Volume estimates for some random convex sets

Apostolos Giannopoulos

University of Athens

February 11, 2020

Let K be a symmetric convex body in \mathbb{R}^n .

Let K be a symmetric convex body in \mathbb{R}^n . For any *s*-tuple $\mathcal{C} = (C_1, \ldots, C_s)$ of symmetric convex bodies C_i in \mathbb{R}^n we consider the norm on \mathbb{R}^s , defined by

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} = \frac{1}{\prod_{j=1}^{s} |\mathcal{C}_j|} \int_{\mathcal{C}_1} \cdots \int_{\mathcal{C}_s} \left\| \sum_{j=1}^{s} t_j x_j \right\|_{\mathcal{K}} dx_s \cdots dx_1,$$

where $\mathbf{t} = (t_1, ..., t_s)$.

Let K be a symmetric convex body in \mathbb{R}^n . For any *s*-tuple $\mathcal{C} = (C_1, \ldots, C_s)$ of symmetric convex bodies C_i in \mathbb{R}^n we consider the norm on \mathbb{R}^s , defined by

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} = \frac{1}{\prod_{j=1}^{s} |\mathcal{C}_j|} \int_{\mathcal{C}_1} \cdots \int_{\mathcal{C}_s} \left\| \sum_{j=1}^{s} t_j x_j \right\|_{\mathcal{K}} dx_s \cdots dx_1,$$

where $\mathbf{t} = (t_1, \dots, t_s)$. If $\mathcal{C} = (\mathcal{C}, \dots, \mathcal{C})$ then we write $\|\mathbf{t}\|_{\mathcal{C}^s, \mathcal{K}}$ instead of $\|\mathbf{t}\|_{\mathcal{C}, \mathcal{K}}$.

Let K be a symmetric convex body in \mathbb{R}^n . For any *s*-tuple $\mathcal{C} = (C_1, \ldots, C_s)$ of symmetric convex bodies C_i in \mathbb{R}^n we consider the norm on \mathbb{R}^s , defined by

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} = \frac{1}{\prod_{j=1}^{s} |\mathcal{C}_j|} \int_{\mathcal{C}_1} \cdots \int_{\mathcal{C}_s} \left\| \sum_{j=1}^{s} t_j x_j \right\|_{\mathcal{K}} dx_s \cdots dx_1,$$

where $\mathbf{t} = (t_1, \dots, t_s)$. If $\mathcal{C} = (\mathcal{C}, \dots, \mathcal{C})$ then we write $\|\mathbf{t}\|_{\mathcal{C}^s, \mathcal{K}}$ instead of $\|\mathbf{t}\|_{\mathcal{C}, \mathcal{K}}$.

Question (V. Milman)

To examine if, in the case C = K, one has that

$$\|\mathbf{t}\|_{K^{s},K} = \frac{1}{|K|^{s}} \int_{K} \cdots \int_{K} \left\| \sum_{j=1}^{s} t_{j} x_{j} \right\|_{K} dx_{s} \cdots dx_{1}$$

is equivalent to the standard Euclidean norm up to a term which is logarithmic in the dimension. In particular, if under some cotype condition on the norm induced by K to \mathbb{R}^n one has equivalence between $\|\cdot\|_{K^s,K}$ and the Euclidean norm.

Let K be a symmetric convex body in \mathbb{R}^n . For any *s*-tuple $\mathcal{C} = (C_1, \ldots, C_s)$ of symmetric convex bodies C_i in \mathbb{R}^n we consider the norm on \mathbb{R}^s , defined by

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} = \frac{1}{\prod_{j=1}^{s} |\mathcal{C}_j|} \int_{\mathcal{C}_1} \cdots \int_{\mathcal{C}_s} \left\| \sum_{j=1}^{s} t_j x_j \right\|_{\mathcal{K}} dx_s \cdots dx_1,$$

where $\mathbf{t} = (t_1, \dots, t_s)$. If $\mathcal{C} = (\mathcal{C}, \dots, \mathcal{C})$ then we write $\|\mathbf{t}\|_{\mathcal{C}^s, \mathcal{K}}$ instead of $\|\mathbf{t}\|_{\mathcal{C}, \mathcal{K}}$.

Question (V. Milman)

To examine if, in the case C = K, one has that

$$\|\mathbf{t}\|_{K^{s},K} = \frac{1}{|K|^{s}} \int_{K} \cdots \int_{K} \left\| \sum_{j=1}^{s} t_{j} x_{j} \right\|_{K} dx_{s} \cdots dx_{1}$$

is equivalent to the standard Euclidean norm up to a term which is logarithmic in the dimension. In particular, if under some cotype condition on the norm induced by K to \mathbb{R}^n one has equivalence between $\|\cdot\|_{K^s,K}$ and the Euclidean norm.

• Since $\|\mathbf{t}\|_{K^s,K} = \|\mathbf{t}\|_{(TK)^s,TK}$ for any $T \in GL(n)$, we may choose any position of K.

• We may assume that $|C_1| = \cdots = |C_s| = |K| = 1$.

- We may assume that $|C_1| = \cdots = |C_s| = |\mathcal{K}| = 1$.
- Bourgain, Meyer, V. Milman and Pajor (1987) obtained the lower bound

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} \ge c\sqrt{s} \Big(\prod_{j=1}^{s} |t_j|\Big)^{1/s}.$$

- We may assume that $|C_1| = \cdots = |C_s| = |K| = 1$.
- Bourgain, Meyer, V. Milman and Pajor (1987) obtained the lower bound

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} \ge c\sqrt{s} \Big(\prod_{j=1}^{s} |t_j|\Big)^{1/s}.$$

• Assuming, additionally, that C is isotropic they also obtained the lower bound

$$\int_{C} \cdots \int_{C} \int_{\Omega} \left\| \sum_{j=1}^{s} g_{j}(\omega) x_{j} \right\|_{K} d\omega dx_{s} \cdots dx_{1} \geq c\sqrt{s} L_{C}\sqrt{n}M(K),$$

where L_C is the isotropic constant of C and $M(K) = \int_{S^{n-1}} \|\xi\|_{\kappa} d\sigma(\xi)$.

Gluskin-Milman

Let A_1, \ldots, A_s be measurable sets in \mathbb{R}^n and K be a star body in \mathbb{R}^n with $0 \in int(K)$. Assume that $|A_1| = \cdots = |A_s| = |K|$.

Gluskin-Milman

Let A_1, \ldots, A_s be measurable sets in \mathbb{R}^n and K be a star body in \mathbb{R}^n with $0 \in int(K)$. Assume that $|A_1| = \cdots = |A_s| = |K|$. Then, for all $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$,

$$\|\mathbf{t}\|_{\mathcal{A},\mathcal{K}} := \frac{1}{\prod_{j=1}^{s} |A_j|} \int_{A_1} \cdots \int_{A_s} \left\| \sum_{j=1}^{s} t_j x_j \right\|_{\mathcal{K}} dx_s \cdots dx_1 \ge c \, \|\mathbf{t}\|_2$$

Gluskin-Milman

Let A_1, \ldots, A_s be measurable sets in \mathbb{R}^n and K be a star body in \mathbb{R}^n with $0 \in int(K)$. Assume that $|A_1| = \cdots = |A_s| = |K|$. Then, for all $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$,

$$\|\mathbf{t}\|_{\mathcal{A},\mathcal{K}} := \frac{1}{\prod_{j=1}^{s} |A_j|} \int_{A_1} \cdots \int_{A_s} \left\| \sum_{j=1}^{s} t_j x_j \right\|_{\mathcal{K}} dx_s \cdots dx_1 \ge c \, \|\mathbf{t}\|_2$$

• The proof uses the Brascamp-Lieb-Luttinger rearrangement inequality.

Let $C = (C_1, \ldots, C_s)$ be an *s*-tuple of symmetric convex bodies and K be a symmetric convex body in \mathbb{R}^n with $|C_j| = |K| = 1$. Then, for any $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$,

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} \ge \frac{n}{e(n+1)} \|\mathbf{t}\|_2.$$

Let $C = (C_1, \ldots, C_s)$ be an *s*-tuple of symmetric convex bodies and K be a symmetric convex body in \mathbb{R}^n with $|C_j| = |K| = 1$. Then, for any $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$,

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} \ge \frac{n}{e(n+1)} \|\mathbf{t}\|_2.$$

• Since $\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}}$ is a norm, we may assume that $\|\mathbf{t}\|_2 = 1$. Our starting point is the next observation.

Let $C = (C_1, \ldots, C_s)$ be an *s*-tuple of symmetric convex bodies and K be a symmetric convex body in \mathbb{R}^n with $|C_j| = |K| = 1$. Then, for any $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$,

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} \ge \frac{n}{e(n+1)} \|\mathbf{t}\|_2.$$

• Since $\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}}$ is a norm, we may assume that $\|\mathbf{t}\|_2 = 1$. Our starting point is the next observation.

An identity

Let X_1, \ldots, X_s be independent random vectors, uniformly distributed on C_1, \ldots, C_s respectively. Given $\mathbf{t} = (t_1 \ldots, t_s) \in \mathbb{R}^s$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_1X_1 + \cdots + t_sX_s$. Then,

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}}=\int_{\mathbb{R}^n}\|x\|_{\mathcal{K}}d\nu_{\mathbf{t}}(x).$$

Let $C = (C_1, \ldots, C_s)$ be an *s*-tuple of symmetric convex bodies and K be a symmetric convex body in \mathbb{R}^n with $|C_j| = |K| = 1$. Then, for any $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$,

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} \ge rac{n}{e(n+1)} \|\mathbf{t}\|_2.$$

• Since $\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}}$ is a norm, we may assume that $\|\mathbf{t}\|_2 = 1$. Our starting point is the next observation.

An identity

Let X_1, \ldots, X_s be independent random vectors, uniformly distributed on C_1, \ldots, C_s respectively. Given $\mathbf{t} = (t_1 \ldots, t_s) \in \mathbb{R}^s$, we write ν_t for the distribution of the random vector $t_1X_1 + \cdots + t_sX_s$. Then,

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} = \int_{\mathbb{R}^n} \|x\|_{\mathcal{K}} d\nu_{\mathbf{t}}(x).$$

Note that v_t is an even log-concave probability measure on Rⁿ We write g_t for the density of v_t.

If $\|\mathbf{t}\|_2 = 1$ then $\|g_{\mathbf{t}}\|_{\infty} \leq e^n$.

If $\|\mathbf{t}\|_2 = 1$ then $\|g_{\mathbf{t}}\|_{\infty} \leq e^n$.

• Recall that the entropy of a random vector X in \mathbb{R}^n with density g(x) is defined by $h(X) = -\int_{\mathbb{R}^n} g(x) \log g(x) dx$.

If $\|\mathbf{t}\|_2 = 1$ then $\|g_{\mathbf{t}}\|_{\infty} \leq e^n$.

• Recall that the entropy of a random vector X in \mathbb{R}^n with density g(x) is defined by $h(X) = -\int_{\mathbb{R}^n} g(x) \log g(x) dx$.

Bobkov-Madiman

If g is log-concave then

$$\log(\|g\|_{\infty}^{-1}) \leqslant h(X) \leqslant n + \log(\|g\|_{\infty}^{-1}).$$

If $\|\mathbf{t}\|_2 = 1$ then $\|g_{\mathbf{t}}\|_{\infty} \leq e^n$.

• Recall that the entropy of a random vector X in \mathbb{R}^n with density g(x) is defined by $h(X) = -\int_{\mathbb{R}^n} g(x) \log g(x) dx$.

Bobkov-Madiman

If g is log-concave then

$$\log(\|g\|_{\infty}^{-1}) \leqslant h(X) \leqslant n + \log(\|g\|_{\infty}^{-1}).$$

• Let $\mathbf{t} \in \mathbb{R}^s$ with $\|\mathbf{t}\|_2 = 1$ and $t_1, \ldots, t_s \ge 0$. Then, if X_1, \ldots, X_s are independent random vectors with densities g_1, \ldots, g_s , by an equivalent form of the Shannon-Stam inequality, we have that $h(t_1X_1 + \cdots + t_sX_s) \ge \sum_{i=1}^s t_i^2 h(X_i)$.

If $\|\mathbf{t}\|_2 = 1$ then $\|g_{\mathbf{t}}\|_{\infty} \leq e^n$.

If $\|\mathbf{t}\|_2 = 1$ then $\|g_{\mathbf{t}}\|_{\infty} \leq e^n$.

• Since the density g_t of $t_1X_1 + \cdots + t_sX_s$ is also log-concave, we may write

$$\sum_{j=1}^s t_j^2 \log(\|g_j\|_\infty^{-1}) \leqslant \sum_{j=1}^s t_j^2 h(X_j) \leqslant h(t_1X_1 + \cdots + t_sX_s) \leqslant n + \log(\|g_t\|_\infty^{-1}),$$

which implies that $\|g_t\|_\infty \leqslant e^n \prod_{j=1}^s \|g_j\|_\infty^{t_j^2}$.

If $\|\mathbf{t}\|_2 = 1$ then $\|g_{\mathbf{t}}\|_{\infty} \leq e^n$.

• Since the density g_t of $t_1X_1 + \cdots + t_sX_s$ is also log-concave, we may write

$$\sum_{j=1}^s t_j^2 \log(\|g_j\|_\infty^{-1}) \leqslant \sum_{j=1}^s t_j^2 h(X_j) \leqslant h(t_1X_1 + \cdots + t_sX_s) \leqslant n + \log(\|g_t\|_\infty^{-1}),$$

which implies that $\|g_t\|_{\infty} \leqslant e^n \prod_{j=1}^s \|g_j\|_{\infty}^{t_j^2}$.

• In our case, $g_j = \mathbf{1}_{C_j}$, therefore $\|g_j\|_\infty = 1$ and the lemma follows.

If $\|\mathbf{t}\|_2 = 1$ then $\|g_{\mathbf{t}}\|_{\infty} \leq e^n$.

Lemma 2

Let f be a bounded positive density on \mathbb{R}^n . For any symmetric convex body K of volume 1 in \mathbb{R}^n we have

$$\frac{n}{n+1}\leqslant \|f\|_{\infty}^{1/n}\int_{\mathbb{R}^n}\|x\|_{\kappa}f(x)\,dx.$$

If $\|\mathbf{t}\|_2 = 1$ then $\|g_{\mathbf{t}}\|_{\infty} \leq e^n$.

Lemma 2

Let *f* be a bounded positive density on \mathbb{R}^n . For any symmetric convex body *K* of volume 1 in \mathbb{R}^n we have

$$\frac{n}{n+1} \leqslant \|f\|_{\infty}^{1/n} \int_{\mathbb{R}^n} \|x\|_{\kappa} f(x) \, dx.$$

• We have assumed that $|\mathcal{C}_j| = |\mathcal{K}| = 1$. We want a lower bound for

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} = \int_{\mathbb{R}^n} \|x\|_{\mathcal{K}} d\nu_{\mathbf{t}}(x) = \int_{\mathbb{R}^n} \|x\|_{\mathcal{K}} g_{\mathbf{t}}(x) \, dx$$

If $\|\mathbf{t}\|_2 = 1$ then $\|g_{\mathbf{t}}\|_{\infty} \leqslant e^n$.

Lemma 2

Let f be a bounded positive density on \mathbb{R}^n . For any symmetric convex body K of volume 1 in \mathbb{R}^n we have

$$\frac{n}{n+1} \leqslant \|f\|_{\infty}^{1/n} \int_{\mathbb{R}^n} \|x\|_{\kappa} f(x) \, dx.$$

• We have assumed that $|C_j| = |K| = 1$. We want a lower bound for

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} = \int_{\mathbb{R}^n} \|x\|_{\mathcal{K}} d\nu_{\mathbf{t}}(x) = \int_{\mathbb{R}^n} \|x\|_{\mathcal{K}} g_{\mathbf{t}}(x) \, dx.$$

• For any $\mathbf{t}\in\mathbb{R}^{s}$ with $\|\mathbf{t}\|_{2}=1$ we have $\|g_{\mathbf{t}}\|_{\infty}\leqslant e^{n}$, therefore

$$\frac{n}{n+1} \leqslant e \int_{\mathbb{R}^n} \|x\|_{\mathcal{K}} \, d\nu_{\mathbf{t}}(x) = e \, \|\mathbf{t}\|_{\mathcal{C},\mathcal{K}}.$$

 A convex body C in ℝⁿ is called isotropic if it has volume 1, it is centered, i.e. its barycenter is at the origin, and its inertia matrix is a multiple of the identity matrix: there exists a constant L_C > 0 such that

$$\|\langle \cdot, \xi \rangle\|_{L_2(C)}^2 := \int_C \langle x, \xi \rangle^2 dx = L_C^2, \qquad \xi \in S^{n-1}.$$

 A convex body C in ℝⁿ is called isotropic if it has volume 1, it is centered, i.e. its barycenter is at the origin, and its inertia matrix is a multiple of the identity matrix: there exists a constant L_C > 0 such that

$$\|\langle \cdot,\xi\rangle\|_{L_2(C)}^2 := \int_C \langle x,\xi\rangle^2 dx = L_C^2, \qquad \xi \in S^{n-1}.$$

 We say that a log-concave probability measure μ with density f_μ on ℝⁿ is isotropic if it is centered, i.e. if

$$\int_{\mathbb{R}^n} \langle x, \xi \rangle d\mu(x) = \int_{\mathbb{R}^n} \langle x, \xi \rangle f_\mu(x) dx = 0$$

for all $\xi \in S^{n-1}$, and $Cov(\mu)$ is the identity matrix.

 A convex body C in ℝⁿ is called isotropic if it has volume 1, it is centered, i.e. its barycenter is at the origin, and its inertia matrix is a multiple of the identity matrix: there exists a constant L_C > 0 such that

$$\|\langle\cdot,\xi\rangle\|_{L_2(C)}^2 := \int_C \langle x,\xi\rangle^2 dx = L_C^2, \qquad \xi \in S^{n-1}.$$

 We say that a log-concave probability measure μ with density f_μ on ℝⁿ is isotropic if it is centered, i.e. if

$$\int_{\mathbb{R}^n} \langle x, \xi \rangle d\mu(x) = \int_{\mathbb{R}^n} \langle x, \xi \rangle f_\mu(x) dx = 0$$

for all $\xi \in S^{n-1}$, and $Cov(\mu)$ is the identity matrix.

• If μ is an isotropic log-concave measure on \mathbb{R}^n with density $f_\mu,$ we define the isotropic constant of μ by

$$L_{\mu}:=\|f_{\mu}\|_{\infty}^{\frac{1}{n}}.$$

• If C is a centered convex body of volume 1 in \mathbb{R}^n then we say that a direction $\xi \in S^{n-1}$ is a ψ_{α} -direction (where $1 \leq \alpha \leq 2$) for C with constant $\varrho > 0$ if

$$\|\langle \cdot,\xi\rangle\|_{L_q(\mathcal{C})} \leq \varrho \, q^{1/\alpha} \|\langle \cdot,\xi\rangle\|_{L_2(\mathcal{C})},$$

for all $q \ge 2$.

• Similar definitions may be given in the context of a centered log-concave probability measure μ on \mathbb{R}^n .

• If C is a centered convex body of volume 1 in \mathbb{R}^n then we say that a direction $\xi \in S^{n-1}$ is a ψ_{α} -direction (where $1 \leq \alpha \leq 2$) for C with constant $\varrho > 0$ if

$$\|\langle \cdot, \xi \rangle\|_{L_q(C)} \leq \varrho \, q^{1/\alpha} \|\langle \cdot, \xi \rangle\|_{L_2(C)},$$

for all $q \ge 2$.

- Similar definitions may be given in the context of a centered log-concave probability measure μ on \mathbb{R}^n .
- From log-concavity it follows that every $\xi \in S^{n-1}$ is a ψ_1 -direction for any C or μ with an absolute constant ϱ : there exists $\varrho > 0$ such that

$$\|\langle \cdot, \xi \rangle\|_{L_q(\mu)} \leq \varrho \, q \|\langle \cdot, \xi \rangle\|_{L_2(\mu)}$$

for all $n \ge 1$, all centered log-concave probability measures μ on \mathbb{R}^n and all $\xi \in S^{n-1}$ and $q \ge 2$.

• We assume that C is an isotropic convex body in \mathbb{R}^n . We shall try to give upper estimates for $\|\mathbf{t}\|_{C^5, K}$, where K is a symmetric convex body in \mathbb{R}^n .

- We assume that C is an isotropic convex body in \mathbb{R}^n . We shall try to give upper estimates for $\|\mathbf{t}\|_{C^s, K}$, where K is a symmetric convex body in \mathbb{R}^n .
- Let X_1, \ldots, X_s be independent random vectors, uniformly distributed on C. Given $\mathbf{t} = (t_1 \ldots, t_s) \in \mathbb{R}^s$ with $\|\mathbf{t}\|_2 = 1$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_1X_1 + \cdots + t_sX_s$. It is then easily verified that the covariance matrix $\operatorname{Cov}(\nu_{\mathbf{t}})$ of $\nu_{\mathbf{t}}$ is a multiple of the identity: more precisely,

$$\operatorname{Cov}(\nu_{\mathbf{t}}) = L_C^2 I_n.$$

- We assume that C is an isotropic convex body in \mathbb{R}^n . We shall try to give upper estimates for $\|\mathbf{t}\|_{C^s, K}$, where K is a symmetric convex body in \mathbb{R}^n .
- Let X_1, \ldots, X_s be independent random vectors, uniformly distributed on C. Given $\mathbf{t} = (t_1 \ldots, t_s) \in \mathbb{R}^s$ with $\|\mathbf{t}\|_2 = 1$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_1X_1 + \cdots + t_sX_s$. It is then easily verified that the covariance matrix $\operatorname{Cov}(\nu_{\mathbf{t}})$ of $\nu_{\mathbf{t}}$ is a multiple of the identity: more precisely,

$$\operatorname{Cov}(\nu_{\mathbf{t}}) = L_C^2 I_n.$$

It follows that if g_t is the density of ν_t then f_t(x) = Lⁿ_Cg_t(L_Cx) is the density of an isotropic log-concave probability measure μ_t on ℝⁿ.

- We assume that C is an isotropic convex body in \mathbb{R}^n . We shall try to give upper estimates for $\|\mathbf{t}\|_{C^s, K}$, where K is a symmetric convex body in \mathbb{R}^n .
- Let X_1, \ldots, X_s be independent random vectors, uniformly distributed on C. Given $\mathbf{t} = (t_1 \ldots, t_s) \in \mathbb{R}^s$ with $\|\mathbf{t}\|_2 = 1$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_1X_1 + \cdots + t_sX_s$. It is then easily verified that the covariance matrix $\operatorname{Cov}(\nu_{\mathbf{t}})$ of $\nu_{\mathbf{t}}$ is a multiple of the identity: more precisely,

$$\operatorname{Cov}(\nu_{\mathbf{t}}) = L_C^2 I_n.$$

- It follows that if g_t is the density of ν_t then f_t(x) = Lⁿ_Cg_t(L_Cx) is the density of an isotropic log-concave probability measure μ_t on ℝⁿ.
- From Lemma 1 we have a bound for the isotropic constants of all these measures:

$$L_{\mu_{\mathbf{t}}} = \|f_{\mathbf{t}}\|_{\infty}^{\frac{1}{n}} = L_{C}\|g_{\mathbf{t}}\|_{\infty}^{\frac{1}{n}} \leqslant eL_{C}$$

for all $\mathbf{t} \in \mathbb{R}^s$ with $\|\mathbf{t}\|_2 = 1$.
- We assume that C is an isotropic convex body in \mathbb{R}^n . We shall try to give upper estimates for $\|\mathbf{t}\|_{C^{s},K}$, where K is a symmetric convex body in \mathbb{R}^n .
- Let X_1, \ldots, X_s be independent random vectors, uniformly distributed on C. Given $\mathbf{t} = (t_1 \ldots, t_s) \in \mathbb{R}^s$ with $\|\mathbf{t}\|_2 = 1$, we write $\nu_{\mathbf{t}}$ for the distribution of the random vector $t_1X_1 + \cdots + t_sX_s$. It is then easily verified that the covariance matrix $\operatorname{Cov}(\nu_{\mathbf{t}})$ of $\nu_{\mathbf{t}}$ is a multiple of the identity: more precisely,

$$\operatorname{Cov}(\nu_{\mathbf{t}}) = L_C^2 I_n.$$

- It follows that if g_t is the density of ν_t then f_t(x) = Lⁿ_Cg_t(L_Cx) is the density of an isotropic log-concave probability measure μ_t on ℝⁿ.
- From Lemma 1 we have a bound for the isotropic constants of all these measures:

$$L_{\mu_{\mathbf{t}}} = \|f_{\mathbf{t}}\|_{\infty}^{\frac{1}{n}} = L_{\mathcal{C}}\|g_{\mathbf{t}}\|_{\infty}^{\frac{1}{n}} \leqslant eL_{\mathcal{C}}$$

for all $\mathbf{t} \in \mathbb{R}^s$ with $\|\mathbf{t}\|_2 = 1$.

• We also have

$$\|\mathbf{t}\|_{C^{s},\kappa} = \int_{\mathbb{R}^{n}} \|x\|_{\kappa} \, d\nu_{\mathbf{t}}(x) = L_{C}^{-n} \int_{\mathbb{R}^{n}} \|x\|_{\kappa} f_{\mathbf{t}}(x/L_{C}) \, dx = L_{C} \int_{\mathbb{R}^{n}} \|y\|_{\kappa} d\mu_{\mathbf{t}}(y).$$

• Since $\|\mathbf{t}\|_{C^s,K} = \|\mathbf{t}\|_{(\mathcal{T}C)^s,\mathcal{T}K}$ for any $\mathcal{T} \in SL(n)$, we may restrict our attention to the case where C is isotropic.

- Since ||t||_{C^s,K} = ||t||_{(TC)^s,TK} for any T ∈ SL(n), we may restrict our attention to the case where C is isotropic.
- In this case

$$\|\mathbf{t}\|_{C^{\mathfrak{s}},\mathcal{K}}=\|\mathbf{t}\|_{2}L_{C}I_{1}(\mu_{\mathbf{t}},\mathcal{K}),$$

where $\mu_{\rm t}$ is an isotropic, compactly supported log-concave probability measure depending on ${\bf t}$ and

$$I_1(\mu, K) = \int_{\mathbb{R}^n} \|x\|_{K} d\mu(x).$$

- Since ||t||_{C^s,K} = ||t||_{(TC)^s,TK} for any T ∈ SL(n), we may restrict our attention to the case where C is isotropic.
- In this case

$$\|\mathbf{t}\|_{C^{s},K} = \|\mathbf{t}\|_{2}L_{C}I_{1}(\mu_{\mathbf{t}},K),$$

where $\mu_{\rm t}$ is an isotropic, compactly supported log-concave probability measure depending on ${\bf t}$ and

$$I_1(\mu, K) = \int_{\mathbb{R}^n} \|x\|_K d\mu(x).$$

• Note that if μ is isotropic and K is a symmetric convex body of volume 1 in \mathbb{R}^n then

$$\begin{split} \int_{O(n)} h_1(\mu, U(K)) \, d\nu(U) &= \int_{\mathbb{R}^n} \int_{O(n)} \|x\|_{U(K)} d\nu(U) \, d\mu(x) \\ &= M(K) \int_{\mathbb{R}^n} \|x\|_2 d\mu(x) \approx \sqrt{n} M(K). \end{split}$$

- Since ||t||_{C^s,K} = ||t||_{(TC)^s,TK} for any T ∈ SL(n), we may restrict our attention to the case where C is isotropic.
- In this case

$$\|\mathbf{t}\|_{C^{s},K} = \|\mathbf{t}\|_{2}L_{C}I_{1}(\mu_{\mathbf{t}},K),$$

where $\mu_{\rm t}$ is an isotropic, compactly supported log-concave probability measure depending on ${\bf t}$ and

$$I_1(\mu, K) = \int_{\mathbb{R}^n} \|x\|_K d\mu(x).$$

• Note that if μ is isotropic and K is a symmetric convex body of volume 1 in \mathbb{R}^n then

$$\begin{split} \int_{O(n)} h_1(\mu, U(K)) \, d\nu(U) &= \int_{\mathbb{R}^n} \int_{O(n)} \|x\|_{U(K)} d\nu(U) \, d\mu(x) \\ &= M(K) \int_{\mathbb{R}^n} \|x\|_2 d\mu(x) \approx \sqrt{n} M(K). \end{split}$$

• It follows that $\int_{O(n)} \|\mathbf{t}\|_{U(C)^{s},K} \approx (L_{C}\sqrt{n}M(K)) \|\mathbf{t}\|_{2}.$

- Since ||t||_{C^s,K} = ||t||_{(TC)^s,TK} for any T ∈ SL(n), we may restrict our attention to the case where C is isotropic.
- In this case

$$\|\mathbf{t}\|_{\mathcal{C}^{s},\mathcal{K}}=\|\mathbf{t}\|_{2}L_{\mathcal{C}}I_{1}(\mu_{\mathbf{t}},\mathcal{K}),$$

where $\mu_{\rm t}$ is an isotropic, compactly supported log-concave probability measure depending on ${\bf t}$ and

$$I_1(\mu, K) = \int_{\mathbb{R}^n} \|x\|_{K} d\mu(x).$$

• Note that if μ is isotropic and K is a symmetric convex body of volume 1 in \mathbb{R}^n then

$$\begin{split} \int_{O(n)} h_1(\mu, U(K)) \, d\nu(U) &= \int_{\mathbb{R}^n} \int_{O(n)} \|x\|_{U(K)} d\nu(U) \, d\mu(x) \\ &= M(K) \int_{\mathbb{R}^n} \|x\|_2 d\mu(x) \approx \sqrt{n} M(K). \end{split}$$

- It follows that $\int_{\mathcal{O}(n)} \|\mathbf{t}\|_{U(C)^{s},K} \approx (L_{C}\sqrt{n}M(K)) \|\mathbf{t}\|_{2}.$
- Therefore, our goal is to obtain a constant of the order of $L_C \sqrt{n}M(K)$ in our upper estimate for $\|\mathbf{t}\|_{C^s,K}$.

• In particular, in the case C = K we may assume that K is isotropic, and an optimal upper bound would be $O(L_K \sqrt{n}M(K_{iso}))$.

- In particular, in the case C = K we may assume that K is isotropic, and an optimal upper bound would be $O(L_K \sqrt{n}M(K_{iso}))$.
- The question to estimate the parameter *M*(*K*) for an isotropic symmetric convex body *K* in ℝⁿ remains open.

- In particular, in the case C = K we may assume that K is isotropic, and an optimal upper bound would be $O(L_K \sqrt{n}M(K_{iso}))$.
- The question to estimate the parameter *M*(*K*) for an isotropic symmetric convex body *K* in ℝⁿ remains open.
- One may hope that $L_K \sqrt{n}M(K_{iso}) \leq c(\log n)^b$ for some absolute constant b > 0.

- In particular, in the case C = K we may assume that K is isotropic, and an optimal upper bound would be $O(L_K \sqrt{n}M(K_{iso}))$.
- The question to estimate the parameter *M*(*K*) for an isotropic symmetric convex body *K* in ℝⁿ remains open.
- One may hope that $L_K \sqrt{n}M(K_{iso}) \leq c(\log n)^b$ for some absolute constant b > 0.
- However, the currently best known estimate is

$$M(K_{\mathrm{iso}}) \leqslant rac{c(\log n)^{2/5}}{\sqrt[10]{n}L_{K}}.$$

proved in [G. - E. Milman].

- In particular, in the case C = K we may assume that K is isotropic, and an optimal upper bound would be $O(L_K \sqrt{n}M(K_{iso}))$.
- The question to estimate the parameter *M*(*K*) for an isotropic symmetric convex body *K* in ℝⁿ remains open.
- One may hope that $L_K \sqrt{n}M(K_{iso}) \leq c(\log n)^b$ for some absolute constant b > 0.
- However, the currently best known estimate is

$$M(K_{\mathrm{iso}}) \leqslant rac{c(\log n)^{2/5}}{\sqrt[10]{n}L_{K}}.$$

proved in [G. - E. Milman].

• There, it is also shown that in the case where K is a ψ_2 -body with constant ϱ one has

$$M(K_{ ext{iso}}) \leqslant rac{C\sqrt[3]{arrho}(\log n)^{1/3}}{\sqrt[6]{n}L_K}.$$

G.-Chasapis-Skarmogiannis

Let C be an isotropic convex body in \mathbb{R}^n and K be a symmetric convex body in \mathbb{R}^n . Then,

$$\|\mathbf{t}\|_{\mathcal{C}^{s},\mathcal{K}} \leqslant c \max\left\{\sqrt[4]{n}, \sqrt{\log(1+s)}\right\} L_{\mathcal{C}}\sqrt{n}M(\mathcal{K})\|\mathbf{t}\|_{2}$$

for every $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$, where c > 0 is an absolute constant.

G.-Chasapis-Skarmogiannis

Let C be an isotropic convex body in \mathbb{R}^n and K be a symmetric convex body in \mathbb{R}^n . Then,

$$\|\mathbf{t}\|_{\mathcal{C}^{s},\mathcal{K}} \leqslant c \max\left\{\sqrt[4]{n},\sqrt{\log(1+s)}
ight\} L_{\mathcal{C}}\sqrt{n}M(\mathcal{K})\|\mathbf{t}\|_{2}$$

for every $\mathbf{t} = (t_1, \dots, t_s) \in \mathbb{R}^s$, where c > 0 is an absolute constant.

• For the proof one has to estimate

$$I_1(\mu_{\mathbf{t}}, K) = \int_{\mathbb{R}^n} \|x\|_K d\mu_{\mathbf{t}}(x)$$

where $\mu_{\rm t}$ is an isotropic, compactly supported log-concave probability measure depending on the unit vector ${\bf t}.$

G.-Chasapis-Skarmogiannis

Let C be an isotropic convex body in \mathbb{R}^n and K be a symmetric convex body in \mathbb{R}^n . Then,

$$\|\mathbf{t}\|_{\mathcal{C}^{s},\mathcal{K}}\leqslant c\,\max\left\{\sqrt[4]{n},\sqrt{\log(1+s)}
ight\}L_{\mathcal{C}}\sqrt{n}M(\mathcal{K})\|\mathbf{t}\|_{2}$$

for every $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$, where c > 0 is an absolute constant.

• For the proof one has to estimate

$$I_1(\mu_{\mathbf{t}}, K) = \int_{\mathbb{R}^n} \|x\|_K d\mu_{\mathbf{t}}(x)$$

where $\mu_{\rm t}$ is an isotropic, compactly supported log-concave probability measure depending on the unit vector ${\bf t}.$

• This is done with an argument that resembles Bourgain's proof of the bound $L_{K} = O(\sqrt[4]{n} \log n)$ and makes use of Talagrand's comparison theorem.

ψ_2 -case

Let *C* be an isotropic convex body in \mathbb{R}^n , which is a ψ_2 -body with constant ϱ , and *K* be a symmetric convex body in \mathbb{R}^n . Then for any $s \ge 1$ and every $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$,

 $\|\mathbf{t}\|_{C^{s},K} \leq c \varrho^{2} \sqrt{n} M(K) \|\mathbf{t}\|_{2}.$

ψ_2 -case

Let *C* be an isotropic convex body in \mathbb{R}^n , which is a ψ_2 -body with constant ϱ , and *K* be a symmetric convex body in \mathbb{R}^n . Then for any $s \ge 1$ and every $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$,

$$\|\mathbf{t}\|_{C^{s},K} \leq c \varrho^{2} \sqrt{n} M(K) \|\mathbf{t}\|_{2}.$$

Cotype-2 case

Let C be an isotropic symmetric convex body in \mathbb{R}^n and K be a symmetric convex body in \mathbb{R}^n . Then for any $s \ge 1$ and $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$,

 $\|\mathbf{t}\|_{C^{s},\kappa} \leq (c L_{C}C_{2}(X_{\kappa})\sqrt{n}M(\kappa)) \|\mathbf{t}\|_{2}$

where $C_2(X_K)$ is the cotype-2 constant of the space with unit ball K.

ψ_2 -case

Let C be an isotropic convex body in \mathbb{R}^n , which is a ψ_2 -body with constant ϱ , and K be a symmetric convex body in \mathbb{R}^n . Then for any $s \ge 1$ and every $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$,

$$\|\mathbf{t}\|_{C^{s},K} \leq c \varrho^{2} \sqrt{n} M(K) \|\mathbf{t}\|_{2}.$$

Cotype-2 case

Let C be an isotropic symmetric convex body in \mathbb{R}^n and K be a symmetric convex body in \mathbb{R}^n . Then for any $s \ge 1$ and $\mathbf{t} = (t_1, \ldots, t_s) \in \mathbb{R}^s$,

$$\|\mathbf{t}\|_{C^{s},K} \leq \left(c L_{C} C_{2}(X_{K}) \sqrt{n} M(K)\right) \|\mathbf{t}\|_{2}$$

where $C_2(X_K)$ is the cotype-2 constant of the space with unit ball K.

 This is a consequence of our representation of ||t||_{C⁵,K} and of a result of E. Milman: If μ is a finite, compactly supported isotropic measure on ℝⁿ then, for any symmetric convex body K in ℝⁿ,

$$I_1(\mu, K) \leqslant c \ C_2(X_K) \sqrt{n} M(K).$$

• In particular, for any symmetric convex body K of volume 1 in \mathbb{R}^n we have that

$$\int_{\mathcal{K}} \cdots \int_{\mathcal{K}} \left\| \sum_{j=1}^{s} t_{j} x_{j} \right\|_{\mathcal{K}} dx_{s} \cdots dx_{1} \leqslant \left(c L_{\mathcal{K}} C_{2}(X_{\mathcal{K}}) \sqrt{n} M(\mathcal{K}_{\text{iso}}) \right) \|\mathbf{t}\|_{2},$$

where K_{iso} is an isotropic image of K.

• In particular, for any symmetric convex body K of volume 1 in \mathbb{R}^n we have that

$$\int_{\mathcal{K}} \cdots \int_{\mathcal{K}} \left\| \sum_{j=1}^{s} t_{j} x_{j} \right\|_{\mathcal{K}} dx_{s} \cdots dx_{1} \leqslant \left(c L_{\mathcal{K}} C_{2}(X_{\mathcal{K}}) \sqrt{n} M(\mathcal{K}_{\mathrm{iso}}) \right) \|\mathbf{t}\|_{2},$$

where K_{iso} is an isotropic image of K.

Unconditional case

There exists an absolute constant c > 0 with the following property: if K and C_1, \ldots, C_s are isotropic unconditional convex bodies in \mathbb{R}^n then, for every $q \ge 1$,

$$\Big(\int_{C_1}\dots\int_{C_s}\Big\|\sum_{j=1}^s t_j x_j\Big\|_{\mathcal{K}}^q\,dx_1\dots\,dx_s\Big)^{1/q}\leqslant cn^{1/q}\sqrt{q}\cdot\max\{\|\mathbf{t}\|_2,\sqrt{q}\|\mathbf{t}\|_\infty\}\leqslant cn^{1/q}q\,\|\mathbf{t}\|_2,$$

for every $\mathbf{t} = (t_1, \dots, t_s) \in \mathbb{R}^s$. In particular,

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} \leqslant c\sqrt{\log n} \cdot \max\{\|\mathbf{t}\|_2, \sqrt{\log n}\|\mathbf{t}\|_\infty\} \leqslant c\log n \|\mathbf{t}\|_2.$$

• In particular, for any symmetric convex body K of volume 1 in \mathbb{R}^n we have that

$$\int_{\mathcal{K}} \cdots \int_{\mathcal{K}} \left\| \sum_{j=1}^{s} t_{j} x_{j} \right\|_{\mathcal{K}} dx_{s} \cdots dx_{1} \leqslant \left(c L_{\mathcal{K}} C_{2}(X_{\mathcal{K}}) \sqrt{n} M(\mathcal{K}_{iso}) \right) \|\mathbf{t}\|_{2},$$

where K_{iso} is an isotropic image of K.

Unconditional case

There exists an absolute constant c > 0 with the following property: if K and C_1, \ldots, C_s are isotropic unconditional convex bodies in \mathbb{R}^n then, for every $q \ge 1$,

$$\Big(\int_{C_1}\ldots\int_{C_s}\Big\|\sum_{j=1}^s t_jx_j\Big\|_{\mathcal{K}}^q\,dx_1\ldots\,dx_s\Big)^{1/q}\leqslant cn^{1/q}\sqrt{q}\cdot\max\{\|\mathbf{t}\|_2,\sqrt{q}\|\mathbf{t}\|_\infty\}\leqslant cn^{1/q}q\,\|\mathbf{t}\|_2,$$

for every $\mathbf{t} = (t_1, \dots, t_s) \in \mathbb{R}^s$. In particular,

$$\|\mathbf{t}\|_{\mathcal{C},\mathcal{K}} \leqslant c\sqrt{\log n} \cdot \max\{\|\mathbf{t}\|_2,\sqrt{\log n}\|\mathbf{t}\|_\infty\} \leqslant c\log n\,\|\mathbf{t}\|_2.$$

• This is essentially proved in [G.-Hartzoulaki-Tsolomitis]. The proof makes use of the comparison theorem of Bobkov and Nazarov.

Let K be a symmetric convex body in ℝ^N. For any x = (x₁,...,x_N) ∈ ⊕^N_{i=1}ℝⁿ we denote by

$$T_{\mathbf{x}} = [x_1 \cdots x_N]$$

the $n \times N$ matrix whose columns are the vectors x_i , and consider the convex body $T_x(K)$ in \mathbb{R}^n .

Let K be a symmetric convex body in ℝ^N. For any x = (x₁,...,x_N) ∈ ⊕^N_{i=1}ℝⁿ we denote by

$$T_{\mathbf{x}} = [x_1 \cdots x_N]$$

the $n \times N$ matrix whose columns are the vectors x_i , and consider the convex body $T_x(K)$ in \mathbb{R}^n .

Examples

• If
$$K = B_1^N$$
 then

$$T_{\mathbf{x}}(K) = \operatorname{conv}\{\pm x_1, \ldots, \pm x_N\}.$$

Let K be a symmetric convex body in ℝ^N. For any x = (x₁,...,x_N) ∈ ⊕^N_{i=1}ℝⁿ we denote by

$$T_{\mathbf{x}} = [x_1 \cdots x_N]$$

the $n \times N$ matrix whose columns are the vectors x_i , and consider the convex body $T_x(K)$ in \mathbb{R}^n .

Examples

• If $K = B_1^N$ then

$$T_{\mathbf{x}}(K) = \operatorname{conv}\{\pm x_1, \ldots, \pm x_N\}.$$

• If $K = B_{\infty}^{N}$ then

$$T_{\mathbf{x}}(K) = \sum_{i=1}^{N} [-x_i, x_i].$$

The question that we study is to estimate the expected volume of *T_x(K)* when *x*₁,..., *x_N* are independent random points distributed according to an isotropic log-concave probability measure *μ*.

• The question that we study is to estimate the expected volume of $T_x(K)$ when x_1, \ldots, x_N are independent random points distributed according to an isotropic log-concave probability measure μ .

Paouris-Pivovarov

Let $N \ge n$ and f_1, \ldots, f_N be probability densities on \mathbb{R}^n with $||f_i||_{\infty} \le 1$ for all $i = 1, \ldots, N$. Then,

$$\int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} |T_{\mathbf{x}}(\mathcal{K})| \prod_{i=1}^N f_i(x_i) \, dx_N \cdots dx_1$$

$$\geqslant \int_{D_n} \cdots \int_{D_n} |T_{\mathbf{x}}(\mathcal{K})| \, dx_N \cdots dx_1,$$

where D_n is the (centered at the origin) Euclidean ball of volume 1.

• The theorem of Paouris and Pivovarov shows that for a lower bound it is useful to examine the case $\mu = \mu_{D_n}$, where μ_{D_n} is the uniform measure on D_n .

• The theorem of Paouris and Pivovarov shows that for a lower bound it is useful to examine the case $\mu = \mu_{D_n}$, where μ_{D_n} is the uniform measure on D_n .

G.-Skarmogiannis

For any $N \ge n$ and any convex body K in \mathbb{R}^N we have

$$c_1\sqrt{N/n}\operatorname{vrad}(\mathcal{K})\leqslant \left(\mathbb{E}_{\mu_{D_n}^N} | T_{\mathbf{x}}(\mathcal{K})|^{1/n}
ight)\leqslant \left(\mathbb{E}_{\mu_{D_n}^N} | T_{\mathbf{x}}(\mathcal{K})|
ight)^{1/n}\leqslant c_2\sqrt{N/n}\,w(\mathcal{K}),$$

where $c_1, c_2 > 0$ are absolute constants.

$$K = B_{\infty}^{N}$$

$$\left(\mathbb{E}_{\mu^N} \left| T_{\mathbf{x}}(B_{\infty}^N) \right| \right)^{1/n} \approx \sqrt{N/n} \operatorname{vrad}(B_{\infty}^N).$$

$$K = B_{\infty}^{N}$$

$$\left(\mathbb{E}_{\mu^{N}} | T_{\mathbf{x}}(B_{\infty}^{N})|\right)^{1/n} \approx \sqrt{N/n} \operatorname{vrad}(B_{\infty}^{N}).$$

$K = B_1^N$

$$\mathbb{E}_{\mu^N}\left(|\mathrm{conv}\{\pm x_1,\ldots,\pm x_N\}|\right)^{1/n}\approx \frac{\sqrt{\log(2N/n)}}{\sqrt{n}}\leqslant \sqrt{N/n}\,w(B_1^N).$$

$$K = B_{\infty}^{N}$$

$$\left(\mathbb{E}_{\mu^N} | T_{\mathbf{x}}(B_{\infty}^N)|\right)^{1/n} \approx \sqrt{N/n} \operatorname{vrad}(B_{\infty}^N).$$

$K = B_1^N$

$$\mathbb{E}_{\mu^N}\left(|\operatorname{conv}\{\pm x_1,\ldots,\pm x_N\}|\right)^{1/n}\approx \frac{\sqrt{\log(2N/n)}}{\sqrt{n}}\leqslant \sqrt{N/n}\,w(B_1^N).$$

Unconditional K

Let μ be an isotropic log-concave probability measure on $\mathbb{R}^n.$ For any unconditional isotropic convex body K in \mathbb{R}^N we have

$$\mathbb{E}_{\mu^N}\left(|\mathcal{T}_{\mathsf{x}}(\mathcal{K})|\right)^{1/n} \leqslant c\sqrt{N/n}\operatorname{vrad}(\mathcal{K})\sqrt{\log(2N/n)}.$$

A general upper bound

Let μ be an isotropic log-concave probability measure on \mathbb{R}^n . For any $N \ge n$ and any symmetric convex body K in \mathbb{R}^N we have

$$\left(\mathbb{E}_{\mu^N}|T_{\mathsf{x}}(K)|\right)^{rac{1}{n}}\leqslant rac{cN}{n}w(K)$$

where c > 0 is an absolute constant.

A general upper bound

Let μ be an isotropic log-concave probability measure on \mathbb{R}^n . For any $N \ge n$ and any symmetric convex body K in \mathbb{R}^N we have

$$\left(\mathbb{E}_{\mu^{N}}|T_{\mathsf{x}}(K)|\right)^{rac{1}{n}}\leqslant rac{cN}{n}w(K)$$

where c > 0 is an absolute constant.

• Our starting point is the formula

$$|T_{x}(K)| = \sqrt{\det(T_{x}T_{x}^{*})}|P_{E_{x}}(K)|,$$

where $E_{\mathbf{x}} = \ker(T_{\mathbf{x}})^{\perp} = \operatorname{Range}(T_{\mathbf{x}}^{*}).$

A general upper bound

Let μ be an isotropic log-concave probability measure on \mathbb{R}^n . For any $N \ge n$ and any symmetric convex body K in \mathbb{R}^N we have

$$\left(\mathbb{E}_{\mu^N} |T_{\mathsf{x}}(K)|\right)^{rac{1}{n}} \leqslant rac{cN}{n} w(K)$$

where c > 0 is an absolute constant.

• Our starting point is the formula

$$|T_{\mathsf{x}}(K)| = \sqrt{\det(T_{\mathsf{x}}T_{\mathsf{x}}^*)} |P_{E_{\mathsf{x}}}(K)|,$$

where $E_x = \ker(T_x)^{\perp} = \operatorname{Range}(T_x^*)$.

• By the Cauchy-Binet formula

$$\det(T_{\mathsf{x}}T_{\mathsf{x}}^*) = \sum_{|S|=n} \det((T_{\mathsf{x}}|_S)(T_{\mathsf{x}}|_S)^*).$$

and

$$\mathbb{E}_{\mu^N}\big(\det((\mathcal{T}_{\mathsf{x}}|_{\mathcal{S}})(\mathcal{T}_{\mathsf{x}}|_{\mathcal{S}})^*)\big) = n! \, \det(\operatorname{Cov}(\mu)).$$

• Assuming that μ is isotropic we have that $det(Cov(\mu)) = 1$. It follows that

$$\mathbb{E}_{\mu^N}\big(\det(T_{\mathbf{x}}T^*_{\mathbf{x}})\big) = \binom{N}{n} n! \, \det(\operatorname{Cov}(\mu)) \leqslant N^n.$$

• Assuming that μ is isotropic we have that det $(Cov(\mu)) = 1$. It follows that

$$\mathbb{E}_{\mu^N}\big(\det(T_{\mathbf{x}}T_{\mathbf{x}}^*)\big) = \binom{\mathsf{N}}{\mathsf{n}} \, \mathsf{n}! \, \det(\mathrm{Cov}(\mu)) \leqslant \mathsf{N}^{\mathsf{n}}.$$

• Then,

$$\begin{split} \mathbb{E}_{\mu^{N}}\left(\left|T_{\mathbf{x}}(\mathcal{K})\right|\right) &\leqslant \left(\mathbb{E}_{\mu^{N}}\left(\det\left(T_{\mathbf{x}}T_{\mathbf{x}}^{*}\right)\right)^{1/2} \left(\mathbb{E}_{\mu^{N}}\left|P_{E_{\mathbf{x}}}(\mathcal{K})\right|^{2}\right)^{1/2} \\ &\leqslant N^{n/2}\left(\mathbb{E}_{\mu^{N}}\left|P_{E_{\mathbf{x}}}(\mathcal{K})\right|^{2}\right)^{1/2}. \end{split}$$

• Assuming that μ is isotropic we have that det $(Cov(\mu)) = 1$. It follows that

$$\mathbb{E}_{\mu^N}\big(\det(T_{\mathbf{x}}T_{\mathbf{x}}^*)\big) = \binom{\mathsf{N}}{\mathsf{n}} \, \mathsf{n}! \, \det(\operatorname{Cov}(\mu)) \leqslant \mathsf{N}^{\mathsf{n}}.$$

• Then,

$$\begin{split} \mathbb{E}_{\mu^{N}}\left(\left|\mathcal{T}_{\mathbf{x}}(\mathcal{K})\right|\right) &\leqslant \left(\mathbb{E}_{\mu^{N}}\left(\det\left(\mathcal{T}_{\mathbf{x}}\mathcal{T}_{\mathbf{x}}^{*}\right)\right)^{1/2} \left(\mathbb{E}_{\mu^{N}}\left|\mathcal{P}_{\mathcal{E}_{\mathbf{x}}}(\mathcal{K})\right|^{2}\right)^{1/2} \\ &\leqslant N^{n/2}\left(\mathbb{E}_{\mu^{N}}\left|\mathcal{P}_{\mathcal{E}_{\mathbf{x}}}(\mathcal{K})\right|^{2}\right)^{1/2}. \end{split}$$

• Then we use the fact that if K is a centrally symmetric convex body in \mathbb{R}^N then for any $1 \leq n < N$ and any $E \in G_{N,n}$ we have that

$$|P_E(K)|^{1/n} \leqslant c\sqrt{N/n} \frac{w(K)}{\sqrt{n}}.$$
• Assuming that μ is isotropic we have that det $(Cov(\mu)) = 1$. It follows that

$$\mathbb{E}_{\mu^N}\big(\det(T_{\mathbf{x}}T_{\mathbf{x}}^*)\big) = \binom{\mathsf{N}}{n} n! \, \det(\operatorname{Cov}(\mu)) \leqslant \mathsf{N}^n.$$

• Then,

$$\begin{split} \mathbb{E}_{\mu^{N}}\left(\left|\mathcal{T}_{\mathbf{x}}(\mathcal{K})\right|\right) &\leqslant \left(\mathbb{E}_{\mu^{N}}\left(\det\left(\mathcal{T}_{\mathbf{x}}\mathcal{T}_{\mathbf{x}}^{*}\right)\right)^{1/2} \left(\mathbb{E}_{\mu^{N}}\left|\mathcal{P}_{\mathcal{E}_{\mathbf{x}}}(\mathcal{K})\right|^{2}\right)^{1/2} \\ &\leqslant N^{n/2}\left(\mathbb{E}_{\mu^{N}}\left|\mathcal{P}_{\mathcal{E}_{\mathbf{x}}}(\mathcal{K})\right|^{2}\right)^{1/2}. \end{split}$$

• Then we use the fact that if K is a centrally symmetric convex body in \mathbb{R}^N then for any $1 \leq n < N$ and any $E \in G_{N,n}$ we have that

$$|P_E(K)|^{1/n} \leqslant c\sqrt{N/n} rac{w(K)}{\sqrt{n}}.$$

• This follows in a standard way from Sudakov's inequality.

Expected volume of random convex sets

• In a similar way, assuming that K is isotropic we have:

• In a similar way, assuming that K is isotropic we have:

Isotropic K

For any $N \ge n$ and any isotropic convex body K in \mathbb{R}^N we have

$$\left(\mathbb{E}_{\mu^{N}} \left| T_{\mathsf{x}}(K) \right| \right)^{1/n} \leqslant \frac{cN}{n} \operatorname{vrad}(K) L_{K}$$

where c > 0 is an absolute constant.

• In a similar way, assuming that K is isotropic we have:

Isotropic K

For any $N \ge n$ and any isotropic convex body K in \mathbb{R}^N we have

$$\left(\mathbb{E}_{\mu^{N}}\left|T_{\mathsf{x}}(K)\right|\right)^{1/n} \leqslant rac{cN}{n}\operatorname{vrad}(K)L_{K}$$

where c > 0 is an absolute constant.

• This time we use a classical inequality of Rogers and Shephard:

$$|P_{E_{\mathbf{x}}}(K)| \leq {\binom{N}{n}}|K \cap E_{\mathbf{x}}^{\perp}|^{-1}$$

for all x.

• In a similar way, assuming that K is isotropic we have:

Isotropic K

For any $N \ge n$ and any isotropic convex body K in \mathbb{R}^N we have

$$\left(\mathbb{E}_{\mu^{N}}\left|\mathcal{T}_{\mathsf{x}}(\mathcal{K})\right|\right)^{1/n} \leqslant rac{cN}{n} \operatorname{vrad}(\mathcal{K}) L_{\mathcal{K}}$$

where c > 0 is an absolute constant.

• This time we use a classical inequality of Rogers and Shephard:

$$|P_{E_{\mathbf{x}}}(K)| \leq {\binom{N}{n}}|K \cap E_{\mathbf{x}}^{\perp}|^{-1}$$

for all x.

• Since K is isotropic, we also know that

$$|K \cap E_{\mathbf{x}}^{\perp}|^{1/n} \geqslant \frac{c}{L_{K}}$$

• Let f be a probability density on \mathbb{R}^n with $||f||_{\infty} \leq 1$, fix $N \geq 1$ and an N-tuple $\mathbf{r} = (r_1, \ldots, r_N)$ of positive real numbers. Consider a sequence x_1, \ldots, x_N of independent random points in \mathbb{R}^n distributed according to f, and define the random ball-polyhedron

$$B(\mathbf{x},\mathbf{r}):=\bigcap_{i=1}^{N}B(x_i,r_i)$$

which is the intersection of the Euclidean balls $B(x_i, r_i) = x_i + r_i B_2^n$.

• Let f be a probability density on \mathbb{R}^n with $||f||_{\infty} \leq 1$, fix $N \geq 1$ and an N-tuple $\mathbf{r} = (r_1, \ldots, r_N)$ of positive real numbers. Consider a sequence x_1, \ldots, x_N of independent random points in \mathbb{R}^n distributed according to f, and define the random ball-polyhedron

$$B(\mathbf{x},\mathbf{r}):=\bigcap_{i=1}^N B(x_i,r_i)$$

which is the intersection of the Euclidean balls $B(x_i, r_i) = x_i + r_i B_2^n$.

• Paouris and Pivovarov showed that if z_1, \ldots, z_N is a sequence of independent random points in \mathbb{R}^n distributed according to the uniform measure on the Euclidean ball D_n of volume 1 then, for any $1 \leq j \leq n$ and for any $r_1, \ldots, r_N > 0$,

$$\mathbb{E}_{\mu^N} V_j \Big(\bigcap_{i=1}^N B(x_i, r_i) \Big) \leq \mathbb{E}_{\mu^N_{D_n}} V_j \Big(\bigcap_{i=1}^N B(z_i, r_i) \Big),$$

where V_j denotes the *j*-th intrinsic volume.

• Let f be a probability density on \mathbb{R}^n with $||f||_{\infty} \leq 1$, fix $N \geq 1$ and an N-tuple $\mathbf{r} = (r_1, \ldots, r_N)$ of positive real numbers. Consider a sequence x_1, \ldots, x_N of independent random points in \mathbb{R}^n distributed according to f, and define the random ball-polyhedron

$$B(\mathbf{x},\mathbf{r}):=\bigcap_{i=1}^{N}B(x_i,r_i)$$

which is the intersection of the Euclidean balls $B(x_i, r_i) = x_i + r_i B_2^n$.

• Paouris and Pivovarov showed that if z_1, \ldots, z_N is a sequence of independent random points in \mathbb{R}^n distributed according to the uniform measure on the Euclidean ball D_n of volume 1 then, for any $1 \leq j \leq n$ and for any $r_1, \ldots, r_N > 0$,

$$\mathbb{E}_{\mu^N} V_j \Big(\bigcap_{i=1}^N B(x_i, r_i) \Big) \leqslant \mathbb{E}_{\mu^N_{D_n}} V_j \Big(\bigcap_{i=1}^N B(z_i, r_i) \Big),$$

where V_j denotes the *j*-th intrinsic volume.

• In fact, they showed that the same holds true for any function $\varphi : \mathcal{K}^n \to [0, \infty)$ which is quasi-concave with respect to Minkowski addition, monotone and invariant under orthogonal transformations. The intrinsic volumes satisfy the above - the quasi-concavity is a consequence of the Aleksandrov-Fenchel inequality.

• Question: to estimate the expected volume

$$\mathbb{E}\left|\bigcap_{i=1}^{N}B(x_{i},r_{i})\right|$$

where x_1, \ldots, x_N are independent random points uniformly distributed in a convex body K of volume 1 in \mathbb{R}^n , and $r_1, \ldots, r_N > 0$.

• Question: to estimate the expected volume

$$\mathbb{E}\left|\bigcap_{i=1}^{N}B(x_{i},r_{i})\right|$$

where x_1, \ldots, x_N are independent random points uniformly distributed in a convex body K of volume 1 in \mathbb{R}^n , and $r_1, \ldots, r_N > 0$.

• More generally, to estimate the expected volume

$$\mathbb{E}\left|\bigcap_{i=1}^{N}(x_{i}+r_{i}C)\right|$$

where x_1, \ldots, x_N are independent random points uniformly distributed in a convex body K of volume 1 in \mathbb{R}^n , C is any symmetric convex body in \mathbb{R}^n , and $r_1, \ldots, r_N > 0$.

Skarmogiannis

Let K be a symmetric convex body of volume 1 in \mathbb{R}^n and x_1, \ldots, x_N be independent random points uniformly distributed in K. Then, for any symmetric convex body C in \mathbb{R}^n and any $r_1, \ldots, r_N > 0$,

$$c_{n,N}|\mathcal{K}+r\mathcal{C}|\prod_{i=1}^{N}|\mathcal{K}\cap r_{i}\mathcal{C}| \leq \mathbb{E}_{\mu_{\mathcal{K}}^{N}}\left(\left|\bigcap_{i=1}^{N}(x_{i}+r\mathcal{C})\right|\right) \leq |\mathcal{K}+r\mathcal{C}|\prod_{i=1}^{N}|\mathcal{K}\cap r_{i}\mathcal{C}|,$$

where $r = \min\{r_1, \ldots, r_N\}$ and $c_{n,N} = nB(n, nN + 1)$ where B(a, b) is the Beta function.

Lemma

Let K, C be centrally symmetric convex bodies in \mathbb{R}^n . Assume that |K| = 1. For any $r_1, \ldots, r_N > 0$,

$$\mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}(x_{i}+r_{i}C)\right|\right)=\int_{\mathcal{K}+(\min_{i}r_{i})C}\prod_{i=1}^{N}\left|\left(\mathcal{K}-y\right)\cap r_{i}C\right)\right|dy.$$

Lemma

Let K, C be centrally symmetric convex bodies in \mathbb{R}^n . Assume that |K| = 1. For any $r_1, \ldots, r_N > 0$,

$$\mathbb{E}_{\mu_{K}^{N}}\left(\Big|\bigcap_{i=1}^{N}(x_{i}+r_{i}C)\Big|\right)=\int_{\mathcal{K}+(\min_{i}r_{i})C}\prod_{i=1}^{N}|(\mathcal{K}-y)\cap r_{i}C)|\,dy.$$

Let $r_1, \ldots, r_N > 0$. We write

$$\begin{split} \mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}(x_{i}+r_{i}C)\right|\right) &= \int_{K}\cdots\int_{K}\int_{\mathbb{R}^{n}}\mathbf{1}_{\bigcap_{i=1}^{N}(x_{i}+r_{i}C)}(y)\,dy\,dx_{N}\cdots dx_{1}\\ &= \int_{K}\cdots\int_{K}\int_{\mathbb{R}^{n}}\prod_{i=1}^{N}\mathbf{1}_{x_{i}+r_{i}C}(y)\,dy\,dx_{N}\cdots dx_{1}\\ &= \int_{\mathbb{R}^{n}}\int_{K}\cdots\int_{K}\prod_{i=1}^{N}\mathbf{1}_{y+r_{i}C}(x_{i})\,dx_{N}\cdots dx_{1}\,dy = \int_{\mathbb{R}^{n}}\prod_{i=1}^{N}\left(\int_{K}\mathbf{1}_{y+r_{i}C}(x_{i})\,dx_{i}\right)\,dy\\ &= \int_{\mathbb{R}^{n}}\prod_{i=1}^{N}|K\cap(y+r_{i}C)|\,dy = \int_{\mathbb{R}^{n}}\prod_{i=1}^{N}|(K-y)\cap(r_{i}C)|\,dy. \end{split}$$

Lower bound

Let K be a symmetric convex body of volume 1 in \mathbb{R}^n and x_1, \ldots, x_N be independent random points uniformly distributed in K. Then, for any symmetric convex body C in \mathbb{R}^n and any $r_1, \ldots, r_N > 0$,

$$\mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}B(x_{i},r)\right|\right) \geq nB(n,nN+1)\left|K+rC\right|\prod_{i=1}^{N}\left|K\cap r_{i}C\right|$$

where $r = \min\{r_1, ..., r_N\}$.

Lower bound

Let K be a symmetric convex body of volume 1 in \mathbb{R}^n and x_1, \ldots, x_N be independent random points uniformly distributed in K. Then, for any symmetric convex body C in \mathbb{R}^n and any $r_1, \ldots, r_N > 0$,

$$\mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}B(x_{i},r)\right|\right) \geq nB(n,nN+1)\left|K+rC\right|\prod_{i=1}^{N}\left|K\cap r_{i}C\right|,$$

where $r = \min\{r_1, ..., r_N\}$.

• For each i = 1, ..., N consider the function $u_i : K + r_i C \to [0, \infty)$ with $u_i(y) = |(K - y) \cap r_i C|^{1/n}$. Using the Brunn-Minkowski inequality and the convexity of K and C we easily check that u_i is an even concave function.

Lower bound

Let K be a symmetric convex body of volume 1 in \mathbb{R}^n and x_1, \ldots, x_N be independent random points uniformly distributed in K. Then, for any symmetric convex body C in \mathbb{R}^n and any $r_1, \ldots, r_N > 0$,

$$\mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}B(x_{i},r)\right|\right) \geq nB(n,nN+1)\left|K+rC\right|\prod_{i=1}^{N}\left|K\cap r_{i}C\right|$$

where $r = \min\{r_1, ..., r_N\}$.

- For each i = 1, ..., N consider the function $u_i : K + r_i C \to [0, \infty)$ with $u_i(y) = |(K y) \cap r_i C|^{1/n}$. Using the Brunn-Minkowski inequality and the convexity of K and C we easily check that u_i is an even concave function.
- Let ρ denote the radial function of K + rC on S^{n-1} . Then,

$$\mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}(x_{i}+rC)\right|\right)=n\omega_{n}\int_{S^{n-1}}\int_{0}^{\varrho(\xi)}t^{n-1}\prod_{i=1}^{N}u_{i}^{n}(t\xi)\,dt\,d\sigma(\xi).$$

• Since each u_i is concave, we have

 $u_i(t\xi) \ge (1-t/\varrho(\xi))u_i(0) + (t/\varrho(\xi))u_i(\varrho(\xi)\xi) \ge (1-t/\varrho(\xi))u_i(0).$

• Since each u_i is concave, we have

 $u_i(t\xi) \ge (1-t/\varrho(\xi))u_i(0) + (t/\varrho(\xi))u_i(\varrho(\xi)\xi) \ge (1-t/\varrho(\xi))u_i(0).$

• Therefore,

$$\begin{split} & \mathbb{E}_{\mu_{K}^{N}}\left(\left|\bigcap_{i=1}^{N}(x_{i}+rC)\right|\right) \\ & \geqslant n\omega_{n}\prod_{i=1}^{N}u_{i}^{n}(0)\int_{S^{n-1}}\int_{0}^{\varrho(\xi)}t^{n-1}\left(1-\frac{t}{\varrho(\xi)}\right)^{nN}dt\,d\sigma(\xi) \\ & = n\omega_{n}\prod_{i=1}^{N}|K\cap r_{i}C|\int_{S^{n-1}}\int_{0}^{1}\varrho^{n}(\xi)s^{n-1}(1-s)^{nN}\,ds\,d\sigma(\xi) \\ & = n\prod_{i=1}^{N}|K\cap r_{i}C|\cdot\omega_{n}\int_{S^{n-1}}\varrho^{n}(\xi)\,d\sigma(\xi)\cdot\int_{0}^{1}s^{n-1}(1-s)^{nN}\,ds \\ & = nB(n,nN+1)|K+rC|\prod_{i=1}^{N}|K\cap r_{i}C|. \end{split}$$

• A natural question is to determine the best constant in the lower bound.

- A natural question is to determine the best constant in the lower bound.
- Note that the behavior of $\mathbb{E}_{\mu_{K}^{N}} \left| \bigcap_{i=1}^{N} (x_{i} + rC) \right|$ is different for small and large values of r.

- A natural question is to determine the best constant in the lower bound.
- Note that the behavior of $\mathbb{E}_{\mu_{K}^{N}} \left| \bigcap_{i=1}^{N} (x_{i} + rC) \right|$ is different for small and large values of *r*.
- One can check that

$$\lim_{r\to\infty}\frac{1}{|K+rC|\cdot|K\cap rC|^N}\mathbb{E}_{\mu_K^N}\Big|\bigcap_{i=1}^N(x_i+rC)\Big|=1$$

and $|K + rC| \cdot |K \cap rC|^N \sim |rC|$ as $r \to \infty$.

- A natural question is to determine the best constant in the lower bound.
- Note that the behavior of $\mathbb{E}_{\mu_{K}^{N}} \left| \bigcap_{i=1}^{N} (x_{i} + rC) \right|$ is different for small and large values of r.
- One can check that

$$\lim_{r\to\infty}\frac{1}{|K+rC|\cdot|K\cap rC|^N}\mathbb{E}_{\mu_K^N}\Big|\bigcap_{i=1}^N(x_i+rC)\Big|=1$$

and $|K + rC| \cdot |K \cap rC|^N \sim |rC|$ as $r \to \infty$.

Also,

$$\lim_{r\to 0^+} \frac{1}{|\mathcal{K}+r\mathcal{C}|\cdot|\mathcal{K}\cap r\mathcal{C}|^N} \mathbb{E}_{\mu_{\mathcal{K}}^N} \left| \bigcap_{i=1}^N (x_i+r\mathcal{C}) \right| = 1$$

and $|K + rC| \cdot |K \cap rC|^N \sim |rC|^N$ as $r \to 0^+$.