On a local solution to the 8th Busemann-Petty Problem

María Angeles Alfonseca
Joint work with F. Nazarov, D. Ryabogin and V. Yaskin
North Dakota State University
Banff, February 2020.

Introduction

Let K be an origin symmetric convex body in \mathbb{R}^{n}.
Given $\theta \in S^{n-1}$, the unit sphere in \mathbb{R}^{n}, let θ^{\perp}, be the hyperplane orthogonal to θ,

$$
\theta^{\perp}=\left\{x \in \mathbb{R}^{n}: x \cdot \theta=0\right\}
$$

For $\theta \in S^{n-1}$, we define the radial function of K,

$$
\rho_{K}(\theta)=\sup \{t>0: t \theta \in K\}
$$

and the support function of K,

$$
h_{K}(\theta)=\sup \{\theta \cdot y: y \in K\}
$$

We have $h_{K}=\frac{1}{\rho_{K^{\circ}}}$, where $K^{\circ}=\left\{x \in \mathbb{R}^{n}: x \cdot y \leq 1 \forall y \in K\right\}$ is the polar body of K.

5th Busemann-Petty Petty Problem

Assume that there exists a constant c_{n} such that for every $\theta \in S^{n-1}$,

$$
h_{K}(\theta) \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=c_{n} .
$$

Does it follow that K is an ellipsoid?

5th Busemann-Petty Petty Problem

Assume that there exists a constant c_{n} such that for every $\theta \in S^{n-1}$,

$$
h_{K}(\theta) \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=c_{n} .
$$

Does it follow that K is an ellipsoid?
The answer is negative in dimension 2 (Radon): In this case,

$$
\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=2 \rho_{K}\left(\phi_{\pi / 2}(\theta)\right)
$$

and the equation becomes

$$
\rho_{K^{\circ}}(\theta)=c \rho_{K}\left(\phi_{\pi / 2}(\theta)\right)
$$

5th Busemann-Petty Petty Problem

Assume that there exists a constant c_{n} such that for every $\theta \in S^{n-1}$,

$$
h_{K}(\theta) \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=c_{n} .
$$

Does it follow that K is an ellipsoid?
The answer is negative in dimension 2 (Radon): In this case,

$$
\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=2 \rho_{K}\left(\phi_{\pi / 2}(\theta)\right)
$$

and the equation becomes

$$
\rho_{K^{\circ}}(\theta)=c \rho_{K}\left(\phi_{\pi / 2}(\theta)\right)
$$

Radon curves are the boundary of convex bodies K such that $K^{\circ}=\phi_{\pi / 2}(K)$.

5th Busemann-Petty Petty Problem

Assume that there exists a constant c_{n} such that for every $\theta \in S^{n-1}$,

$$
h_{K}(\theta) \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=c_{n} .
$$

Does it follow that K is an ellipsoid?
The answer is negative in dimension 2 (Radon): In this case,

$$
\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=2 \rho_{K}\left(\phi_{\pi / 2}(\theta)\right)
$$

and the equation becomes

$$
\rho_{K^{\circ}}(\theta)=c \rho_{K}\left(\phi_{\pi / 2}(\theta)\right)
$$

Radon curves are the boundary of convex bodies K such that $K^{\circ}=\phi_{\pi / 2}(K)$.

The problem is open for $n \geq 3$.

5th Busemann-Petty Petty Problem

Assume that there exists a constant c_{n} such that for every $\theta \in S^{n-1}$,

$$
\begin{equation*}
h_{K}(\theta) \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=c_{n} . \tag{1}
\end{equation*}
$$

Does it follow that K is an ellipsoid?

5th Busemann-Petty Petty Problem

Assume that there exists a constant c_{n} such that for every $\theta \in S^{n-1}$,

$$
\begin{equation*}
h_{K}(\theta) \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=c_{n} . \tag{1}
\end{equation*}
$$

Does it follow that K is an ellipsoid?

If K is the Euclidean ball, (1) holds.

5th Busemann-Petty Petty Problem

Assume that there exists a constant c_{n} such that for every $\theta \in S^{n-1}$,

$$
\begin{equation*}
h_{K}(\theta) \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=c_{n} . \tag{1}
\end{equation*}
$$

Does it follow that K is an ellipsoid?

If K is the Euclidean ball, (1) holds.
Equation (1) is also invariant under linear transformations T (up to a factor of $|\operatorname{det} T|$), hence it is satisfied by ellipsoids.

Analytic Reformulation

The Intersection Body of K is defined by

$$
\rho_{I K}(\theta)=\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)
$$

for $\theta \in S^{n-1}$.

Analytic Reformulation

The Intersection Body of K is defined by

$$
\rho_{I K}(\theta)=\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)
$$

for $\theta \in S^{n-1}$.

In polar coordinates,

$$
\rho_{I K}(\theta)=\frac{1}{n-1} \int_{S^{n-1} \cap \theta^{\perp}} \rho_{K}^{n-1}(u) d \sigma(u)=c_{n} R\left(\rho_{K}^{n-1}\right),
$$

where R is the spherical Radon transform, normalized so that $R(1)=1$.

Thus, the equation

$$
h_{K}(\theta) \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=c_{n}
$$

in Problem 5 can be restated as

$$
\rho_{I K}(\theta)=c_{n} \rho_{K^{\circ}} .
$$

Thus, the equation

$$
h_{K}(\theta) \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=c_{n}
$$

in Problem 5 can be restated as

$$
\rho_{I K}(\theta)=c_{n} \rho_{K^{\circ}} .
$$

Busemann-Petty 5:

If $(I K)^{\circ}=K$, is K an ellipsoid?

Thus, the equation

$$
h_{K}(\theta) \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=c_{n}
$$

in Problem 5 can be restated as

$$
\rho_{I K}(\theta)=c_{n} \rho_{K^{\circ}} .
$$

Busemann-Petty 5:

If $(I K)^{\circ}=K$, is K an ellipsoid?
The proof of the affirmative local result consists on the following steps:
(1) The intersection body operator is a contraction in L^{2} in a neighborhood of the Euclidean ball.
[Fish-Nazarov-Ryabogin-Zvavitch]

Thus, the equation

$$
h_{K}(\theta) \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=c_{n}
$$

in Problem 5 can be restated as

$$
\rho_{I K}(\theta)=c_{n} \rho_{K^{\circ}} .
$$

Busemann-Petty 5:

If $(I K)^{\circ}=K$, is K an ellipsoid?
The proof of the affirmative local result consists on the following steps:
(1) The intersection body operator is a contraction in L^{2} in a neighborhood of the Euclidean ball.
[Fish-Nazarov-Ryabogin-Zvavitch]
(1) The polar intersection body operator defined by $K \rightarrow(I K)^{\circ}$ is also a contraction.

Thus, the equation

$$
h_{K}(\theta) \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)=c_{n}
$$

in Problem 5 can be restated as

$$
\rho_{I K}(\theta)=c_{n} \rho_{K^{\circ}} .
$$

Busemann-Petty 5:

If $(I K)^{\circ}=K$, is K an ellipsoid?
The proof of the affirmative local result consists on the following steps:
(1) The intersection body operator is a contraction in L^{2} in a neighborhood of the Euclidean ball.
[Fish-Nazarov-Ryabogin-Zvavitch]
(1) The polar intersection body operator defined by $K \rightarrow(I K)^{\circ}$ is also a contraction.

This follows from (i) and a Maximal Function estimate for the polar body.

Maximal Function Estimate

Let M be the spherical Hardy-Littlewood maximal function,

$$
M f(\theta)=\sup _{\theta \in E} \frac{1}{\sigma(E)} \int_{S^{n-1} \cap E}|f(u)| d \sigma(u) .
$$

Maximal Function Estimate

Let M be the spherical Hardy-Littlewood maximal function,

$$
M f(\theta)=\sup _{\theta \in E} \frac{1}{\sigma(E)} \int_{S^{n-1} \cap E}|f(u)| d \sigma(u) .
$$

Let $\rho_{K}=1+\chi$, with $\|\chi\|_{2}<\epsilon$ and $\int_{S^{n-1}} \chi=0$. We write χ in spherical harmonics,

$$
\chi=\sum_{i=2}^{\ell} Y_{i}+\sum_{i=\ell+2}^{\infty} Y_{i}=\phi+\psi
$$

Maximal Function Estimate

Let M be the spherical Hardy-Littlewood maximal function,

$$
M f(\theta)=\sup _{\theta \in E} \frac{1}{\sigma(E)} \int_{S^{n-1} \cap E}|f(u)| d \sigma(u) .
$$

Let $\rho_{K}=1+\chi$, with $\|\chi\|_{2}<\epsilon$ and $\int_{S^{n-1}} \chi=0$. We write χ in spherical harmonics,

$$
\chi=\sum_{i=2}^{\ell} Y_{i}+\sum_{i=\ell+2}^{\infty} Y_{i}=\phi+\psi
$$

Proposition:

Let K be close enough to the Euclidean ball in the Banach-Mazur distance. If $\rho_{K}=1+\phi+\psi$, then $h_{K} \approx 1+\phi+M \psi$, where M is the spherical Hardy-Littlewood maximal function.

A contraction in the neighborhood of the Euclidean ball

Assume that K is close to the Euclidean ball,

$$
\left\|1-\rho_{K}\right\|_{2}<\epsilon
$$

A contraction in the neighborhood of the Euclidean ball

Assume that K is close to the Euclidean ball,

$$
\left\|1-\rho_{K}\right\|_{2}<\epsilon
$$

By [FNRZ], there exists $0<\lambda<1$ such that

$$
\left\|1-\rho_{I K}\right\|_{2}<\lambda \epsilon
$$

A contraction in the neighborhood of the Euclidean ball

Assume that K is close to the Euclidean ball,

$$
\left\|1-\rho_{K}\right\|_{2}<\epsilon
$$

By [FNRZ], there exists $0<\lambda<1$ such that

$$
\left\|1-\rho_{I K}\right\|_{2}<\lambda \epsilon
$$

Then,

$$
\left\|1-\rho_{(I K)^{\circ}}\right\|_{2}=\left\|1-1 / h_{I K}\right\|_{2} \approx\left\|1-h_{I K}\right\|_{2}
$$

A contraction in the neighborhood of the Euclidean ball

Assume that K is close to the Euclidean ball,

$$
\left\|1-\rho_{K}\right\|_{2}<\epsilon
$$

By [FNRZ], there exists $0<\lambda<1$ such that

$$
\left\|1-\rho_{I K}\right\|_{2}<\lambda \epsilon
$$

Then,

$$
\left\|1-\rho_{(I K)^{\circ}}\right\|_{2}=\left\|1-1 / h_{I K}\right\|_{2} \approx\left\|1-h_{I K}\right\|_{2}
$$

and by the maximal function estimate,

$$
\leq\left\|1-\rho_{I K}\right\|_{2}+\left\|\rho_{I K}-h_{I K}\right\|_{2} \leq\left\|1-\rho_{I K}\right\|_{2}+c\|M \psi\|_{2}<\mu \epsilon,
$$

where $\lambda<\mu<1$.

Iteration

Letting $K_{2}:=(I K)^{\circ}$ and $K_{m}:=\left(I K_{m-1}\right)^{\circ}$, we have

$$
\left\|1-\rho_{K_{m}}\right\|_{2} \leq \mu\left\|1-\rho_{K_{m-1}}\right\|_{2}
$$

where $0<\mu<1$.

Iteration

Letting $K_{2}:=(I K)^{\circ}$ and $K_{m}:=\left(I K_{m-1}\right)^{\circ}$, we have

$$
\left\|1-\rho_{K_{m}}\right\|_{2} \leq \mu\left\|1-\rho_{K_{m-1}}\right\|_{2}
$$

where $0<\mu<1$.
Thus, the sequence $\left\{K_{m}\right\}$ converges to the Euclidean ball in the L^{2} norm.

Iteration

Letting $K_{2}:=(I K)^{\circ}$ and $K_{m}:=\left(I K_{m-1}\right)^{\circ}$, we have

$$
\left\|1-\rho_{K_{m}}\right\|_{2} \leq \mu\left\|1-\rho_{K_{m-1}}\right\|_{2}
$$

where $0<\mu<1$.
Thus, the sequence $\left\{K_{m}\right\}$ converges to the Euclidean ball in the L^{2} norm.
Since $(I K)^{\circ}=K$ by hypothesis,
we have $K_{m}=K$ for all m, which proves the result.

The 8th Busemann-Petty Problem

Busemann-Petty, 1956

"Are the ellipsoids characterized by the fact that the Gauss curvature at a point of contact with a tangent plane parallel to θ^{\perp} is proportional to $\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)^{-(n+1)}$?"

The 8th Busemann-Petty Problem

Busemann-Petty, 1956

"Are the ellipsoids characterized by the fact that the Gauss curvature at a point of contact with a tangent plane parallel to θ^{\perp} is proportional to $\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)^{-(n+1)}$?"

The answer is affirmative in dimension 2 (Petty, 1955).

The 8th Busemann-Petty Problem

Busemann-Petty, 1956

"Are the ellipsoids characterized by the fact that the Gauss curvature at a point of contact with a tangent plane parallel to θ^{\perp} is proportional to $\operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)^{-(n+1)}$?"

The answer is affirmative in dimension 2 (Petty, 1955).
The problem is open for $n \geq 3$.

For $\theta \in S^{n-1}$, let $f_{K}(\theta)$ denote the curvature function of K, i.e., the reciprocal of the Gaussian curvature viewed as a function of the unit normal vector.

For $\theta \in S^{n-1}$, let $f_{K}(\theta)$ denote the curvature function of K, i.e., the reciprocal of the Gaussian curvature viewed as a function of the unit normal vector.

8th Busemann-Petty Petty Problem

Assume that there exists a constant c_{n} such that for every $\theta \in S^{n-1}$,

$$
\begin{equation*}
f_{K}(\theta)=c_{n} \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)^{n+1} . \tag{2}
\end{equation*}
$$

Does it follow that K is an ellipsoid?

For $\theta \in S^{n-1}$, let $f_{K}(\theta)$ denote the curvature function of K, i.e., the reciprocal of the Gaussian curvature viewed as a function of the unit normal vector.

8th Busemann-Petty Petty Problem

Assume that there exists a constant c_{n} such that for every $\theta \in S^{n-1}$,

$$
\begin{equation*}
f_{K}(\theta)=c_{n} \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)^{n+1} . \tag{2}
\end{equation*}
$$

Does it follow that K is an ellipsoid?

If K is the Euclidean ball, both the Gauss curvature and the central sections are constant, hence (2) holds.

For $\theta \in S^{n-1}$, let $f_{K}(\theta)$ denote the curvature function of K, i.e., the reciprocal of the Gaussian curvature viewed as a function of the unit normal vector.

8th Busemann-Petty Petty Problem

Assume that there exists a constant c_{n} such that for every $\theta \in S^{n-1}$,

$$
\begin{equation*}
f_{K}(\theta)=c_{n} \operatorname{vol}_{n-1}\left(K \cap \theta^{\perp}\right)^{n+1} . \tag{2}
\end{equation*}
$$

Does it follow that K is an ellipsoid?

If K is the Euclidean ball, both the Gauss curvature and the central sections are constant, hence (2) holds.

Equation (2) is invariant under linear transformations T (up to a factor of $\left.|\operatorname{det} T|^{n-1}\right)$, hence it is satisfied by ellipsoids.

Analytic Reformulation of Busemann-Petty 8

If $h_{K} \in C^{2}\left(S^{n-1}\right)$ and f_{K} is continuous and strictly positive, then

$$
f_{K}=A\left(h_{K}\right)
$$

where the operator A is defined as a sum of determinants of minors of the Hessian matrix of h_{K}.

Analytic Reformulation of Busemann-Petty 8

If $h_{K} \in C^{2}\left(S^{n-1}\right)$ and f_{K} is continuous and strictly positive, then

$$
f_{K}=A\left(h_{K}\right)
$$

where the operator A is defined as a sum of determinants of minors of the Hessian matrix of h_{K}.

Thus, equation $f_{K}(\theta)=c_{n} v o I_{n-1}\left(K \cap \theta^{\perp}\right)^{n+1}$ can be rewritten as

$$
A\left(h_{K}\right)=c_{n}\left(R\left(\rho_{K}^{n-1}\right)^{n+1}\right.
$$

A Local Solution to Busemann-Petty 8:

Assume that K is close enough to the Euclidean ball in the Banach-Mazur distance, and satisfies

$$
A\left(h_{K}\right)=c_{n}\left(R \rho_{K}^{n-1}\right)^{n+1}
$$

Then K is an ellipsoid.

A Local Solution to Busemann-Petty 8:

Assume that K is close enough to the Euclidean ball in the Banach-Mazur distance, and satisfies

$$
A\left(h_{K}\right)=c_{n}\left(R \rho_{K}^{n-1}\right)^{n+1}
$$

Then K is an ellipsoid.
Formally,

$$
h_{K}=A^{-1}\left(R\left(\rho_{K}^{n-1}\right)\right)^{n+1}
$$

A Local Solution to Busemann-Petty 8:

Assume that K is close enough to the Euclidean ball in the Banach-Mazur distance, and satisfies

$$
A\left(h_{K}\right)=c_{n}\left(R \rho_{K}^{n-1}\right)^{n+1}
$$

Then K is an ellipsoid.
Formally,

$$
h_{K}=A^{-1}\left(R\left(\rho_{K}^{n-1}\right)\right)^{n+1} \approx R\left(\rho_{K}^{n-1}\right)
$$

A Local Solution to Busemann-Petty 8:

Assume that K is close enough to the Euclidean ball in the Banach-Mazur distance, and satisfies

$$
A\left(h_{K}\right)=c_{n}\left(R \rho_{K}^{n-1}\right)^{n+1}
$$

Then K is an ellipsoid.
Formally,

$$
h_{K}=A^{-1}\left(R\left(\rho_{K}^{n-1}\right)\right)^{n+1} \approx R\left(\rho_{K}^{n-1}\right)
$$

But for K close to the Euclidean ball,

$$
h_{K} \approx \frac{1}{h_{K}}
$$

and we have reduced Problem 8 to 5 .

Linearizing the operator A

Lemma:

$$
D A(1)=\Delta_{S^{n-1}}+(n-1) I,
$$

where $\Delta_{S^{n-1}}$ is the spherical Laplacian.

Linearizing the operator A

Lemma:

$$
D A(1)=\Delta_{S^{n-1}}+(n-1) I,
$$

where $\Delta_{S^{n-1}}$ is the spherical Laplacian.

Spherical harmonics of degree m are eigenfunctions for $\Delta_{S^{n-1}}$, with eigenvalue $-m(m+n-2)$.

Lemma:

Let $\psi \in L^{2}\left(S^{n-1}\right)$ be an even function such that $\int_{S^{n-1}} \psi=0$. Then

$$
(n+1)\left\|\left(\Delta_{S^{n-1}}+(n-1) I\right)^{-1} \psi\right\|_{2} \leq\|\psi\|_{2} .
$$

Lemma:

Let $\psi \in L^{2}\left(S^{n-1}\right)$ be an even function such that $\int_{S^{n-1}} \psi=0$. Then

$$
(n+1)\left\|\left(\Delta_{S^{n-1}}+(n-1) I\right)^{-1} \psi\right\|_{2} \leq\|\psi\|_{2} .
$$

Proof: Let

$$
\psi=\sum_{m \geq 2, \text { even }}^{\infty} a_{m} Y m
$$

be the decomposition of ψ in spherical harmonics. By Parseval,

$$
\begin{gathered}
\left\|\left(\Delta_{S^{n-1}}+(n-1) I\right)^{-1} \psi\right\|_{2}=\left(\sum_{m \geq 2, \text { even }}^{\infty} \frac{a_{m}^{2}}{(-m(m+n-2)+n-1)^{2}}\right)^{1 / 2} \\
\leq\left(\sum_{m \geq 2, \text { even }}^{\infty} \frac{a_{m}^{2}}{(n+1)^{2}}\right)^{1 / 2}=\frac{1}{n+1}\|\psi\|_{2} .
\end{gathered}
$$

To finish the proof, it remains to estimate

$$
\|A-D A(1)\|_{L^{2}\left(S^{n-1}\right)}
$$

which is done using the theory of singular integrals.

Thank you!

