqslant \frac{c(\log n)^{2 / 5}}{\sqrt[10]{n} L_{k}}
$$

proved in [G. - E. Milman].

Bounds for $M\left(K_{\text {iso }}\right)$

- In particular, in the case $C=K$ we may assume that K is isotropic, and an optimal upper bound would be $O\left(L_{K} \sqrt{n} M\left(K_{\text {iso }}\right)\right)$.
- The question to estimate the parameter $M(K)$ for an isotropic symmetric convex body K in \mathbb{R}^{n} remains open.
- One may hope that $L_{K} \sqrt{n} M\left(K_{\text {iso }}\right) \leqslant c(\log n)^{b}$ for some absolute constant $b>0$.
- However, the currently best known estimate is

$$
M\left(K_{\text {iso }}\right) \leqslant \frac{c(\log n)^{2 / 5}}{\sqrt[10]{n} L_{k}}
$$

proved in [G. - E. Milman].

- There, it is also shown that in the case where K is a ψ_{2}-body with constant ϱ one has

$$
M\left(K_{\text {iso }}\right) \leqslant \frac{c \sqrt[3]{\varrho}(\log n)^{1 / 3}}{\sqrt[6]{n} L_{K}}
$$

A general upper bound

G.-Chasapis-Skarmogiannis

Let C be an isotropic convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. Then,

$$
\|\mathbf{t}\|_{c^{s}, K} \leqslant c \max \{\sqrt[4]{n}, \sqrt{\log (1+s)}\} L_{c} \sqrt{n} M(K)\|\mathbf{t}\|_{2}
$$

for every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$, where $c>0$ is an absolute constant.

A general upper bound

G.-Chasapis-Skarmogiannis

Let C be an isotropic convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. Then,

$$
\|\mathbf{t}\|_{C^{s}, K} \leqslant c \max \{\sqrt[4]{n}, \sqrt{\log (1+s)}\} L_{c} \sqrt{n} M(K)\|\mathbf{t}\|_{2}
$$

for every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$, where $c>0$ is an absolute constant.

- For the proof one has to estimate

$$
I_{1}\left(\mu_{\mathrm{t}}, K\right)=\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu_{\mathrm{t}}(x)
$$

where μ_{t} is an isotropic, compactly supported log-concave probability measure depending on the unit vector \mathbf{t}.

A general upper bound

G.-Chasapis-Skarmogiannis

Let C be an isotropic convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. Then,

$$
\|\mathbf{t}\|_{C^{s}, K} \leqslant c \max \{\sqrt[4]{n}, \sqrt{\log (1+s)}\} L_{C} \sqrt{n} M(K)\|\mathbf{t}\|_{2}
$$

for every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$, where $c>0$ is an absolute constant.

- For the proof one has to estimate

$$
I_{1}\left(\mu_{\mathrm{t}}, K\right)=\int_{\mathbb{R}^{n}}\|x\|_{K} d \mu_{\mathrm{t}}(x)
$$

where μ_{t} is an isotropic, compactly supported log-concave probability measure depending on the unit vector \mathbf{t}.

- This is done with an argument that resembles Bourgain's proof of the bound $L_{K}=O(\sqrt[4]{n} \log n)$ and makes use of Talagrand's comparison theorem.

Some special cases

ψ_{2}-case

Let C be an isotropic convex body in \mathbb{R}^{n}, which is a ψ_{2}-body with constant ϱ, and K be a symmetric convex body in \mathbb{R}^{n}. Then for any $s \geqslant 1$ and every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{C^{s}, K} \leqslant c \varrho^{2} \sqrt{n} M(K)\|\mathbf{t}\|_{2} .
$$

Some special cases

ψ_{2}-case

Let C be an isotropic convex body in \mathbb{R}^{n}, which is a ψ_{2}-body with constant ϱ, and K be a symmetric convex body in \mathbb{R}^{n}. Then for any $s \geqslant 1$ and every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{C^{s}, K} \leqslant c \varrho^{2} \sqrt{n} M(K)\|\mathbf{t}\|_{2} .
$$

Cotype-2 case

Let C be an isotropic symmetric convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. Then for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{c^{s}, K} \leqslant\left(c L_{C} C_{2}\left(X_{K}\right) \sqrt{n} M(K)\right)\|\mathbf{t}\|_{2}
$$

where $C_{2}\left(X_{K}\right)$ is the cotype-2 constant of the space with unit ball K.

Some special cases

ψ_{2}-case

Let C be an isotropic convex body in \mathbb{R}^{n}, which is a ψ_{2}-body with constant ϱ, and K be a symmetric convex body in \mathbb{R}^{n}. Then for any $s \geqslant 1$ and every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{c^{s}, K} \leqslant c \varrho^{2} \sqrt{n} M(K)\|\mathbf{t}\|_{2} .
$$

Cotype-2 case

Let C be an isotropic symmetric convex body in \mathbb{R}^{n} and K be a symmetric convex body in \mathbb{R}^{n}. Then for any $s \geqslant 1$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$,

$$
\|\mathbf{t}\|_{c^{s}, K} \leqslant\left(c L_{C} C_{2}\left(X_{K}\right) \sqrt{n} M(K)\right)\|\mathbf{t}\|_{2}
$$

where $C_{2}\left(X_{K}\right)$ is the cotype- 2 constant of the space with unit ball K.

- This is a consequence of our representation of $\|\mathbf{t}\|_{c^{s}, K}$ and of a result of E. Milman: If μ is a finite, compactly supported isotropic measure on \mathbb{R}^{n} then, for any symmetric convex body K in \mathbb{R}^{n},

$$
I_{1}(\mu, K) \leqslant c C_{2}\left(X_{K}\right) \sqrt{n} M(K)
$$

Some special cases

- In particular, for any symmetric convex body K of volume 1 in \mathbb{R}^{n} we have that

$$
\int_{K} \cdots \int_{K}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1} \leqslant\left(c L_{K} C_{2}\left(X_{K}\right) \sqrt{n} M\left(K_{\text {iso }}\right)\right)\|t\|_{2},
$$

where $K_{\text {iso }}$ is an isotropic image of K.

Some special cases

- In particular, for any symmetric convex body K of volume 1 in \mathbb{R}^{n} we have that

$$
\int_{K} \cdots \int_{K}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1} \leqslant\left(c L_{K} C_{2}\left(X_{K}\right) \sqrt{n} M\left(K_{\text {iso }}\right)\right)\|\mathbf{t}\|_{2}
$$

where $K_{\text {iso }}$ is an isotropic image of K.

Unconditional case

There exists an absolute constant $c>0$ with the following property: if K and C_{1}, \ldots, C_{s} are isotropic unconditional convex bodies in \mathbb{R}^{n} then, for every $q \geqslant 1$,

$$
\left(\int_{C_{1}} \ldots \int_{C_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K}^{q} d x_{1} \ldots d x_{s}\right)^{1 / q} \leqslant c n^{1 / q} \sqrt{q} \cdot \max \left\{\|\mathbf{t}\|_{2}, \sqrt{q}\|\mathbf{t}\|_{\infty}\right\} \leqslant c n^{1 / q} q\|\mathbf{t}\|_{2}
$$

for every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$. In particular,

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \leqslant c \sqrt{\log n} \cdot \max \left\{\|\mathbf{t}\|_{2}, \sqrt{\log n}\|\mathbf{t}\|_{\infty}\right\} \leqslant c \log n\|\mathbf{t}\|_{2}
$$

Some special cases

- In particular, for any symmetric convex body K of volume 1 in \mathbb{R}^{n} we have that

$$
\int_{K} \cdots \int_{K}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K} d x_{s} \cdots d x_{1} \leqslant\left(c L_{K} C_{2}\left(X_{K}\right) \sqrt{n} M\left(K_{\text {iso }}\right)\right)\|\mathbf{t}\|_{2}
$$

where $K_{\text {iso }}$ is an isotropic image of K.

Unconditional case

There exists an absolute constant $c>0$ with the following property: if K and C_{1}, \ldots, C_{s} are isotropic unconditional convex bodies in \mathbb{R}^{n} then, for every $q \geqslant 1$,

$$
\left(\int_{C_{1}} \ldots \int_{C_{s}}\left\|\sum_{j=1}^{s} t_{j} x_{j}\right\|_{K}^{q} d x_{1} \ldots d x_{s}\right)^{1 / q} \leqslant c n^{1 / q} \sqrt{q} \cdot \max \left\{\|\mathbf{t}\|_{2}, \sqrt{q}\|\mathbf{t}\|_{\infty}\right\} \leqslant c n^{1 / q} q\|\mathbf{t}\|_{2}
$$

for every $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbb{R}^{s}$. In particular,

$$
\|\mathbf{t}\|_{\mathcal{C}, K} \leqslant c \sqrt{\log n} \cdot \max \left\{\|\mathbf{t}\|_{2}, \sqrt{\log n}\|\mathbf{t}\|_{\infty}\right\} \leqslant c \log n\|\mathbf{t}\|_{2}
$$

- This is essentially proved in [G.-Hartzoulaki-Tsolomitis]. The proof makes use of the comparison theorem of Bobkov and Nazarov.

Expected volume of random convex sets

- Let K be a symmetric convex body in \mathbb{R}^{N}. For any $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \in \oplus_{i=1}^{N} \mathbb{R}^{n}$ we denote by

$$
T_{\mathrm{x}}=\left[x_{1} \cdots x_{N}\right]
$$

the $n \times N$ matrix whose columns are the vectors x_{i}, and consider the convex body $T_{\mathrm{x}}(K)$ in \mathbb{R}^{n}.

Expected volume of random convex sets

- Let K be a symmetric convex body in \mathbb{R}^{N}. For any $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \in \oplus_{i=1}^{N} \mathbb{R}^{n}$ we denote by

$$
T_{\mathrm{x}}=\left[x_{1} \cdots x_{N}\right]
$$

the $n \times N$ matrix whose columns are the vectors x_{i}, and consider the convex body $T_{\mathrm{x}}(K)$ in \mathbb{R}^{n}.

Examples

- If $K=B_{1}^{N}$ then

$$
T_{\mathrm{x}}(K)=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\} .
$$

Expected volume of random convex sets

- Let K be a symmetric convex body in \mathbb{R}^{N}. For any $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \in \oplus_{i=1}^{N} \mathbb{R}^{n}$ we denote by

$$
T_{\mathrm{x}}=\left[x_{1} \cdots x_{N}\right]
$$

the $n \times N$ matrix whose columns are the vectors x_{i}, and consider the convex body $T_{\mathrm{x}}(K)$ in \mathbb{R}^{n}.

Examples

- If $K=B_{1}^{N}$ then

$$
T_{\mathrm{x}}(K)=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\} .
$$

- If $K=B_{\infty}^{N}$ then

$$
T_{\mathrm{x}}(K)=\sum_{i=1}^{N}\left[-x_{i}, x_{i}\right]
$$

Expected volume of random convex sets

- The question that we study is to estimate the expected volume of $T_{\mathrm{x}}(K)$ when x_{1}, \ldots, x_{N} are independent random points distributed according to an isotropic log-concave probability measure μ.

Expected volume of random convex sets

- The question that we study is to estimate the expected volume of $T_{\mathrm{x}}(K)$ when x_{1}, \ldots, x_{N} are independent random points distributed according to an isotropic log-concave probability measure μ.

Paouris-Pivovarov

Let $N \geqslant n$ and f_{1}, \ldots, f_{N} be probability densities on \mathbb{R}^{n} with $\left\|f_{i}\right\|_{\infty} \leqslant 1$ for all $i=1, \ldots, N$. Then,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \cdots & \int_{\mathbb{R}^{n}}\left|T_{\mathrm{x}}(K)\right| \prod_{i=1}^{N} f_{i}\left(x_{i}\right) d x_{N} \cdots d x_{1} \\
& \geqslant \int_{D_{n}} \cdots \int_{D_{n}}\left|T_{\mathrm{x}}(K)\right| d x_{N} \cdots d x_{1}
\end{aligned}
$$

where D_{n} is the (centered at the origin) Euclidean ball of volume 1 .

Expected volume of random convex sets

- The theorem of Paouris and Pivovarov shows that for a lower bound it is useful to examine the case $\mu=\mu_{D_{n}}$, where $\mu_{D_{n}}$ is the uniform measure on D_{n}.

Expected volume of random convex sets

- The theorem of Paouris and Pivovarov shows that for a lower bound it is useful to examine the case $\mu=\mu_{D_{n}}$, where $\mu_{D_{n}}$ is the uniform measure on D_{n}.

G.-Skarmogiannis

For any $N \geqslant n$ and any convex body K in \mathbb{R}^{N} we have

$$
c_{1} \sqrt{N / n} \operatorname{vrad}(K) \leqslant\left(\mathbb{E}_{\mu_{D_{n}}^{N}}\left|T_{\mathbf{x}}(K)\right|^{1 / n}\right) \leqslant\left(\mathbb{E}_{\mu_{D_{n}}^{N}}\left|T_{\mathbf{x}}(K)\right|\right)^{1 / n} \leqslant c_{2} \sqrt{N / n} w(K)
$$

where $c_{1}, c_{2}>0$ are absolute constants.

Expected volume of random convex sets

$$
K=B_{\infty}^{N}
$$

$$
\left(\mathbb{E}_{\mu^{N}}\left|T_{\mathrm{x}}\left(B_{\infty}^{N}\right)\right|\right)^{1 / n} \approx \sqrt{N / n} \operatorname{vrad}\left(B_{\infty}^{N}\right) .
$$

Expected volume of random convex sets

$$
K=B_{\infty}^{N}
$$

$$
\left(\mathbb{E}_{\mu^{N}}\left|T_{\mathrm{x}}\left(B_{\infty}^{N}\right)\right|\right)^{1 / n} \approx \sqrt{N / n} \operatorname{vrad}\left(B_{\infty}^{N}\right)
$$

$$
K=B_{1}^{N}
$$

$$
\mathbb{E}_{\mu^{N}}\left(\left|\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\}\right|\right)^{1 / n} \approx \frac{\sqrt{\log (2 N / n)}}{\sqrt{n}} \leqslant \sqrt{N / n} w\left(B_{1}^{N}\right) .
$$

Expected volume of random convex sets

$$
K=B_{\infty}^{N}
$$

$$
\left(\mathbb{E}_{\mu^{N}}\left|T_{\mathrm{x}}\left(B_{\infty}^{N}\right)\right|\right)^{1 / n} \approx \sqrt{N / n} \operatorname{vrad}\left(B_{\infty}^{N}\right)
$$

$$
K=B_{1}^{N}
$$

$$
\mathbb{E}_{\mu^{N}}\left(\left|\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\}\right|\right)^{1 / n} \approx \frac{\sqrt{\log (2 N / n)}}{\sqrt{n}} \leqslant \sqrt{N / n} w\left(B_{1}^{N}\right) .
$$

Unconditional K

Let μ be an isotropic log-concave probability measure on \mathbb{R}^{n}. For any unconditional isotropic convex body K in \mathbb{R}^{N} we have

$$
\mathbb{E}_{\mu^{N}}\left(\left|T_{\mathrm{x}}(K)\right|\right)^{1 / n} \leqslant c \sqrt{N / n} \operatorname{vrad}(K) \sqrt{\log (2 N / n)} .
$$

Expected volume of random convex sets

A general upper bound

Let μ be an isotropic log-concave probability measure on \mathbb{R}^{n}. For any $N \geqslant n$ and any symmetric convex body K in \mathbb{R}^{N} we have

$$
\left(\mathbb{E}_{\mu^{N}}\left|T_{\mathrm{x}}(K)\right|\right)^{\frac{1}{n}} \leqslant \frac{c N}{n} w(K)
$$

where $c>0$ is an absolute constant.

Expected volume of random convex sets

A general upper bound

Let μ be an isotropic log-concave probability measure on \mathbb{R}^{n}. For any $N \geqslant n$ and any symmetric convex body K in \mathbb{R}^{N} we have

$$
\left(\mathbb{E}_{\mu^{N}}\left|T_{\mathrm{x}}(K)\right|\right)^{\frac{1}{n}} \leqslant \frac{c N}{n} w(K)
$$

where $c>0$ is an absolute constant.

- Our starting point is the formula

$$
\left|T_{\mathrm{x}}(K)\right|=\sqrt{\operatorname{det}\left(T_{\mathrm{x}} T_{\mathrm{x}}^{*}\right)}\left|P_{E_{\mathrm{x}}}(K)\right|,
$$

where $E_{\mathrm{x}}=\operatorname{ker}\left(T_{\mathrm{x}}\right)^{\perp}=\operatorname{Range}\left(T_{\mathrm{x}}^{*}\right)$.

Expected volume of random convex sets

A general upper bound

Let μ be an isotropic log-concave probability measure on \mathbb{R}^{n}. For any $N \geqslant n$ and any symmetric convex body K in \mathbb{R}^{N} we have

$$
\left(\mathbb{E}_{\mu^{N}}\left|T_{\mathrm{x}}(K)\right|\right)^{\frac{1}{n}} \leqslant \frac{c N}{n} w(K)
$$

where $c>0$ is an absolute constant.

- Our starting point is the formula

$$
\left|T_{\mathrm{x}}(K)\right|=\sqrt{\operatorname{det}\left(T_{\mathrm{x}} T_{\mathrm{x}}^{*}\right)}\left|P_{E_{\mathrm{x}}}(K)\right|,
$$

where $E_{\mathrm{x}}=\operatorname{ker}\left(T_{\mathrm{x}}\right)^{\perp}=\operatorname{Range}\left(T_{\mathrm{x}}^{*}\right)$.

- By the Cauchy-Binet formula

$$
\operatorname{det}\left(T_{\mathrm{x}} T_{\mathrm{x}}^{*}\right)=\sum_{|S|=n} \operatorname{det}\left(\left(T_{\mathrm{x}} \mid S\right)\left(T_{\mathrm{x}} \mid s\right)^{*}\right)
$$

and

$$
\mathbb{E}_{\mu^{N}}\left(\operatorname{det}\left(\left(T_{\mathbf{x}} \mid S\right)\left(T_{\mathbf{x}} \mid S\right)^{*}\right)\right)=n!\operatorname{det}(\operatorname{Cov}(\mu))
$$

Expected volume of random convex sets

- Assuming that μ is isotropic we have that $\operatorname{det}(\operatorname{Cov}(\mu))=1$. It follows that

$$
\mathbb{E}_{\mu^{N}}\left(\operatorname{det}\left(T_{\mathrm{x}} T_{\times}^{*}\right)\right)=\binom{N}{n} n!\operatorname{det}(\operatorname{Cov}(\mu)) \leqslant N^{n}
$$

Expected volume of random convex sets

- Assuming that μ is isotropic we have that $\operatorname{det}(\operatorname{Cov}(\mu))=1$. It follows that

$$
\mathbb{E}_{\mu^{N}}\left(\operatorname{det}\left(T_{\mathrm{x}} T_{\mathrm{x}}^{*}\right)\right)=\binom{N}{n} n!\operatorname{det}(\operatorname{Cov}(\mu)) \leqslant N^{n}
$$

- Then,

$$
\begin{aligned}
\mathbb{E}_{\mu^{N}}\left(\left|T_{\mathbf{x}}(K)\right|\right) & \leqslant\left(\mathbb{E}_{\mu^{N}}\left(\operatorname{det}\left(T_{\mathrm{x}} T_{\mathrm{x}}^{*}\right)\right)\right)^{1 / 2}\left(\mathbb{E}_{\mu^{N}}\left|P_{E_{\mathrm{x}}}(K)\right|^{2}\right)^{1 / 2} \\
& \leqslant N^{n / 2}\left(\mathbb{E}_{\mu^{N}}\left|P_{E_{\mathrm{x}}}(K)\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

Expected volume of random convex sets

- Assuming that μ is isotropic we have that $\operatorname{det}(\operatorname{Cov}(\mu))=1$. It follows that

$$
\mathbb{E}_{\mu^{N}}\left(\operatorname{det}\left(T_{\mathrm{x}} T_{\mathrm{x}}^{*}\right)\right)=\binom{N}{n} n!\operatorname{det}(\operatorname{Cov}(\mu)) \leqslant N^{n}
$$

- Then,

$$
\begin{aligned}
\mathbb{E}_{\mu^{N}}\left(\left|T_{\mathrm{x}}(K)\right|\right) & \leqslant\left(\mathbb{E}_{\mu^{N}}\left(\operatorname{det}\left(T_{\mathrm{x}} T_{\mathrm{x}}^{*}\right)\right)\right)^{1 / 2}\left(\mathbb{E}_{\mu^{N}}\left|P_{E_{\mathrm{x}}}(K)\right|^{2}\right)^{1 / 2} \\
& \leqslant N^{n / 2}\left(\mathbb{E}_{\mu^{N}}\left|P_{E_{\mathrm{x}}}(K)\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

- Then we use the fact that if K is a centrally symmetric convex body in \mathbb{R}^{N} then for any $1 \leqslant n<N$ and any $E \in G_{N, n}$ we have that

$$
\left|P_{E}(K)\right|^{1 / n} \leqslant c \sqrt{N / n} \frac{w(K)}{\sqrt{n}}
$$

Expected volume of random convex sets

- Assuming that μ is isotropic we have that $\operatorname{det}(\operatorname{Cov}(\mu))=1$. It follows that

$$
\mathbb{E}_{\mu^{N}}\left(\operatorname{det}\left(T_{\mathrm{x}} T_{\mathrm{x}}^{*}\right)\right)=\binom{N}{n} n!\operatorname{det}(\operatorname{Cov}(\mu)) \leqslant N^{n}
$$

- Then,

$$
\begin{aligned}
\mathbb{E}_{\mu^{N}}\left(\left|T_{\mathrm{x}}(K)\right|\right) & \leqslant\left(\mathbb{E}_{\mu^{N}}\left(\operatorname{det}\left(T_{\mathrm{x}} T_{\mathrm{x}}^{*}\right)\right)\right)^{1 / 2}\left(\mathbb{E}_{\mu^{N}}\left|P_{E_{\mathrm{x}}}(K)\right|^{2}\right)^{1 / 2} \\
& \leqslant N^{n / 2}\left(\mathbb{E}_{\mu^{N}}\left|P_{E_{\mathrm{x}}}(K)\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

- Then we use the fact that if K is a centrally symmetric convex body in \mathbb{R}^{N} then for any $1 \leqslant n<N$ and any $E \in G_{N, n}$ we have that

$$
\left|P_{E}(K)\right|^{1 / n} \leqslant c \sqrt{N / n} \frac{w(K)}{\sqrt{n}}
$$

- This follows in a standard way from Sudakov's inequality.

Expected volume of random convex sets

- In a similar way, assuming that K is isotropic we have:

Expected volume of random convex sets

- In a similar way, assuming that K is isotropic we have:

Isotropic K

For any $N \geqslant n$ and any isotropic convex body K in \mathbb{R}^{N} we have

$$
\left(\mathbb{E}_{\mu^{N}}\left|T_{\mathrm{x}}(K)\right|\right)^{1 / n} \leqslant \frac{c N}{n} \operatorname{vrad}(K) L_{K}
$$

where $c>0$ is an absolute constant.

Expected volume of random convex sets

- In a similar way, assuming that K is isotropic we have:

Isotropic K

For any $N \geqslant n$ and any isotropic convex body K in \mathbb{R}^{N} we have

$$
\left(\mathbb{E}_{\mu^{N}}\left|T_{\mathrm{x}}(K)\right|\right)^{1 / n} \leqslant \frac{c N}{n} \operatorname{vrad}(K) L_{K}
$$

where $c>0$ is an absolute constant.

- This time we use a classical inequality of Rogers and Shephard:

$$
\left|P_{E_{\mathrm{x}}}(K)\right| \leqslant\binom{ N}{n}\left|K \cap E_{\mathrm{x}}^{\perp}\right|^{-1}
$$

for all \mathbf{x}.

Expected volume of random convex sets

- In a similar way, assuming that K is isotropic we have:

Isotropic K

For any $N \geqslant n$ and any isotropic convex body K in \mathbb{R}^{N} we have

$$
\left(\mathbb{E}_{\mu^{N}}\left|T_{\mathrm{x}}(K)\right|\right)^{1 / n} \leqslant \frac{c N}{n} \operatorname{vrad}(K) L_{K}
$$

where $c>0$ is an absolute constant.

- This time we use a classical inequality of Rogers and Shephard:

$$
\left|P_{E_{\mathrm{x}}}(K)\right| \leqslant\binom{ N}{n}\left|K \cap E_{\mathrm{x}}^{\perp}\right|^{-1}
$$

for all \mathbf{x}.

- Since K is isotropic, we also know that

$$
\left|K \cap E_{x}^{\perp}\right|^{1 / n} \geqslant \frac{c}{L_{K}}
$$

Random ball polyhedra

- Let f be a probability density on \mathbb{R}^{n} with $\|f\|_{\infty} \leqslant 1$, fix $N \geqslant 1$ and an N-tuple $\mathbf{r}=\left(r_{1}, \ldots, r_{N}\right)$ of positive real numbers. Consider a sequence x_{1}, \ldots, x_{N} of independent random points in \mathbb{R}^{n} distributed according to f, and define the random ball-polyhedron

$$
B(\mathbf{x}, \mathbf{r}):=\bigcap_{i=1}^{N} B\left(x_{i}, r_{i}\right)
$$

which is the intersection of the Euclidean balls $B\left(x_{i}, r_{i}\right)=x_{i}+r_{i} B_{2}^{n}$.

Random ball polyhedra

- Let f be a probability density on \mathbb{R}^{n} with $\|f\|_{\infty} \leqslant 1$, fix $N \geqslant 1$ and an N-tuple $\mathbf{r}=\left(r_{1}, \ldots, r_{N}\right)$ of positive real numbers. Consider a sequence x_{1}, \ldots, x_{N} of independent random points in \mathbb{R}^{n} distributed according to f, and define the random ball-polyhedron

$$
B(\mathbf{x}, \mathbf{r}):=\bigcap_{i=1}^{N} B\left(x_{i}, r_{i}\right)
$$

which is the intersection of the Euclidean balls $B\left(x_{i}, r_{i}\right)=x_{i}+r_{i} B_{2}^{n}$.

- Paouris and Pivovarov showed that if z_{1}, \ldots, z_{N} is a sequence of independent random points in \mathbb{R}^{n} distributed according to the uniform measure on the Euclidean ball D_{n} of volume 1 then, for any $1 \leqslant j \leqslant n$ and for any $r_{1}, \ldots, r_{N}>0$,

$$
\mathbb{E}_{\mu^{N}} V_{j}\left(\bigcap_{i=1}^{N} B\left(x_{i}, r_{i}\right)\right) \leqslant \mathbb{E}_{\mu_{D_{n}}^{N}} V_{j}\left(\bigcap_{i=1}^{N} B\left(z_{i}, r_{i}\right)\right)
$$

where V_{j} denotes the j-th intrinsic volume.

Random ball polyhedra

- Let f be a probability density on \mathbb{R}^{n} with $\|f\|_{\infty} \leqslant 1$, fix $N \geqslant 1$ and an N-tuple $\mathbf{r}=\left(r_{1}, \ldots, r_{N}\right)$ of positive real numbers. Consider a sequence x_{1}, \ldots, x_{N} of independent random points in \mathbb{R}^{n} distributed according to f, and define the random ball-polyhedron

$$
B(\mathbf{x}, \mathbf{r}):=\bigcap_{i=1}^{N} B\left(x_{i}, r_{i}\right)
$$

which is the intersection of the Euclidean balls $B\left(x_{i}, r_{i}\right)=x_{i}+r_{i} B_{2}^{n}$.

- Paouris and Pivovarov showed that if z_{1}, \ldots, z_{N} is a sequence of independent random points in \mathbb{R}^{n} distributed according to the uniform measure on the Euclidean ball D_{n} of volume 1 then, for any $1 \leqslant j \leqslant n$ and for any $r_{1}, \ldots, r_{N}>0$,

$$
\mathbb{E}_{\mu^{N}} V_{j}\left(\bigcap_{i=1}^{N} B\left(x_{i}, r_{i}\right)\right) \leqslant \mathbb{E}_{\mu_{D_{n}}^{N}} V_{j}\left(\bigcap_{i=1}^{N} B\left(z_{i}, r_{i}\right)\right)
$$

where V_{j} denotes the j-th intrinsic volume.

- In fact, they showed that the same holds true for any function $\varphi: \mathcal{K}^{n} \rightarrow[0, \infty)$ which is quasi-concave with respect to Minkowski addition, monotone and invariant under orthogonal transformations. The intrinsic volumes satisfy the above - the quasi-concavity is a consequence of the Aleksandrov-Fenchel inequality.

Random ball polyhedra

- Question: to estimate the expected volume

$$
\mathbb{E}\left|\bigcap_{i=1}^{N} B\left(x_{i}, r_{i}\right)\right|
$$

where x_{1}, \ldots, x_{N} are independent random points uniformly distributed in a convex body K of volume 1 in \mathbb{R}^{n}, and $r_{1}, \ldots, r_{N}>0$.

Random ball polyhedra

- Question: to estimate the expected volume

$$
\mathbb{E}\left|\bigcap_{i=1}^{N} B\left(x_{i}, r_{i}\right)\right|
$$

where x_{1}, \ldots, x_{N} are independent random points uniformly distributed in a convex body K of volume 1 in \mathbb{R}^{n}, and $r_{1}, \ldots, r_{N}>0$.

- More generally, to estimate the expected volume

$$
\mathbb{E}\left|\bigcap_{i=1}^{N}\left(x_{i}+r_{i} C\right)\right|
$$

where x_{1}, \ldots, x_{N} are independent random points uniformly distributed in a convex body K of volume 1 in \mathbb{R}^{n}, C is any symmetric convex body in \mathbb{R}^{n}, and $r_{1}, \ldots, r_{N}>0$.

Random ball polyhedra

Skarmogiannis

Let K be a symmetric convex body of volume 1 in \mathbb{R}^{n} and x_{1}, \ldots, x_{N} be independent random points uniformly distributed in K. Then, for any symmetric convex body C in \mathbb{R}^{n} and any $r_{1}, \ldots, r_{N}>0$,

$$
c_{n, N}|K+r C| \prod_{i=1}^{N}\left|K \cap r_{i} C\right| \leqslant \mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}\left(x_{i}+r C\right)\right|\right) \leqslant|K+r C| \prod_{i=1}^{N}\left|K \cap r_{i} C\right|,
$$

where $r=\min \left\{r_{1}, \ldots, r_{N}\right\}$ and $c_{n, N}=n B(n, n N+1)$ where $B(a, b)$ is the Beta function.

Random ball polyhedra

Lemma

Let K, C be centrally symmetric convex bodies in \mathbb{R}^{n}. Assume that $|K|=1$. For any $r_{1}, \ldots, r_{N}>0$,

$$
\left.\mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}\left(x_{i}+r_{i} C\right)\right|\right)=\int_{K+\left(\min _{i} r_{i}\right) C} \prod_{i=1}^{N} \mid(K-y) \cap r_{i} C\right) \mid d y .
$$

Random ball polyhedra

Lemma

Let K, C be centrally symmetric convex bodies in \mathbb{R}^{n}. Assume that $|K|=1$. For any $r_{1}, \ldots, r_{N}>0$,

$$
\left.\mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}\left(x_{i}+r_{i} C\right)\right|\right)=\int_{K+\left(\min _{i} r_{i}\right) C} \prod_{i=1}^{N} \mid(K-y) \cap r_{i} C\right) \mid d y .
$$

Let $r_{1}, \ldots, r_{N}>0$. We write

$$
\begin{aligned}
& \mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}\left(x_{i}+r_{i} C\right)\right|\right)=\int_{K} \cdots \int_{K} \int_{\mathbb{R}^{n}} \mathbf{1}_{\cap_{i=1}^{N}\left(x_{i}+r_{i} C\right)}(y) d y d x_{N} \cdots d x_{1} \\
&=\int_{K} \cdots \int_{K} \int_{\mathbb{R}^{n}} \prod_{i=1}^{N} \mathbf{1}_{x_{i}+r_{i}} C(y) d y d x_{N} \cdots d x_{1} \\
&=\int_{\mathbb{R}^{n}} \int_{K} \cdots \int_{K} \prod_{i=1}^{N} \mathbf{1}_{y+r_{i}} C\left(x_{i}\right) d x_{N} \cdots d x_{1} d y=\int_{\mathbb{R}^{n}} \prod_{i=1}^{N}\left(\int_{K} \mathbf{1}_{y+r_{i} C} c\left(x_{i}\right) d x_{i}\right) d y \\
&=\int_{\mathbb{R}^{n}} \prod_{i=1}^{N}\left|K \cap\left(y+r_{i} C\right)\right| d y=\int_{\mathbb{R}^{n}} \prod_{i=1}^{N}\left|(K-y) \cap\left(r_{i} C\right)\right| d y
\end{aligned}
$$

Random ball polyhedra

Lower bound

Let K be a symmetric convex body of volume 1 in \mathbb{R}^{n} and x_{1}, \ldots, x_{N} be independent random points uniformly distributed in K. Then, for any symmetric convex body C in \mathbb{R}^{n} and any $r_{1}, \ldots, r_{N}>0$,

$$
\mathbb{E}_{\mu_{\kappa}^{N}}\left(\left|\bigcap_{i=1}^{N} B\left(x_{i}, r\right)\right|\right) \geqslant n B(n, n N+1)|K+r C| \prod_{i=1}^{N}\left|K \cap r_{i} C\right|,
$$

where $r=\min \left\{r_{1}, \ldots, r_{N}\right\}$.

Random ball polyhedra

Lower bound

Let K be a symmetric convex body of volume 1 in \mathbb{R}^{n} and x_{1}, \ldots, x_{N} be independent random points uniformly distributed in K. Then, for any symmetric convex body C in \mathbb{R}^{n} and any $r_{1}, \ldots, r_{N}>0$,

$$
\mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N} B\left(x_{i}, r\right)\right|\right) \geqslant n B(n, n N+1)|K+r C| \prod_{i=1}^{N}\left|K \cap r_{i} C\right|,
$$

where $r=\min \left\{r_{1}, \ldots, r_{N}\right\}$.

- For each $i=1, \ldots, N$ consider the function $u_{i}: K+r_{i} C \rightarrow[0, \infty)$ with $u_{i}(y)=\left|(K-y) \cap r_{i} C\right|^{1 / n}$. Using the Brunn-Minkowski inequality and the convexity of K and C we easily check that u_{i} is an even concave function.

Random ball polyhedra

Lower bound

Let K be a symmetric convex body of volume 1 in \mathbb{R}^{n} and x_{1}, \ldots, x_{N} be independent random points uniformly distributed in K. Then, for any symmetric convex body C in \mathbb{R}^{n} and any $r_{1}, \ldots, r_{N}>0$,

$$
\mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N} B\left(x_{i}, r\right)\right|\right) \geqslant n B(n, n N+1)|K+r C| \prod_{i=1}^{N}\left|K \cap r_{i} C\right|,
$$

where $r=\min \left\{r_{1}, \ldots, r_{N}\right\}$.

- For each $i=1, \ldots, N$ consider the function $u_{i}: K+r_{i} C \rightarrow[0, \infty)$ with $u_{i}(y)=\left|(K-y) \cap r_{i} C\right|^{1 / n}$. Using the Brunn-Minkowski inequality and the convexity of K and C we easily check that u_{i} is an even concave function.
- Let ϱ denote the radial function of $K+r C$ on S^{n-1}. Then,

$$
\mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}\left(x_{i}+r C\right)\right|\right)=n \omega_{n} \int_{S^{n-1}} \int_{0}^{\varrho(\xi)} t^{n-1} \prod_{i=1}^{N} u_{i}^{n}(t \xi) d t d \sigma(\xi)
$$

Random ball polyhedra

- Since each u_{i} is concave, we have

$$
u_{i}(t \xi) \geqslant(1-t / \varrho(\xi)) u_{i}(0)+(t / \varrho(\xi)) u_{i}(\varrho(\xi) \xi) \geqslant(1-t / \varrho(\xi)) u_{i}(0)
$$

Random ball polyhedra

- Since each u_{i} is concave, we have

$$
u_{i}(t \xi) \geqslant(1-t / \varrho(\xi)) u_{i}(0)+(t / \varrho(\xi)) u_{i}(\varrho(\xi) \xi) \geqslant(1-t / \varrho(\xi)) u_{i}(0)
$$

- Therefore,

$$
\begin{aligned}
& \mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}\left(x_{i}+r C\right)\right|\right) \\
& \geqslant n \omega_{n} \prod_{i=1}^{N} u_{i}^{n}(0) \int_{S^{n-1}} \int_{0}^{\varrho(\xi)} t^{n-1}\left(1-\frac{t}{\varrho(\xi)}\right)^{n N} d t d \sigma(\xi) \\
& =n \omega_{n} \prod_{i=1}^{N}\left|K \cap r_{i} C\right| \int_{S^{n-1}} \int_{0}^{1} \varrho^{n}(\xi) s^{n-1}(1-s)^{n N} d s d \sigma(\xi) \\
& =n \prod_{i=1}^{N}\left|K \cap r_{i} C\right| \cdot \omega_{n} \int_{S^{n-1}} \varrho^{n}(\xi) d \sigma(\xi) \cdot \int_{0}^{1} s^{n-1}(1-s)^{n N} d s \\
& =n B(n, n N+1)|K+r C| \prod_{i=1}^{N}\left|K \cap r_{i} C\right|
\end{aligned}
$$

Random ball polyhedra

- A natural question is to determine the best constant in the lower bound.

Random ball polyhedra

- A natural question is to determine the best constant in the lower bound.
- Note that the behavior of $\mathbb{E}_{\mu_{K}^{N}}\left|\bigcap_{i=1}^{N}\left(x_{i}+r C\right)\right|$ is different for small and large values of r.

Random ball polyhedra

- A natural question is to determine the best constant in the lower bound.
- Note that the behavior of $\mathbb{E}_{\mu_{K}^{N}}\left|\bigcap_{i=1}^{N}\left(x_{i}+r C\right)\right|$ is different for small and large values of r.
- One can check that

$$
\lim _{r \rightarrow \infty} \frac{1}{|K+r C| \cdot|K \cap r C|^{N}} \mathbb{E}_{\mu_{K}^{N}}\left|\bigcap_{i=1}^{N}\left(x_{i}+r C\right)\right|=1
$$

and $|K+r C| \cdot|K \cap r C|^{N} \sim|r C|$ as $r \rightarrow \infty$.

Random ball polyhedra

- A natural question is to determine the best constant in the lower bound.
- Note that the behavior of $\mathbb{E}_{\mu_{K}^{N}}\left|\bigcap_{i=1}^{N}\left(x_{i}+r C\right)\right|$ is different for small and large values of r.
- One can check that

$$
\lim _{r \rightarrow \infty} \frac{1}{|K+r C| \cdot|K \cap r C|^{N}} \mathbb{E}_{\mu_{K}^{N}}\left|\bigcap_{i=1}^{N}\left(x_{i}+r C\right)\right|=1
$$

and $|K+r C| \cdot|K \cap r C|^{N} \sim|r C|$ as $r \rightarrow \infty$.

- Also,

$$
\lim _{r \rightarrow 0^{+}} \frac{1}{|K+r C| \cdot|K \cap r C|^{N}} \mathbb{E}_{\mu_{K}^{N}}\left|\bigcap_{i=1}^{N}\left(x_{i}+r C\right)\right|=1
$$

and $|K+r C| \cdot|K \cap r C|^{N} \sim|r C|^{N}$ as $r \rightarrow 0^{+}$.

