Volume product and metric spaces

Luis C. García-Lirola

Joint work with Mattew Alexander, Matthieu Fradelizi and Artem Zvavitch

Kent State University

Workshop in Geometric Tomography BIRS

February 13th, 2020

Finite metric spaces and graphs

- Let $M=\left\{a_{0}, \ldots, a_{n}\right\}$ be a finite metric space with metric d.

Finite metric spaces and graphs

- Let $M=\left\{a_{0}, \ldots, a_{n}\right\}$ be a finite metric space with metric d.
- We can represent M by a weighted graph:

Finite metric spaces and graphs

- Let $M=\left\{a_{0}, \ldots, a_{n}\right\}$ be a finite metric space with metric d.
- We can represent M by a weighted graph:

Finite metric spaces and graphs

- Let $M=\left\{a_{0}, \ldots, a_{n}\right\}$ be a finite metric space with metric d.
- We can represent M by a weighted graph:

Finite metric spaces and graphs

- Let $M=\left\{a_{0}, \ldots, a_{n}\right\}$ be a finite metric space with metric d.
- We can represent M by a weighted graph:

Finite metric spaces and graphs

- Let $M=\left\{a_{0}, \ldots, a_{n}\right\}$ be a finite metric space with metric d.
- We can represent M by a weighted graph:

- (x, y) is an edge of the graph if and only if $d(x, y)<d(x, z)+d(z, y)$ for all $z \in M \backslash\{x, y\}$.

Lipschitz-free spaces

- Given a metric space $M=\left\{a_{0}, \ldots, a_{n}\right\}$, we will see that there is a polytope in \mathbb{R}^{n} canonically associated to M.

Lipschitz-free spaces

- Given a metric space $M=\left\{a_{0}, \ldots, a_{n}\right\}$, we will see that there is a polytope in \mathbb{R}^{n} canonically associated to M.
- Consider functions f on M with $f\left(a_{0}\right)=0$.

Lipschitz-free spaces

- Given a metric space $M=\left\{a_{0}, \ldots, a_{n}\right\}$, we will see that there is a polytope in \mathbb{R}^{n} canonically associated to M.
- Consider functions f on M with $f\left(a_{0}\right)=0$.
- We identify $f \equiv\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right) \in \mathbb{R}^{n}$. We denote
$B_{\operatorname{Lip}_{0}(M)}:=\left\{f: \frac{f\left(a_{i}\right)-f\left(a_{j}\right)}{d\left(a_{i}, a_{j}\right)} \leq 1 \forall i \neq j\right\}=\left\{f:\left\langle f, \frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}\right\rangle \leq 1 \forall i \neq j\right\}$
$\left(e_{0}=0\right)$

Lipschitz-free spaces

- Given a metric space $M=\left\{a_{0}, \ldots, a_{n}\right\}$, we will see that there is a polytope in \mathbb{R}^{n} canonically associated to M.
- Consider functions f on M with $f\left(a_{0}\right)=0$.
- We identify $f \equiv\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right) \in \mathbb{R}^{n}$. We denote

$$
\begin{aligned}
& B_{\operatorname{Lip}_{0}(M)}:=\left\{f: \frac{f\left(a_{i}\right)-f\left(a_{j}\right)}{d\left(a_{i}, a_{j}\right)} \leq 1 \forall i \neq j\right\}=\left\{f:\left\langle f, \frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}\right\rangle \leq 1 \forall i \neq j\right\} \\
& \left(e_{0}=0\right)
\end{aligned}
$$

$$
B_{\operatorname{Lip}_{0}(M)}^{\circ}=\operatorname{conv}\left\{\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}: i \neq j\right\}=: B_{\mathcal{F}(M)}
$$

Lipschitz-free spaces

- Given a metric space $M=\left\{a_{0}, \ldots, a_{n}\right\}$, we will see that there is a polytope in \mathbb{R}^{n} canonically associated to M.
- Consider functions f on M with $f\left(a_{0}\right)=0$.
- We identify $f \equiv\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right) \in \mathbb{R}^{n}$. We denote
$B_{\operatorname{Lip}_{0}(M)}:=\left\{f: \frac{f\left(a_{i}\right)-f\left(a_{j}\right)}{d\left(a_{i}, a_{j}\right)} \leq 1 \forall i \neq j\right\}=\left\{f:\left\langle f, \frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}\right\rangle \leq 1 \forall i \neq j\right\}$
$\left(e_{0}=0\right)$

$$
B_{\operatorname{Lip}_{0}(M)}^{\circ}=\operatorname{conv}\left\{\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}: i \neq j\right\}=: B_{\mathcal{F}(M)}
$$

- $\mathcal{F}(M)$ is called the Lipschitz-free space over M (also Arens-Eells, Wasserstein 1, transportation cost, Kantorovich-Rubinstein, ...)

Lipschitz-free spaces

$$
B_{\mathcal{F}(M)}=\operatorname{conv}\left\{\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}: i \neq j\right\}
$$

Lipschitz-free spaces

$$
B_{\mathcal{F}(M)}=\operatorname{conv}\left\{\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}: i \neq j\right\}
$$

Theorem (Aliaga-Guirao, 2019)

$\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}$ is a vertex of $B_{\mathcal{F}(M)}$ if and only if $d(x, y)<d(x, z)+d(z, y)$ for all $z \in M \backslash\{x, y\}$.

Lipschitz-free spaces

$$
B_{\mathcal{F}(M)}=\operatorname{conv}\left\{\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}: i \neq j\right\}
$$

Theorem (Aliaga-Guirao, 2019)

$\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}$ is a vertex of $B_{\mathcal{F}(M)}$ if and only if $d(x, y)<d(x, z)+d(z, y)$ for all $z \in M \backslash\{x, y\}$.

Indeed, we have shown that $\frac{e_{i}-e_{j}}{d\left(a_{i} ; a_{j}\right)}$ belongs to a face of $B_{\mathcal{F}(M)}$ of dimension k precisely if there are k different points $z_{1}, \ldots, z_{k} \in M \backslash\{x, y\}$ such that $d(x, y)=d\left(x, z_{k}\right)+d\left(z_{k}, y\right)$.

Lipschitz-free spaces

$$
B_{\mathcal{F}(M)}=\operatorname{conv}\left\{\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}: i \neq j\right\}
$$

Theorem (Aliaga-Guirao, 2019)

$\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}$ is a vertex of $B_{\mathcal{F}(M)}$ if and only if $d(x, y)<d(x, z)+d(z, y)$ for all $z \in M \backslash\{x, y\}$.

Indeed, we have shown that $\frac{e_{i}-e_{j}}{d\left(a_{i} ; a_{j}\right)}$ belongs to a face of $B_{\mathcal{F}(M)}$ of dimension k precisely if there are k different points $z_{1}, \ldots, z_{k} \in M \backslash\{x, y\}$ such that $d(x, y)=d\left(x, z_{k}\right)+d\left(z_{k}, y\right)$.

Theorem (Godard, 2010)

- M is a tree if and only if $B_{\mathcal{F}(M)}$ is a linear image of B_{1}^{n}.
- M embeds into a tree if and only if $B_{\text {Lippo }_{0}(M)}$ is a zonoid.

Volume product

Given a centrally symmetric convex body $K \subset \mathbb{R}^{n}$, its volume product is defined as

$$
\mathcal{P}(K)=|K| \cdot\left|K^{\circ}\right|
$$

Volume product

Given a centrally symmetric convex body $K \subset \mathbb{R}^{n}$, its volume product is defined as

$$
\mathcal{P}(K)=|K| \cdot\left|K^{\circ}\right|
$$

Blaschke-Santaló inequality

$$
\mathcal{P}(K) \leq \mathcal{P}\left(B_{2}^{n}\right)
$$

- (Blaschke, 1923) for $n \leq 3$, (Santaló, 1948) for $n>3$.
- (Saint-Raymond, 1981), (Petty, 1985) for the equality case.
- Proofs using Steiner symmetrization: (Ball, 1986), (Meyer-Pajor, 1990).
- Harmonic Analysis based proof (Bianchi-Kelly, 2015).
- Stability Results: (Böröczky, 2010), (Barthe-Böröczky-Fradelizi, 2014).
- Functional forms (for log-concave functions): (Ball, 1986), (Artstein-Avidan -Klartag-Milman, 2004), (Fradelizi-Meyer, 2007), (Lehec, 2009).

Volume product

Mahler's conjecture, symmetric case

$$
\mathcal{P}(K) \geq \mathcal{P}\left(B_{1}^{n}\right)=\frac{4^{n}}{n!}
$$

Volume product

Mahler's conjecture, symmetric case

$$
\mathcal{P}(K) \geq \mathcal{P}\left(B_{1}^{n}\right)=\frac{4^{n}}{n!}
$$

- True if $n=2$ (Mahler, 1939) and if $n=3$ (Iriyeh-Shibata, 2019), short proof Fradelizi-Hubard-Meyer-Roldán-Pensado-Zvavitch, 2019.

Volume product

Mahler's conjecture, symmetric case

$$
\mathcal{P}(K) \geq \mathcal{P}\left(B_{1}^{n}\right)=\frac{4^{n}}{n!}
$$

- True if $n=2$ (Mahler, 1939) and if $n=3$ (Iriyeh-Shibata, 2019), short proof Fradelizi-Hubard-Meyer-Roldán-Pensado-Zvavitch, 2019.
- Unconditional bodies (Saint-Raymond, 1981), equality case (Meyer, 1986), (Reisner, 1987).
- Around Hanner polytopes/Unconditional bodies (Nazarov-Petrov-Ryabogin-Zvavitch, 2010), (Kim, 2013), (Kim-Zvavitch, 2013).
- Body has a point of positive curvature then it is not a minimizer. (Stancu, 2009), (Reisner-Schütt-Werner, 2010), (Gordon-Meyer, 2011).
- Zonoids (Reisner, 1986), (Gordon-Meyer-Reisner, 1988).
- Hyperplane sections of ℓ_{p}-balls and Hanner polytopes, (Karasev, 2019).
- Convex bodies with 'many' symmetries (Barthe-Fradelizi, 2010).
- Polytopes with a few vertices (Lopez-Reisner 1998), (Meyer-Reisner, 2006).

Volume product

Mahler's conjecture, symmetric case

$$
\mathcal{P}(K) \geq \mathcal{P}\left(B_{1}^{n}\right)=\frac{4^{n}}{n!}
$$

- True if $n=2$ (Mahler, 1939) and if $n=3$ (Iriyeh-Shibata, 2019), short proof Fradelizi-Hubard-Meyer-Roldán-Pensado-Zvavitch, 2019.
- Unconditional bodies (Saint-Raymond, 1981), equality case (Meyer, 1986), (Reisner, 1987).
- Around Hanner polytopes/Unconditional bodies (Nazarov-Petrov-Ryabogin-Zvavitch, 2010), (Kim, 2013), (Kim-Zvavitch, 2013).
- Body has a point of positive curvature then it is not a minimizer. (Stancu, 2009), (Reisner-Schütt-Werner, 2010), (Gordon-Meyer, 2011).
- Zonoids (Reisner, 1986), (Gordon-Meyer-Reisner, 1988).
- Hyperplane sections of ℓ_{p}-balls and Hanner polytopes, (Karasev, 2019).
- Convex bodies with 'many' symmetries (Barthe-Fradelizi, 2010).
- Polytopes with a few vertices (Lopez-Reisner 1998), (Meyer-Reisner, 2006).
- Bourgain-Milman Inequality: $\mathcal{P}(K) \geq c^{n} \mathcal{P}\left(B_{\infty}^{n}\right)$ (Bourgain-Milman, 1987), (Kuperberg, 2008), (Nazarov, 2009), (Giannopoulos-Paouris-Vritsiou, 2012).

Volume product

Mahler's conjecture, symmetric case

$$
\mathcal{P}(K) \geq \mathcal{P}\left(B_{1}^{n}\right)=\frac{4^{n}}{n!}
$$

- True if $n=2$ (Mahler, 1939) and if $n=3$ (Iriyeh-Shibata, 2019), short proof Fradelizi-Hubard-Meyer-Roldán-Pensado-Zvavitch, 2019.
- Unconditional bodies (Saint-Raymond, 1981), equality case (Meyer, 1986), (Reisner, 1987).
- Around Hanner polytopes/Unconditional bodies (Nazarov-Petrov-Ryabogin-Zvavitch, 2010), (Kim, 2013), (Kim-Zvavitch, 2013).
- Body has a point of positive curvature then it is not a minimizer. (Stancu, 2009), (Reisner-Schütt-Werner, 2010), (Gordon-Meyer, 2011).
- Zonoids (Reisner, 1986), (Gordon-Meyer-Reisner, 1988).
- Hyperplane sections of ℓ_{p}-balls and Hanner polytopes, (Karasev, 2019).
- Convex bodies with 'many' symmetries (Barthe-Fradelizi, 2010).
- Polytopes with a few vertices (Lopez-Reisner 1998), (Meyer-Reisner, 2006).
- Bourgain-Milman Inequality: $\mathcal{P}(K) \geq c^{n} \mathcal{P}\left(B_{\infty}^{n}\right)$ (Bourgain-Milman, 1987), (Kuperberg, 2008), (Nazarov, 2009), (Giannopoulos-Paouris-Vritsiou, 2012).
- It follows from Viterbo's conjecture in symplectic geometry, (Artstein-Avidan-Karasev-Ostrover, 2014).

Volume product

Mahler's conjecture, symmetric case

$$
\mathcal{P}(K) \geq \mathcal{P}\left(B_{1}^{n}\right)=\frac{4^{n}}{n!}
$$

- True if $n=2$ (Mahler, 1939) and if $n=3$ (Iriyeh-Shibata, 2019), short proof Fradelizi-Hubard-Meyer-Roldán-Pensado-Zvavitch, 2019.
- Unconditional bodies (Saint-Raymond, 1981), equality case (Meyer, 1986), (Reisner, 1987).
- Around Hanner polytopes/Unconditional bodies (Nazarov-Petrov-Ryabogin-Zvavitch, 2010), (Kim, 2013), (Kim-Zvavitch, 2013).
- Body has a point of positive curvature then it is not a minimizer. (Stancu, 2009), (Reisner-Schütt-Werner, 2010), (Gordon-Meyer, 2011).
- Zonoids (Reisner, 1986), (Gordon-Meyer-Reisner, 1988).
- Hyperplane sections of ℓ_{p}-balls and Hanner polytopes, (Karasev, 2019).
- Convex bodies with 'many' symmetries (Barthe-Fradelizi, 2010).
- Polytopes with a few vertices (Lopez-Reisner 1998), (Meyer-Reisner, 2006).
- Bourgain-Milman Inequality: $\mathcal{P}(K) \geq c^{n} \mathcal{P}\left(B_{\infty}^{n}\right)$ (Bourgain-Milman, 1987), (Kuperberg, 2008), (Nazarov, 2009), (Giannopoulos-Paouris-Vritsiou, 2012).
- It follows from Viterbo's conjecture in symplectic geometry, (Artstein-Avidan-Karasev-Ostrover, 2014).
- Functional forms (for log-concave functions): (Klartag-Milman, 2005), (Fradelizi-Meyer, 2010), (Gordon-Fradelizi-Meyer-Reisner, 2010).

Shadow Systems

A shadow system in direction $\vec{\theta} \in S^{n-1}$ with base B is given by

$$
K_{t}=\operatorname{conv}\{x+\alpha(x) t \vec{\theta}, \text { over all } x \in B\}
$$

where $B \subset \mathbb{R}^{n}$ is bounded, $\alpha: B \rightarrow \mathbb{R}$ is bounded, and $t \in[a, b]$.

Shadow Systems

A shadow system in direction $\vec{\theta} \in S^{n-1}$ with base B is given by

$$
K_{t}=\operatorname{conv}\{x+\alpha(x) t \vec{\theta}, \text { over all } x \in B\}
$$

where $B \subset \mathbb{R}^{n}$ is bounded, $\alpha: B \rightarrow \mathbb{R}$ is bounded, and $t \in[a, b]$.

Shadow Systems

A shadow system in direction $\vec{\theta} \in S^{n-1}$ with base B is given by

$$
K_{t}=\operatorname{conv}\{x+\alpha(x) t \vec{\theta}, \text { over all } x \in B\}
$$

where $B \subset \mathbb{R}^{n}$ is bounded, $\alpha: B \rightarrow \mathbb{R}$ is bounded, and $t \in[a, b]$.

- $t \mapsto\left|K_{t}\right|$ is a convex function (Rogers-Shephard, 1958).

Shadow Systems

A shadow system in direction $\vec{\theta} \in S^{n-1}$ with base B is given by

$$
K_{t}=\operatorname{conv}\{x+\alpha(x) t \vec{\theta}, \text { over all } x \in B\}
$$

where $B \subset \mathbb{R}^{n}$ is bounded, $\alpha: B \rightarrow \mathbb{R}$ is bounded, and $t \in[a, b]$.

- $t \mapsto\left|K_{t}\right|$ is a convex function (Rogers-Shephard, 1958).
- If K_{t} is symmetric for all $t \in[a, b]$, then $t \mapsto\left|K_{t}^{o}\right|^{-1}$ is convex (Campi-Gronchi, 2006), non-symmetric case by (Meyer-Reisner 2006).

Shadow Systems

A shadow system in direction $\vec{\theta} \in S^{n-1}$ with base B is given by

$$
K_{t}=\operatorname{conv}\{x+\alpha(x) t \vec{\theta}, \text { over all } x \in B\}
$$

where $B \subset \mathbb{R}^{n}$ is bounded, $\alpha: B \rightarrow \mathbb{R}$ is bounded, and $t \in[a, b]$.

- $t \mapsto\left|K_{t}\right|$ is a convex function (Rogers-Shephard, 1958).
- If K_{t} is symmetric for all $t \in[a, b]$, then $t \mapsto\left|K_{t}^{o}\right|^{-1}$ is convex (Campi-Gronchi, 2006), non-symmetric case by (Meyer-Reisner 2006).

As a consequence, if $t \mapsto\left|K_{t}\right|$ is affine, then

$$
\min _{t \in[a, b]} \mathcal{P}\left(K_{t}\right)=\min \left\{\mathcal{P}\left(K_{a}\right), \mathcal{P}\left(K_{b}\right)\right\}
$$

The volume product of a metric space

$$
\mathcal{P}(M):=\left|B_{\mathcal{F}(M)}\right| \cdot\left|B_{\text {Lip }_{0}(M)}\right|
$$

The volume product of a metric space

$$
\mathcal{P}(M):=\left|B_{\mathcal{F}(M)}\right| \cdot\left|B_{\mathrm{Lip}_{0}(M)}\right| \geq \frac{4^{n}}{n!} ?
$$

The volume product of a metric space

$$
\mathcal{P}(M):=\left|B_{\mathcal{F}(M)}\right| \cdot\left|B_{\mathrm{Lip}_{0}(M)}\right| \geq \frac{4^{n}}{n!} ?
$$

Theorem (Alexander-Fradelizi-G.-Zvavitch, 2019)
Let M be a finite metric space with minimal volume product such that $B_{\mathcal{F}(M)}$ is a simplicial polytope. Then M is a tree (and so $\mathcal{P}(M)=4^{n} / n!$).

The volume product of a metric space

$$
\mathcal{P}(M):=\left|B_{\mathcal{F}(M)}\right| \cdot\left|B_{\mathrm{Lip}_{0}(M)}\right| \geq \frac{4^{n}}{n!} ?
$$

Theorem (Alexander-Fradelizi-G.-Zvavitch, 2019)
Let M be a finite metric space with minimal volume product such that $B_{\mathcal{F}(M)}$ is a simplicial polytope. Then M is a tree (and so $\mathcal{P}(M)=4^{n} / n!$).

Proof. Fix an edge $\left(a_{i}, a_{j}\right)$ of the graph of M and denote $m_{i j}=\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}$.

The volume product of a metric space

$$
\mathcal{P}(M):=\left|B_{\mathcal{F}(M)}\right| \cdot\left|B_{\mathrm{Lip}_{0}(M)}\right| \geq \frac{4^{n}}{n!} ?
$$

Theorem (Alexander-Fradelizi-G.-Zvavitch, 2019)

Let M be a finite metric space with minimal volume product such that $B_{\mathcal{F}(M)}$ is a simplicial polytope. Then M is a tree (and so $\mathcal{P}(M)=4^{n} / n!$).

Proof. Fix an edge (a_{i}, a_{j}) of the graph of M and denote $m_{i j}=\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}$. For $|t|$ small enough, consider the metric space M_{t} with the same graph as M but weight of $\left(a_{i}, a_{j}\right)$ is replaced by $d_{t}\left(a_{i}, a_{j}\right)=\frac{d\left(a_{i}, a_{j}\right)}{1+t}$.

The volume product of a metric space

$$
\mathcal{P}(M):=\left|B_{\mathcal{F}(M)}\right| \cdot\left|B_{\operatorname{Lip}_{0}(M)}\right| \geq \frac{4^{n}}{n!} ?
$$

Theorem (Alexander-Fradelizi-G.-Zvavitch, 2019)

Let M be a finite metric space with minimal volume product such that $B_{\mathcal{F}(M)}$ is a simplicial polytope. Then M is a tree (and so $\mathcal{P}(M)=4^{n} / n!$).

Proof. Fix an edge (a_{i}, a_{j}) of the graph of M and denote $m_{i j}=\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}$. For $|t|$ small enough, consider the metric space M_{t} with the same graph as M but weight of $\left(a_{i}, a_{j}\right)$ is replaced by $d_{t}\left(a_{i}, a_{j}\right)=\frac{d\left(a_{i}, a_{j}\right)}{1+t}$. Then,

$$
B_{\mathcal{F}\left(M_{t}\right)}=\operatorname{conv}\left\{\left(\operatorname{vertices}\left(B_{\mathcal{F}(M)}\right) \backslash\left\{ \pm m_{i j}\right\}\right) \cup \pm(1+t) m_{i j}\right\}
$$

The volume product of a metric space

$$
\mathcal{P}(M):=\left|B_{\mathcal{F}(M)}\right| \cdot\left|B_{\operatorname{Lip}_{0}(M)}\right| \geq \frac{4^{n}}{n!} ?
$$

Theorem (Alexander-Fradelizi-G.-Zvavitch, 2019)

Let M be a finite metric space with minimal volume product such that $B_{\mathcal{F}(M)}$ is a simplicial polytope. Then M is a tree (and so $\mathcal{P}(M)=4^{n} / n!$).

Proof. Fix an edge (a_{i}, a_{j}) of the graph of M and denote $m_{i j}=\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}$. For $|t|$ small enough, consider the metric space M_{t} with the same graph as M but weight of $\left(a_{i}, a_{j}\right)$ is replaced by $d_{t}\left(a_{i}, a_{j}\right)=\frac{d\left(a_{i}, a_{j}\right)}{1+t}$. Then,

$$
B_{\mathcal{F}\left(M_{t}\right)}=\operatorname{conv}\left\{\left(\operatorname{vertices}\left(B_{\mathcal{F}(M)}\right) \backslash\left\{ \pm m_{i j}\right\}\right) \cup \pm(1+t) m_{i j}\right\}
$$

- $t \mapsto B_{\mathcal{F}\left(M_{t}\right)}$ is a shadow system based on the vertices of $B_{\mathcal{F}(M)}$.
- $t \mapsto\left|B_{\mathcal{F}\left(M_{t}\right)}\right|$ is affine.

The volume product of a metric space

$$
\mathcal{P}(M):=\left|B_{\mathcal{F}(M)}\right| \cdot\left|B_{\text {Lip }_{0}(M)}\right| \geq \frac{4^{n}}{n!} ?
$$

Theorem (Alexander-Fradelizi-G.-Zvavitch, 2019)

Let M be a finite metric space with minimal volume product such that $B_{\mathcal{F}(M)}$ is a simplicial polytope. Then M is a tree (and so $\mathcal{P}(M)=4^{n} / n!$).

Proof. Fix an edge (a_{i}, a_{j}) of the graph of M and denote $m_{i j}=\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}$. For $|t|$ small enough, consider the metric space M_{t} with the same graph as M but weight of $\left(a_{i}, a_{j}\right)$ is replaced by $d_{t}\left(a_{i}, a_{j}\right)=\frac{d\left(a_{i}, a_{j}\right)}{1+t}$. Then,

$$
B_{\mathcal{F}\left(M_{t}\right)}=\operatorname{conv}\left\{\left(\operatorname{vertices}\left(B_{\mathcal{F}(M)}\right) \backslash\left\{ \pm m_{i j}\right\}\right) \cup \pm(1+t) m_{i j}\right\}
$$

- $t \mapsto B_{\mathcal{F}\left(M_{t}\right)}$ is a shadow system based on the vertices of $B_{\mathcal{F}(M)}$.
- $t \mapsto\left|B_{\mathcal{F}\left(M_{t}\right)}\right|$ is affine.
- A result by (Fradelizi-Meyer-Zvavitch, 2012) ensures that $B_{\mathcal{F}(M)}$ is a double cone with apex $m_{i j}$.

The volume product of a metric space

$$
\mathcal{P}(M):=\left|B_{\mathcal{F}(M)}\right| \cdot\left|B_{\text {Lip }_{0}(M)}\right| \geq \frac{4^{n}}{n!} ?
$$

Theorem (Alexander-Fradelizi-G.-Zvavitch, 2019)

Let M be a finite metric space with minimal volume product such that $B_{\mathcal{F}(M)}$ is a simplicial polytope. Then M is a tree (and so $\mathcal{P}(M)=4^{n} / n!$).

Proof. Fix an edge (a_{i}, a_{j}) of the graph of M and denote $m_{i j}=\frac{e_{i}-e_{j}}{d\left(a_{i}, a_{j}\right)}$. For $|t|$ small enough, consider the metric space M_{t} with the same graph as M but weight of $\left(a_{i}, a_{j}\right)$ is replaced by $d_{t}\left(a_{i}, a_{j}\right)=\frac{d\left(a_{i}, a_{j}\right)}{1+t}$. Then,

$$
B_{\mathcal{F}\left(M_{t}\right)}=\operatorname{conv}\left\{\left(\operatorname{vertices}\left(B_{\mathcal{F}(M)}\right) \backslash\left\{ \pm m_{i j}\right\}\right) \cup \pm(1+t) m_{i j}\right\}
$$

- $t \mapsto B_{\mathcal{F}\left(M_{t}\right)}$ is a shadow system based on the vertices of $B_{\mathcal{F}(M)}$.
- $t \mapsto\left|B_{\mathcal{F}\left(M_{t}\right)}\right|$ is affine.
- A result by (Fradelizi-Meyer-Zvavitch, 2012) ensures that $B_{\mathcal{F}(M)}$ is a double cone with apex $m_{i j}$.
Thus, $B_{\mathcal{F}(M)}$ is a double cone with respect to each one of its vertices. So it is a linear image of B_{1}^{n}.

Hanner polytopes

Hanner polytopes

Consider convex symmetric bodies $K \subset \mathbb{R}^{n_{1}}$ and $L \subset \mathbb{R}^{n_{2}}$ denote by:

- $K \oplus_{\infty} L=K+L$ their ℓ_{∞}-sum: $\left\|\left(x_{1}, x_{2}\right)\right\| K \oplus_{\infty} L=\max \left\{\left\|x_{1}\right\|_{K},\left\|x_{2}\right\|_{L}\right\}$
- $K \oplus_{1} L=\operatorname{conv}(K \cup L)$ their ℓ_{1}-sum: $\left\|\left(x_{1}, x_{2}\right)\right\|_{K \oplus 1} L=\left\|x_{1}\right\|_{K}+\left\|x_{2}\right\|_{L}$

$\left(I \oplus_{1} I\right) \oplus_{\infty} I$

$\left(I \oplus_{\infty} I\right) \oplus_{1} I$

Hanner polytopes

Consider convex symmetric bodies $K \subset \mathbb{R}^{n_{1}}$ and $L \subset \mathbb{R}^{n_{2}}$ denote by:

- $K \oplus_{\infty} L=K+L$ their ℓ_{∞}-sum: $\left\|\left(x_{1}, x_{2}\right)\right\|_{K \oplus_{\infty} L}=\max \left\{\left\|x_{1}\right\|_{K},\left\|x_{2}\right\|_{L}\right\}$
- $K \oplus_{1} L=\operatorname{conv}(K \cup L)$ their ℓ_{1}-sum: $\left\|\left(x_{1}, x_{2}\right)\right\|_{K \oplus_{1} L}=\left\|x_{1}\right\|_{K}+\left\|x_{2}\right\|_{L}$

$\left(I \oplus_{1} I\right) \oplus_{\infty} I$

$\left(I \oplus_{\infty} I\right) \oplus_{1} I$

A symmetric convex body is called a Hanner polytope if it is one-dimensional, or the ℓ_{1} or ℓ_{∞} sum of two (lower dimensional) Hanner polytopes.

When is $B_{\mathcal{F}(M)}$ a Hanner polytope?

When is $B_{\mathcal{F}(M)}$ a Hanner polytope?

The ℓ_{1}-sum of two finite metric spaces M, N is the metric space $M \diamond N$ obtained by identifying the distinguished points of M and N.

Note that $B_{\mathcal{F}(M \diamond N)}=B_{\mathcal{F}(M)} \oplus_{1} B_{\mathcal{F}(N)}$.

When is $B_{\mathcal{F}(M)}$ a Hanner polytope?

The ℓ_{1}-sum of two finite metric spaces M, N is the metric space $M \diamond N$ obtained by identifying the distinguished points of M and N.

Note that $B_{\mathcal{F}(M \diamond N)}=B_{\mathcal{F}(M)} \oplus_{1} B_{\mathcal{F}(N)}$.

Theorem (Alexander-Fradelizi-G.-Zvavitch, 2019)

$B_{\mathcal{F}(M)}$ is a Hanner polytope if and only if $M=M_{1} \diamond \ldots \diamond M_{r}$ and each M_{i} either contains only two points or it is the complete bipartite graph $K_{2, n}$, where all the edges have the same weight.

Maximal volume product

For $n=2$, the metric space with maximum volume product is a complete graph with equal weights.

Maximal volume product

For $n=2$, the metric space with maximum volume product is a complete graph with equal weights.

Theorem (Alexander-Fradelizi-G.-Zvavitch, 2019)
Assume that $\mathcal{P}(M)$ is maximal among the metric spaces with the same number of elements. Then

- $d(x, y)<d(x, z)+d(z, y)$ for all different points $x, y, z \in M$, and
- $B_{\mathcal{F}(M)}$ is a simplicial polytope.

Maximal volume product

For $n=2$, the metric space with maximum volume product is a complete graph with equal weights.

Theorem (Alexander-Fradelizi-G.-Zvavitch, 2019)
Assume that $\mathcal{P}(M)$ is maximal among the metric spaces with the same number of elements. Then

- $d(x, y)<d(x, z)+d(z, y)$ for all different points $x, y, z \in M$, and
- $B_{\mathcal{F}(M)}$ is a simplicial polytope.

If $n \geq 3$ and M is the complete graph with equal weights, then $B_{\mathcal{F}(M)}$ is not simplicial!

Maximal volume product

For $n=2$, the metric space with maximum volume product is a complete graph with equal weights.

Theorem (Alexander-Fradelizi-G.-Zvavitch, 2019)
Assume that $\mathcal{P}(M)$ is maximal among the metric spaces with the same number of elements. Then

- $d(x, y)<d(x, z)+d(z, y)$ for all different points $x, y, z \in M$, and
- $B_{\mathcal{F}(M)}$ is a simplicial polytope.

If $n \geq 3$ and M is the complete graph with equal weights, then $B_{\mathcal{F}(M)}$ is not simplicial!

Thank you for your attention

