# Non-central Funk-Radon Transforms: single and multiple 

## Mark Agranovsky

Bar-Ilan University and Holon Institute of Technology

Workshop "Geometric Tomography", Banff International Research Station, February 9-14, 2020

## The Funk-Minkowski-Radon transform

Paul Funk (1911), based on a work by Minkowski (1904)

Integrates functions over the intersections of $S^{n-1} \subset \mathbb{R}^{n}$ and linear $k$-spaces $E$, $1 \leq k<n$ fixed:

$$
\left(F_{0} f\right)(E)=\int_{S^{n-1} \cap E} f(x) d A_{k-1}(x)
$$

where $d A_{k-1}$ is the surface area measure on $S^{k-1}=S^{n-1} \cap E$.


Thus, $F_{0}: C\left(S^{n-1}\right) \rightarrow C\left(G r_{0}(n, k)\right)$ (functions on the $k$-Grassmanian), $G r_{0}(n, n-1) \cong S^{n-1}$.

## The Funk-Minkowski-Radon transform

Paul Funk (1911), based on a work by Minkowski (1904)
Integrates functions over the intersections of $S^{n-1} \subset \mathbb{R}^{n}$ and linear $k$-spaces $E$, $1 \leq k<n$ fixed:

where $d A_{k-1}$ is the surface area measure on $S^{k-1}=S^{n-1} \cap E$.


Thus, $F_{0}: C\left(S^{n-1}\right) \rightarrow C\left(G r_{0}(n, k)\right)$ (functions on the $k$-Grassmanian), $G r_{0}(n, n-1) \cong S^{n-1}$.

## The Funk-Minkowski-Radon transform

Paul Funk (1911), based on a work by Minkowski (1904)
Integrates functions over the intersections of $S^{n-1} \subset \mathbb{R}^{n}$ and linear $k$-spaces $E$, $1 \leq k<n$ fixed:

where $d A_{k-1}$ is the surface area measure on $S^{k-1}=S^{n-1} \cap E$.


Thus, $F_{0}: C\left(S^{n-1}\right) \rightarrow C\left(G r_{0}(n, k)\right)$ (functions on the $k$-Grassmanian), $G r_{0}(n, n-1) \cong S^{n-1}$.

## The Funk-Minkowski-Radon transform

Paul Funk (1911), based on a work by Minkowski (1904)
Integrates functions over the intersections of $S^{n-1} \subset \mathbb{R}^{n}$ and linear $k$-spaces $E$, $1 \leq k<n$ fixed:

$$
\left(F_{0} f\right)(E)=\int_{S^{n-1} \cap E} f(x) d A_{k-1}(x)
$$

where $d A_{k-1}$ is the surface area measure on $S^{k-1}=S^{n-1} \cap E$


## The Funk-Minkowski-Radon transform

Paul Funk (1911), based on a work by Minkowski (1904)
Integrates functions over the intersections of $S^{n-1} \subset \mathbb{R}^{n}$ and linear $k$-spaces $E$, $1 \leq k<n$ fixed:

$$
\left(F_{0} f\right)(E)=\int_{S^{n-1} \cap E} f(x) d A_{k-1}(x)
$$

where $d A_{k-1}$ is the surface area measure on $S^{k-1}=S^{n-1} \cap E$.


Thus, $F_{0}: C\left(S^{n-1}\right) \rightarrow C\left(G r_{0}(n, k)\right)$ (functions on the $k$-Grassmanian), $G r_{0}(n, n-1) \cong S^{n-1}$.

## Background

- Kernel $=$ odd functions
- Injective on even functions

Inversion formula is written explicitly. E.g., S.Helgason, $n=3, k=2$ : ).

$$
\left(F_{+}^{-1} g\right)(x)=\left.\frac{1}{2 \pi}\left[\frac{d}{d s} \int_{0}^{\infty}\left(F^{*} g\right)(\arccos v, x) v\left(s^{2}-v^{2}\right)^{-\frac{1}{2}} d v\right]\right|_{s=1}
$$

where

$$
\left(F^{*} g\right)(p, x)=\frac{1}{2 \pi \cos p} \int_{|u|=1,\langle x, u\rangle=\sin p} g(u) d u
$$

It provides the right inverse operator:

$$
F_{0} F_{0}^{-1} f=f, f \in C\left(G r_{0}(n, k)\right)
$$

Action from the left:

$$
F_{0}^{-1} F_{0} f=f^{+}, f \in C\left(S^{n-1}\right)
$$

where $f^{+}(x)=\frac{1}{2}(f(x)+f(-x))$ - the even part of $f$.

## Background

- Kernel = odd functions
- Injective on even functions

Inversion formula is written explicitly. E.g., S.Helgason, $n=3, k=2$ : ).

$$
\left(F_{+}^{-1} g\right)(x)=\left.\frac{1}{2 \pi}\left[\frac{d}{d s} \int_{0}^{\infty}\left(F^{*} g\right)(\arccos v, x) v\left(s^{2}-v^{2}\right)^{-\frac{1}{2}} d v\right]\right|_{s=1}
$$

where

$$
\left(F^{*} g\right)(p, x)=\frac{1}{2 \pi \cos p} \int_{|u|=1,\langle x, u\rangle=\sin p} g(u) d u
$$

It provides the right inverse operator:

$$
F_{0} F_{0}^{-1} f=f, f \in C\left(G r_{0}(n, k)\right)
$$

Action from the left:

$$
F_{0}^{-1} F_{0} f=f^{+}, f \in C\left(S^{n-1}\right)
$$

where $f^{+}(x)=\frac{1}{2}(f(x)+f(-x))$ - the even part of $f$.

## Background

- Kernel = odd functions
- Injective on even functions

Inversion formula is written explicitly. E.g., S.Helgason, $n=3, k=2$ : ).

$$
\left(F_{+}^{-1} g\right)(x)=\left.\frac{1}{2 \pi}\left[\frac{d}{d s} \int_{0}^{\infty}\left(F^{*} g\right)(\arccos v, x) v\left(s^{2}-v^{2}\right)^{-\frac{1}{2}} d v\right]\right|_{s=1}
$$

where


It provides the right inverse operator:

$$
F_{0} F_{0}^{-1} f=f, f \in C\left(G r_{0}(n, k)\right)
$$

Action from the left:

$$
F_{0}^{-1} F_{0} f=f^{+}, f \in C\left(S^{n-1}\right)
$$

where $f^{+}(x)=\frac{1}{2}(f(x)+f(-x))$ - the even part of $f$.

## Background

- Kernel = odd functions
- Injective on even functions

Inversion formula is written explicitly. E.g., S.Helgason, $n=3, k=2$ : ).

where


It provides the right inverse operator:

$$
F_{0} F_{0}^{-1} f=f, f \in C\left(G r_{0}(n, k)\right)
$$

Action from the left:
where $f^{+}(x)=\frac{1}{2}(f(x)+f(-x))$ - the even part of $f$.

## Background

- Kernel = odd functions
- Injective on even functions

Inversion formula is written explicitly. E.g., S.Helgason, $n=3, k=2$ : ).

$$
\left(F_{+}^{-1} g\right)(x)=\left.\frac{1}{2 \pi}\left[\frac{d}{d s} \int_{0}^{\infty}\left(F^{*} g\right)(\arccos v, x) v\left(s^{2}-v^{2}\right)^{-\frac{1}{2}} d v\right]\right|_{s=1}
$$

where

$$
\left(F^{*} g\right)(p, x)=\frac{1}{2 \pi \cos p} \int_{|u|=1,\langle x, u\rangle=\sin p} g(u) d u
$$

It provides the right inverse operator:

$$
F_{0} F_{0}^{-1} f=f, f \in C\left(G r_{0}(n, k)\right) .
$$

Action from the left:
where $f^{+}(x)=\frac{1}{2}(f(x)+f(-x))$ - the even part of $f$.

## Background

- Kernel = odd functions
- Injective on even functions

Inversion formula is written explicitly. E.g., S.Helgason, $n=3, k=2$ : ).

$$
\left(F_{+}^{-1} g\right)(x)=\left.\frac{1}{2 \pi}\left[\frac{d}{d s} \int_{0}^{\infty}\left(F^{*} g\right)(\arccos v, x) v\left(s^{2}-v^{2}\right)^{-\frac{1}{2}} d v\right]\right|_{s=1}
$$

where

$$
\left(F^{*} g\right)(p, x)=\frac{1}{2 \pi \cos p} \int_{|u|=1,\langle x, u\rangle=\sin p} g(u) d u
$$

It provides the right inverse operator:

$$
F_{0} F_{0}^{-1} f=f, f \in C\left(G r_{0}(n, k)\right)
$$

Action from the left:
where $f^{+}(x)=\frac{1}{2}(f(x)+f(-x))$ - the even part of $f$

## Background

- Kernel = odd functions
- Injective on even functions

Inversion formula is written explicitly. E.g., S.Helgason, $n=3, k=2$ : ).

$$
\left(F_{+}^{-1} g\right)(x)=\left.\frac{1}{2 \pi}\left[\frac{d}{d s} \int_{0}^{\infty}\left(F^{*} g\right)(\arccos v, x) v\left(s^{2}-v^{2}\right)^{-\frac{1}{2}} d v\right]\right|_{s=1}
$$

where

$$
\left(F^{*} g\right)(p, x)=\frac{1}{2 \pi \cos p} \int_{|u|=1,\langle x, u\rangle=\sin p} g(u) d u .
$$

It provides the right inverse operator:

$$
F_{0} F_{0}^{-1} f=f, f \in C\left(G r_{0}(n, k)\right) .
$$

Action from the left:

$$
F_{0}^{-1} F_{0} f=f^{+}, f \in C\left(S^{n-1}\right),
$$

where $f^{+}(x)=\frac{1}{2}(f(x)+f(-x))$ - the even part of $f$.

## Applications

```
Diffusion MRI (Q-ball method, Tuch (2004)).
Convex geometry, intersection bodies problems:
Volume of a k-dim linear cross-section is the Funk transform of the radial
function:
\[
V\left(K \cap P_{k}\right)=\int_{S^{n-1} \cap p} p_{K}^{k-1}(\theta) d \theta
\]
\[
\rho_{K}(\theta)=\max \{t: t \theta \in K\} .
\]
```


## Applications

- Diffusion MRI (Q-ball method, Tuch (2004)).
- Convex geometry, intersection bodies problems:

Volume of a $k$-dim linear cross-section is the Funk transform of the radial function:

$$
V\left(K \cap P_{k}\right)=\int_{S^{n-1} \cap P} P_{K}^{k-1}(\theta) d \theta,
$$

$\rho_{K}(\theta)=\max \{t: t \theta \in K\}$.

## Applications

- Diffusion MRI (Q-ball method, Tuch (2004)).
- Convex geometry, intersection bodies problems:

Volume of a $k$-dim linear cross-section is the Funk transform of the radial function:

$$
V\left(K \cap P_{k}\right)=\int_{S^{n-1} \cap P^{2}} P_{K}^{k-1}(\theta) d \theta
$$

$\rho_{K}(\theta)=\max \{t: t \theta \in K\}$.

## Applications

- Diffusion MRI (Q-ball method, Tuch (2004)).
- Convex geometry, intersection bodies problems:

Volume of a $k$-dim linear cross-section is the Funk transform of the radial function:

$$
V\left(K \cap P_{k}\right)=\int_{S^{n-1} \cap P} \rho_{K}^{k-1}(\theta) d \theta
$$

$\rho_{K}(\theta)=\max \{t: t \theta \in K\}$.

## Shifted Funk Transform: definition

Recent years: study Funk-type transform centered not at 0, which integrates over non-central cross-sections.

## Definition

Let $a \in \mathbb{R}^{n}$. The (shifted) Funk transform centered at a is defined on $f \in C\left(S^{n-1}\right)$ by

$$
\left(F_{a} f\right)(E)=\int_{c_{n-1}} f(x) d A_{k}(x)
$$

$E \in G r_{a}(n, k)=a+G r_{0}(n, k)$ - affine Grassmanian through a.


## Shifted Funk Transform: definition

Recent years: study Funk-type transform centered not at 0, which integrates over non-central cross-sections.

## Definition

Let $a \in \mathbb{R}^{n}$. The (shifted) Funk transform centered at $a$ is defined on $f \in C\left(S^{n-1}\right)$ by


## Shifted Funk Transform: definition

Recent years: study Funk-type transform centered not at 0, which integrates over non-central cross-sections.

Definition
Let $a \in \mathbb{R}^{n}$. The (shifted) Funk transform centered at $a$ is defined on $f \in C\left(S^{n-1}\right)$ by


## Shifted Funk Transform: definition

Recent years: study Funk-type transform centered not at 0, which integrates over non-central cross-sections.

Definition
Let $a \in \mathbb{R}^{n}$. . The (shifted)

## Shifted Funk Transform: definition

Recent years: study Funk-type transform centered not at 0, which integrates over non-central cross-sections.

Definition

Let $a \in \mathbb{R}^{n}$. The (shifted) Funk transform centered at $a$ is defined on $f \in C\left(S^{n-1}\right)$ by

$E \in G r_{a}(n, k)=a+G r_{0}(n, k)-$ affine Grassmanian through a.


## Shifted Funk Transform: definition

Recent years: study Funk-type transform centered not at 0, which integrates over non-central cross-sections.

Definition
Let $a \in \mathbb{R}^{n}$. The (shifted) Funk transform centered at $a$ is defined on $f \in C\left(S^{n-1}\right)$ by

$$
\left(F_{a} f\right)(E)=\int_{E \cap S^{n-1}} f(x) d A_{k}(x)
$$

$E \in G r_{a}(n, k)=a+G r_{0}(n, k)-$ affine Grassmanian through $a$.


## Shifted Funk Transform: definition

Recent years: study Funk-type transform centered not at 0, which integrates over non-central cross-sections.

Definition
Let $a \in \mathbb{R}^{n}$. The (shifted) Funk transform centered at $a$ is defined on $f \in C\left(S^{n-1}\right)$ by

$$
\left(F_{a} f\right)(E)=\int_{E \cap S^{n-1}} f(x) d A_{k}(x)
$$

$E \in G r_{a}(n, k)=a+G r_{0}(n, k)-$ affine Grassmanian through $a$.


## Main questions

- Kernel
- Range
- Subspaces of injectivity
- Inversion formula / procedure
- Multiple Funk transform $f \rightarrow\left(F_{a_{1}}, \ldots, F_{a_{N}}\right)$ - injectivity ?


## Main questions

- Kernel
- Range
- Subspaces of injectivity
- Inversion formula / procedure
- Multiple Funk transform $f \rightarrow\left(F_{a_{1}}, \ldots, F_{a_{N}}\right)$ - injectivity ?


## Main questions

- Kernel
- Range
- Subspaces of injectivity
- Inversion formula / procedure
- Multiple Funk transform $f \rightarrow\left(F_{a_{1}}, \ldots, F_{a_{N}}\right)$ - injectivity ?


## Main questions

- Kernel
- Range
- Subspaces of injectivity
- Inversion formula / procedure
- Multiple Funk transform $f \rightarrow\left(F_{a_{1}}, \ldots, F_{a_{N}}\right)$ - injectivity ?


## Main questions

- Kernel
- Range
- Subspaces of injectivity
- Inversion formula / procedure
- Multiple Funk transform $f \rightarrow\left(F_{a_{1}}, \ldots, F_{a_{N}}\right)$ - injectivity ?


## Main questions

- Kernel
- Range
- Subspaces of injectivity
- Inversion formula / procedure
- Multiple Funk transform $f \rightarrow\left(F_{a_{1}}, \ldots, F_{a_{N}}\right)$ - injectivity ?


## Review

$|a|=1-A . A b o u l a z ~ a n d ~ R . ~ D a h e r ~(1993), ~ S . ~ H e l g a s o n ~(2011) ~$
$|a|<1$-Salman: $n=3, k=2$, stereographic projection; link to the plane Radon transform (cumbersome computations).
$|a|<1, k=n-1,-M$. Quellmalz, B. Rubin: constructing a special transformation of the ball; link between $F_{a}$ and $F_{0}$, deriving $F_{a}^{-1}$ from $F_{0}^{-1}$.

Eluded from attention:
Group action on $B^{n}$ is behind the problem
Group-theoretical view; link with with the structure of hyperbolic space $\mathbb{H}^{n}$.

## Review


$|a|<1$-Salman: $n=3, k=2$, stereographic projection; link to the plane Radon transform (cumbersome computations).
$|a|<1, k=n-1,-M$. Quellmalz, B. Rubin: constructing a special transformation of the ball; link between $F_{a}$ and $F_{0}$, deriving $F_{a}^{-1}$ from $F_{0}^{-1}$.

Eluded from attention:
Group action on $B^{n}$ is behind the problem
Group-theoretical view; link with with the structure of hyperbolic space $\mathbb{H}^{n}$.

## Review


$|a|<1$-Salman: $n=3, k=2$, stereographic projection; link to the plane Radon transform (cumbersome computations).
$|a|<1, k=n-1,-M$. Quellmalz, B. Rubin: constructing a special transformation of the ball; link between $F_{a}$ and $F_{0}$, deriving $F_{a}^{-1}$ from $F_{0}^{-1}$

Eluded from attention:
Group action on $B^{n}$ is behind the problem
Group-theoretical view; link with with the structure of hyperbolic space $\mathbb{H}^{n}$.

## Review


$|a|<1$ - Salman: $n=3, k=2$, stereographic projection; link to the plane Radon transform (cumbersome computations).
$|a|<1, k=n-1,-M$. Quellmalz, B. Rubin: constructing a special transformation of the ball; link between $F_{a}$ and $F_{0}$, deriving $F_{a}^{-1}$ from $F_{0}^{-1}$.

Eluded from attention:
Groun action on $B^{n}$ is behind the problem
Group-theoretical view; link with with the structure of hyperbolic space $\mathbb{H}^{n}$.

## Review


$|a|<1$ - Salman: $n=3, k=2$, stereographic projection; link to the plane Radon transform (cumbersome computations).
$|a|<1, k=n-1,-M . Q u e l l m a l z, B$. Rubin: constructing a special transformation of the ball; link between $F_{a}$ and $F_{0}$, deriving $F_{a}^{-1}$ from $F_{0}^{-1}$.

Eluded from attention:
Group action on $B^{n}$ is behind the problem
Group-theoretical view; link with with the structure of hyperbolic space $\mathbb{H}^{n}$.

## Review


$|a|<1$-Salman: $n=3, k=2$, stereographic projection; link to the plane Radon transform (cumbersome computations).
$|a|<1, k=n-1,-M$. Quellmalz, B. Rubin: constructing a special transformation of the ball; link between $F_{a}$ and $F_{0}$, deriving $F_{a}^{-1}$ from $F_{0}^{-1}$.

Eluded from attention:
Group action on $B^{n}$ is behind the problem
Group-theoretical view; link with with the structure of hyperbolic space $\mathbb{H}^{n}$.

An universal approach: action of the hyperbolic group

## Caley model of hyperbolic space

Lorentz groun $S 0(n, 1)$ : linear transf's of $R^{n+1}$ preserving $Q(x)=x_{0}^{2}-x_{1}^{2}-\ldots-x_{n}^{2}$.
Identify $B^{n}=\{Q>0\} \cap\left\{x_{0}=1\right\}$.

$S O(n, 1)$ transitively acts on complexes of lines through 0 inside/outside the light cone, and therefore induces an automorphism group $\operatorname{Aut}\left(B^{n}\right)$.

Important: $\operatorname{Aut}\left(B^{n}\right)$ preserves affine sections of $B^{n}$ ! Elements of $\operatorname{Aut}\left(B^{n}\right)$ are fractional-linear mappings.

An universal approach: action of the hyperbolic group

Caley model of hyperbolic space
Lorentz group $S O(n, 1)$ : linear transf's of $R^{n+1}$ preserving $Q(x)=x_{0}^{2}-x_{1}^{2}-\ldots-x_{n}^{2}$.
Identify $B^{n}=\{Q>0\} \cap\left\{x_{0}=1\right\}$.

$S O(n, 1)$ transitively acts on complexes of lines through 0 inside/outside the light cone, and therefore induces an automorphism group $\operatorname{Aut}\left(B^{n}\right)$.

Important: $\operatorname{Aut}\left(B^{n}\right)$ preserves affine sections of $B^{n}$ ! Elements of $\operatorname{Aut}\left(B^{n}\right)$ are fractional-linear mappings.

An universal approach: action of the hyperbolic group

Caley model of hyperbolic space
Lorentz group $S 0(n, 1)$ : linear transf's of $R^{n+1}$ preserving $Q(x)=x_{0}^{2}-x_{1}^{2}-\ldots-x_{n}^{2}$.
Identify $B^{n}=\{Q>0\} \cap\left\{x_{0}=1\right\}$.

$S O(n, 1)$ transitively acts on complexes of lines through 0 inside/outside the light cone, and therefore induces an automorphism group $\operatorname{Aut}\left(B^{n}\right)$.

An universal approach: action of the hyperbolic group

## Caley model of hyperbolic space

Lorentz group $S 0(n, 1)$ : linear transf's of $R^{n+1}$ preserving $Q(x)=x_{0}^{2}-x_{1}^{2}-\ldots-x_{n}^{2}$.
Identify $B^{n}=\{Q>0\} \cap\left\{x_{0}=1\right\}$.

$S O(n, 1)$ transitively acts on complexes of lines through 0 inside/outside the light cone, and therefore induces an automorphism group $\operatorname{Aut}\left(B^{n}\right)$.

Important: $\operatorname{Aut}\left(B^{n}\right)$ preserves affine sections of $B^{n}$ ! Elements of $\operatorname{Aut}\left(B^{n}\right)$ are fractional-linear mappings.

## The strategy：

$>$ Interior center ：$F_{a}, \quad|a|<1$ ．Moving $a \rightarrow 0$ by $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{a}(a)=0$, delivers a link between $F_{a}$ and $F_{0}$（Central Funk transform ）．
－Exterior center：$F_{b}, \quad|b|>1$ ，Moving $b$ to $\infty$ ，via sending the inverse point $b^{*}=\frac{b}{|b|^{2}} \rightarrow 0$ by $\varphi_{b^{*}} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{b^{*}}\left(b^{*}\right)=0$ ．Provides a bridge between $F_{b}$ and $\Pi_{b}$（Parallel Slice Transform）．

－A key calculation：transformation of the integration measures on the $k$－sections of $S^{n-1}$ ，computing Jacobians．

## The strategy:

- Interior center : $F_{\boldsymbol{a}}, \quad|a|<1$. Moving $a \rightarrow 0$ by $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{a}(a)=0$, delivers a link between $F_{a}$ and $F_{0}$ ( Central Funk transform ).
- Exterior center: $F_{b}, \quad|b|>1$, Moving $b$ to $\infty$, via sending the inverse point $b^{*}=\frac{b}{|b|^{2}} \rightarrow 0$ by $\varphi_{b^{*}} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{b^{*}}\left(b^{*}\right)=0$. Provides a bridge between $F_{b}$ and $\Pi_{b}$ (Parallel Slice Transform).

- A key calculation: transformation of the integration measures on the $k$-sections of $S^{n-1}$, computing Jacobians.


## The strategy:

- Interior center : $F_{a}, \quad|a|<1$. Moving $a \rightarrow 0$ by $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{a}(a)=0$, delivers a link between $F_{a}$ and $F_{0}$ (Central Funk transform ).
$\Rightarrow$ Exterior center: $F_{b}, \quad|b|>1$, Moving $b$ to $\infty$, via sending the inverse point $b^{*}=\frac{b}{|b|^{2}} \rightarrow 0$ by $\varphi_{b^{*}} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{b^{*}}\left(b^{*}\right)=0$. Provides a bridge between $F_{b}$ and $\Pi_{b}$ (Parallel Slice Transform).

- A key calculation: transformation of the integration measures on the $k$-sections of $S^{n-1}$, computing Jacobians.


## The strategy:

- Interior center : $F_{a},|a|<1$. Moving $a \rightarrow 0$ by $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{a}(a)=0$, delivers a link between $F_{a}$ and $F_{0}$ (Central Funk transform ).
- Exterior center: $F_{b},|b|>1$, Moving $b$ to $\infty$, via sending the inverse point and $\Pi_{b}$ (Parallel Slice Transform).

- A key calculation: transformation of the integration measures on the $k$-sections of $S^{n-1}$, computing Jacobians.


## The strategy:

- Interior center : $F_{a},|a|<1$. Moving $a \rightarrow 0$ by $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{a}(a)=0$, delivers a link between $F_{a}$ and $F_{0}$ (Central Funk transform ).
- Exterior center: $F_{b},|b|>1$, Moving $b$ to $\infty$, via sending the inverse point $b^{*}=\frac{b}{|b|^{2}} \rightarrow 0$ by $\varphi_{b^{*}} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{b^{*}}\left(b^{*}\right)=0$. and $\Pi_{b}$ (Parallel Slice Transform)

- A key calculation: transformation of the integration measures on the $k$-sections of $S^{n-1}$, computing Jacobians.


## The strategy:

- Interior center : $F_{a}, \quad|a|<1$. Moving $a \rightarrow 0$ by $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{a}(a)=0$, delivers a link between $F_{a}$ and $F_{0}$ ( Central Funk transform ).
- Exterior center: $F_{b},|b|>1$, Moving $b$ to $\infty$, via sending the inverse point $b^{*}=\frac{b}{|b|^{2}} \rightarrow 0$ by $\varphi_{b^{*}} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{b^{*}}\left(b^{*}\right)=0$. Provides a bridge between $F_{b}$ and $\Pi_{b}$ (Parallel Slice Transform).

- A key calculation: transformation of the integration measures on the $k$-sections of $S^{n-1}$, computing Jacobians.


## The strategy:

- Interior center : $F_{a}, \quad|a|<1$. Moving $a \rightarrow 0$ by $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{a}(a)=0$, delivers a link between $F_{a}$ and $F_{0}$ ( Central Funk transform ).
- Exterior center: $F_{b},|b|>1$, Moving $b$ to $\infty$, via sending the inverse point $b^{*}=\frac{b}{|b|^{2}} \rightarrow 0$ by $\varphi_{b^{*}} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{b^{*}}\left(b^{*}\right)=0$. Provides a bridge between $F_{b}$ and $\Pi_{b}$ (Parallel Slice Transform).

- A key calculation: transformation of the integration measures on the $k$-sections of $S^{n-1}$, computing Jacobians.


## The strategy:

- Interior center : $F_{a}, \quad|a|<1$. Moving $a \rightarrow 0$ by $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{a}(a)=0$, delivers a link between $F_{a}$ and $F_{0}$ ( Central Funk transform ).
- Exterior center: $F_{b},|b|>1$, Moving $b$ to $\infty$, via sending the inverse point $b^{*}=\frac{b}{|b|^{2}} \rightarrow 0$ by $\varphi_{b^{*}} \in \operatorname{Aut}\left(B^{n}\right), \varphi_{b^{*}}\left(b^{*}\right)=0$. Provides a bridge between $F_{b}$ and $\Pi_{b}$ (Parallel Slice Transform).

- A key calculation: transformation of the integration measures on the $k$-sections of $S^{n-1}$, computing Jacobians.


## Intertwining relations

Thm (B. Rubin, M.A; the case $|a|<1, k=n-1-\mathrm{M}$. Quellmalz)

$$
\begin{gathered}
F_{a}=\Phi_{a} F_{0} M_{a},|a|<1 \\
F_{b}=\Phi_{b^{*}} \Pi_{b} M_{b^{*}},|b|>1
\end{gathered}
$$

where the intertwining operator is

and the involutive automorphism $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right)$ is


$$
\left(\Phi_{a} G\right)(E)=G\left(\varphi_{a}(E)\right), E \in G r_{a}(n, k)
$$

## Intertwining relations

Thm (B. Rubin, M.A; the case $|a|<1, k=n-1-\mathrm{M}$. Quellmalz)

$$
F_{a}=\Phi_{a} F_{0} M_{a},|a|<1
$$


where the intertwining operator is

and the involutive automorphism $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right)$ is

$\left(\Phi_{a} G\right)(E)=G\left(\varphi_{a}(E)\right), E \in G r_{a}(n, k)$.

## Intertwining relations

Thm (B. Rubin, M.A; the case $|a|<1, k=n-1-\mathrm{M}$. Quellmalz)

$$
F_{a}=\Phi_{a} F_{0} M_{a},|a|<1
$$

$$
F_{b}=\Phi_{b^{*}} \Pi_{b} M_{b^{*}},|b|>1
$$

where the intertwining operator is

and the involutive automorphism $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right)$ is

$\left(\Phi_{a} G\right)(E)=G\left(\varphi_{a}(E)\right), E \in G r_{a}(n, k)$.

## Intertwining relations

Thm (B. Rubin, M.A; the case $|a|<1, k=n-1-\mathrm{M}$. Quellmalz)

$$
F_{a}=\Phi_{a} F_{0} M_{a},|a|<1
$$

$$
F_{b}=\Phi_{b^{*}} \Pi_{b} M_{b^{*}},|b|>1
$$

where the intertwining operator is

and the involutive automorphism $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right)$ is

$\left(\Phi_{a} G\right)(E)=G\left(\varphi_{a}(E)\right), E \in G r_{a}(n, k)$.

## Intertwining relations

Thm (B. Rubin, M.A; the case $|a|<1, k=n-1-\mathrm{M}$. Quellmalz)

$$
F_{a}=\Phi_{a} F_{0} M_{a},|a|<1
$$

$$
F_{b}=\Phi_{b^{*}} \Pi_{b} M_{b^{*}},|b|>1
$$

where the intertwining operator is

$$
\left(M_{a} f\right)(x)=\left(\frac{\sqrt{1-|a|^{2}}}{1-x \cdot a}\right)^{k-1} f\left(\varphi_{a}(x)\right)
$$

and the involutive automorphism $\varphi_{a} \in \operatorname{Aut}\left(B^{n}\right)$ is


## Intertwining relations

Thm (B. Rubin, M.A; the case $|a|<1, k=n-1-\mathrm{M}$. Quellmalz)

$$
F_{a}=\Phi_{a} F_{0} M_{a},|a|<1
$$

$$
F_{b}=\Phi_{b^{*}} \Pi_{b} M_{b^{*}},|b|>1
$$

where the intertwining operator is

$$
\left(M_{a} f\right)(x)=\left(\frac{\sqrt{1-|a|^{2}}}{1-x \cdot a}\right)^{k-1} f\left(\varphi_{a}(x)\right)
$$

and the involutive automorphism $\varphi_{a} \in A u t\left(B^{n}\right)$ is


## Intertwining relations

Thm (B. Rubin, M.A; the case $|a|<1, k=n-1-\mathrm{M}$. Quellmalz)

$$
F_{a}=\Phi_{a} F_{0} M_{a},|a|<1
$$

$$
F_{b}=\Phi_{b^{*}} \Pi_{b} M_{b^{*}},|b|>1
$$

where the intertwining operator is

$$
\left(M_{a} f\right)(x)=\left(\frac{\sqrt{1-|a|^{2}}}{1-x \cdot a}\right)^{k-1} f\left(\varphi_{a}(x)\right)
$$

and the involutive automorphism $\varphi_{a} \in A u t\left(B^{n}\right)$ is

$$
\varphi_{a}(x)=\frac{a-\frac{x \cdot a}{|a|^{2}}+\sqrt{1-|a|^{2}}\left(x-\frac{x \cdot a}{|a|^{2}}\right)}{1-x \cdot a}
$$



## Intertwining relations

Thm (B. Rubin, M.A; the case $|a|<1, k=n-1-\mathrm{M}$. Quellmalz)

$$
F_{a}=\Phi_{a} F_{0} M_{a},|a|<1
$$

$$
F_{b}=\Phi_{b^{*}} \Pi_{b} M_{b^{*}},|b|>1
$$

where the intertwining operator is

$$
\left(M_{a} f\right)(x)=\left(\frac{\sqrt{1-|a|^{2}}}{1-x \cdot a}\right)^{k-1} f\left(\varphi_{a}(x)\right)
$$

and the involutive automorphism $\varphi_{a} \in A u t\left(B^{n}\right)$ is

$$
\varphi_{a}(x)=\frac{a-\frac{x \cdot a}{|a|^{2}}+\sqrt{1-|a|^{2}}\left(x-\frac{x \cdot a}{|a|^{2}}\right)}{1-x \cdot a}
$$

$$
\left(\Phi_{a} G\right)(E)=G\left(\varphi_{a}(E)\right), E \in G r_{a}(n, k)
$$

## Kernels and inversion of the standard transforms

## Well studied

- $\operatorname{ker} F_{0}=\{$ odd functions $\}$.
- $F_{0}^{-1}$ written.
ver $\Pi_{b}=\{$ functions odd with respect to the hyperplane $\langle x, b\rangle=0$.
- $\Pi_{b}^{-1}$ written.
ker $\mathrm{F}_{0}$

$\operatorname{ker} \Pi_{b}$



## Kernels and inversion of the standard transforms

Well studied.

- $\operatorname{ker} F_{0}=\{$ odd functions $\}$.
- $F_{0}^{-1}$ written.
$\operatorname{ker} \Pi_{b}=\{$ functions odd with respect to the hyperplane $\langle x, b\rangle=0$.
- $\Pi_{b}^{-1}$ written

$\operatorname{ker} \prod_{b}$



## Kernels and inversion of the standard transforms

Well studied.

- $\operatorname{ker} F_{0}=\{$ odd functions $\}$.
- $F_{0}^{-1}$ written.
- $\operatorname{ker} \Pi_{b}=\{$ functions odd with respect to the hyperplane $\langle x, b\rangle=0$.
- $\Pi_{b}^{-1}$ written.

$\operatorname{ker} \prod_{b}$



## Kernel

Invoking known facts about $F_{0}, \Pi_{b}$ ，we obtain by means of the intertwining relations：： Thm（B．Rubin，M．A；2019）
－Given $a \in \mathbb{R}^{n} \backslash S^{n-1}$ ，

$$
\operatorname{ker} F_{a}=\left\{f \in C\left(S^{n-1}\right): f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right)\right\}
$$

（a－odd functions）．
Here the a－weight function $p_{a}$ is

$$
\rho_{a}(x)=\left(\frac{\left|1-|a|^{2}\right|}{|x-a|^{2}}\right)^{k-1}
$$

and the a－symmetry $\tau_{a}$ is

$$
\tau_{a} x=x+2 \frac{1-a \cdot x}{|a-x|^{2}}(a-x)
$$



ロ（4岛〉《
三 つดल 12 ／ 26

## Kernel

Invoking known facts about $F_{0}, \Pi_{b}$, we obtain by means of the intertwining relations::

- Given $a \in \mathbb{R}^{n} \backslash S^{n-1}$,

$$
\operatorname{ker} F_{a}=\left\{f \in C\left(S^{n-1}\right): f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right)\right\}
$$

(a-odd functions).
Here the a-weight function $\rho_{a}$ is

and the a-symmetry $\tau_{a}$ is

$$
\boxed{\tau_{a} x}=x+2 \frac{1-a \cdot x}{|a-x|^{2}}(a-x):
$$



## Kernel

Invoking known facts about $F_{0}, \Pi_{b}$, we obtain by means of the intertwining relations::
Thm(B. Rubin, M. A; 2019)

- Given $a \in \mathbb{R}^{n} \backslash S^{n-1}$,

$$
\operatorname{ker} F_{a}=\left\{f \in C\left(S^{n-1}\right): f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right)\right\}
$$

(a-odd functions).
Here the a-weight function $p_{a}$ is

and the a-symmetry $\tau_{a}$ is


## Kernel

Invoking known facts about $F_{0}, \Pi_{b}$, we obtain by means of the intertwining relations:: Thm(B. Rubin, M. A; 2019)

- Given $a \in \mathbb{R}^{n} \backslash S^{n-1}$,

$$
\operatorname{ker} F_{a}=\left\{f \in C\left(S^{n-1}\right): f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right)\right\}
$$

(a-odd functions).

## Here the a-weight function $\rho_{a}$ is


and the a-symmetry $\tau_{a}$ is


## Kernel

Invoking known facts about $F_{0}, \Pi_{b}$, we obtain by means of the intertwining relations:: Thm(B. Rubin, M. A; 2019)

- Given $a \in \mathbb{R}^{n} \backslash S^{n-1}$,

$$
\operatorname{ker} F_{a}=\left\{f \in C\left(S^{n-1}\right): f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right)\right\}
$$

(a-odd functions).
Here the a-weight function $\rho_{a}$ is

$$
\rho_{a}(x)=\left(\frac{\left|1-|a|^{2}\right|}{|x-a|^{2}}\right)^{k-1}
$$

and the a-symmetry $\tau_{a}$ is


## Kernel

Invoking known facts about $F_{0}, \Pi_{b}$, we obtain by means of the intertwining relations:: Thm(B. Rubin, M. A; 2019)

- Given $a \in \mathbb{R}^{n} \backslash S^{n-1}$,

$$
\operatorname{ker} F_{a}=\left\{f \in C\left(S^{n-1}\right): f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right)\right\}
$$

(a-odd functions).
Here the a-weight function $\rho_{a}$ is

$$
\rho_{a}(x)=\left(\frac{\left|1-|a|^{2}\right|}{|x-a|^{2}}\right)^{k-1}
$$

and the a-symmetry $\tau_{a}$ is

$$
\tau_{a} x=x+2 \frac{1-a \cdot x}{|a-x|^{2}}(a-x):
$$



## Kernel

Invoking known facts about $F_{0}, \Pi_{b}$, we obtain by means of the intertwining relations:: Thm(B. Rubin, M. A; 2019)

- Given $a \in \mathbb{R}^{n} \backslash S^{n-1}$,

$$
\operatorname{ker} F_{a}=\left\{f \in C\left(S^{n-1}\right): f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right)\right\}
$$

(a-odd functions).
Here the a-weight function $\rho_{a}$ is

$$
\rho_{a}(x)=\left(\frac{\left|1-|a|^{2}\right|}{|x-a|^{2}}\right)^{k-1}
$$

and the a-symmetry $\tau_{a}$ is

$$
\tau_{a} x=x+2 \frac{1-a \cdot x}{|a-x|^{2}}(a-x):
$$



## Inversion

- (Right) inverse operator for the interior center a:

$$
F_{a}^{-1}=M_{a} F_{0}^{-1} \Phi_{a}
$$

It reconstructs the a-even part:

$$
F_{a}^{-1} F_{a} f=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

- (Right) inverse operator for the exterior center $b$ :

$$
F_{b}^{-1}=M_{b} \Pi_{b}^{-1} \Phi_{b^{*}}
$$

$$
F_{b}^{-1} F_{b} f=\frac{1}{2}\left(f+\rho_{b}\left(f \circ \tau_{b}\right)\right)
$$

- the $b$-even part of $f \in C\left(S^{n-1}\right)$.


## Inversion

- (Right) inverse operator for the interior center a:

$$
F_{a}^{-1}=M_{a} F_{0}^{-1} \Phi_{a}
$$

It reconstructs the a-even part:

$$
F_{a}^{-1} F_{a} f=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

- (Right) inverse operator for the exterior center $b$ :

$$
F_{b}^{-1}=M_{b} \Pi_{b}^{-1} \phi_{b^{*}}
$$

$$
F_{b}^{-1} F_{b} f=\frac{1}{2}\left(f+\rho_{b}\left(f \circ \tau_{b}\right)\right)
$$

the $b$-even part of $f \in C\left(S^{n-1}\right)$.

## Inversion

- (Right) inverse operator for the interior center a:

$$
F_{a}^{-1}=M_{a} F_{0}^{-1} \Phi_{a}
$$

It reconstructs the a-even part:

$$
F_{a}^{-1} F_{a} f=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

- (Right) inverse operator for the exterior center $b$ :

$$
F_{b}^{-1}=M_{b} \Pi_{b}^{-1} \Phi_{b^{*}}
$$

$$
F_{b}^{-1} F_{b} f=\frac{1}{2}\left(f+\rho_{b}\left(f \circ \tau_{b}\right)\right)
$$

the $b$-even part of $f \in C\left(S^{n-1}\right)$.

## Inversion

- (Right) inverse operator for the interior center a:

$$
F_{a}^{-1}=M_{a} F_{0}^{-1} \Phi_{a}
$$

It reconstructs the a-even part:

$$
F_{a}^{-1} F_{a} f=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

- (Right) inverse operator for the exterior center $b$ :

$$
F_{b}^{-1}=M_{b} \Pi_{b}^{-1} \Phi_{b^{*}}
$$

$$
F_{b}^{-1} F_{b} f=\frac{1}{2}\left(f+\rho_{b}\left(f \circ \tau_{b}\right)\right)
$$

the b-even part of $f \in C\left(S^{n-1}\right)$.

## Inversion

- (Right) inverse operator for the interior center a:

$$
F_{a}^{-1}=M_{a} F_{0}^{-1} \Phi_{a}
$$

It reconstructs the a-even part:

$$
F_{a}^{-1} F_{a} f=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

- (Right) inverse operator for the exterior center $b$ :


$$
F_{b}^{-1} F_{b} f=\frac{1}{2}\left(f+\rho_{b}\left(f \circ \tau_{b}\right)\right)
$$

## Inversion

- (Right) inverse operator for the interior center a:

$$
F_{a}^{-1}=M_{a} F_{0}^{-1} \Phi_{a}
$$

It reconstructs the a-even part:

$$
F_{a}^{-1} F_{a} f=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

- (Right) inverse operator for the exterior center $b$ :

$$
F_{b}^{-1}=M_{b} \Pi_{b}^{-1} \Phi_{b^{*}}
$$



## Inversion

- (Right) inverse operator for the interior center a:

$$
F_{a}^{-1}=M_{a} F_{0}^{-1} \Phi_{a}
$$

It reconstructs the a-even part:

$$
F_{a}^{-1} F_{a} f=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

- (Right) inverse operator for the exterior center $b$ :

$$
F_{b}^{-1}=M_{b} \Pi_{b}^{-1} \Phi_{b^{*}}
$$

$$
F_{b}^{-1} F_{b} f=\frac{1}{2}\left(f+\rho_{b}\left(f \circ \tau_{b}\right)\right)
$$

- the b-even part of $f \in C\left(S^{n-1}\right)$.


## Multiple Funk transform

Given $A=\left\{a_{1}, \ldots, a_{s}\right\} \subset \mathbb{R}^{n}$ define

$$
F_{A} f=\left(F_{a_{1}} f, \ldots, F_{a_{s}} f\right)
$$

Q: For what sets $A$ the multiple Funk transform $F_{A}$ is injective, i.e.,

$$
\text { ker } F_{A}=\cap_{j=1}^{s} \text { ker } F_{a_{j}}=\{0\} ?
$$

Motivation: Single Funk data $g_{a}=F_{a}$ is not enough to recover $f \in C\left(S^{n-1}\right)$, unless $|a|=1$. This gives rise to

Q: What sets $g_{a}=F_{a} f, a \in A$, of Funk data uniquely determine $f$ ?
Q: How to reconstruct $f$ from $g_{a}, a \in A$ ?

We will give answers for two-point sets $A=\{a, b\}$.

## Multiple Funk transform

Given $A=\left\{a_{1}, \ldots, a_{s}\right\} \subset \mathbb{R}^{n}$ define

$$
F_{A} f=\left(F_{a_{1}} f, \ldots, F_{a_{s}} f\right)
$$

Q: For what sets $A$ the multiple Funk transform $F_{A}$ is injective, i.e.,

$$
\text { ker } F_{A}=\cap_{j=1}^{s} \operatorname{ker} F_{a_{j}}=\{0\} ?
$$

Motivation: Single Funk data $g_{a}=F_{a}$ is not enough to recover $f \in C\left(S^{n-1}\right)$, unless $|a|=1$. This gives rise to

Q: What sets $g_{a}=F_{a} f, a \in A$, of Funk data uniquely determine $f$ ?
Q: How to reconstruct $f$ from $g_{a}, a \in A$ ?

We will give answers for two-point sets $A=\{a, b\}$.

## Multiple Funk transform

Given $A=\left\{a_{1}, \ldots, a_{s}\right\} \subset \mathbb{R}^{n}$ define

$$
F_{A} f=\left(F_{a_{1}} f, \ldots, F_{a_{s}} f\right) .
$$

Q: For what sets $A$ the multiple Funk transform $F_{A}$ is injective, i.e.,

$$
\operatorname{ker} F_{A}=\cap_{j=1}^{s} \operatorname{ker} F_{a_{j}}=\{0\} ?
$$

Motivation: Single Funk data $g_{a}=F_{a}$ is not enough to recover $f \in C\left(S^{n-1}\right)$, unless $|a|=1$. This gives rise to

Q: What sets $g_{a}=F_{a} f, a \in A$, of Funk data uniquely determine $f$ ?
Q: How to reconstruct $f$ from $g_{a}, a \in A$ ?

We will give answers for two-point sets $A=\{a, b\}$.

## Multiple Funk transform

Given $A=\left\{a_{1}, \ldots, a_{s}\right\} \subset \mathbb{R}^{n}$ define

$$
F_{A} f=\left(F_{a_{1}} f, \ldots, F_{a_{s}} f\right)
$$

Q: For what sets $A$ the multiple Funk transform $F_{A}$ is injective, i.e.,

$$
\operatorname{ker} F_{A}=\cap_{j=1}^{s} \operatorname{ker} F_{a_{j}}=\{0\} ?
$$

Motivation: Single Funk data $g_{a}=F_{a}$ is not enough to recover $f \in C\left(S^{n-1}\right)$, unless $|a|=1$. This gives rise to

Q: What sets $g_{a}=F_{a} f, a \in A$, of Funk data uniquely determine $f$ ?
Q: How to reconstruct $f$ from $g_{a}, a \in A$ ?

We will give answers for two-point sets $A=\{a, b\}$.

## Multiple Funk transform

Given $A=\left\{a_{1}, \ldots, a_{s}\right\} \subset \mathbb{R}^{n}$ define

$$
F_{A} f=\left(F_{a_{1}} f, \ldots, F_{a_{s}} f\right)
$$

Q: For what sets $A$ the multiple Funk transform $F_{A}$ is injective, i.e.,

$$
\operatorname{ker} F_{A}=\cap_{j=1}^{s} \operatorname{ker} F_{a_{j}}=\{0\} ?
$$

Motivation: Single Funk data $g_{a}=F_{a}$ is not enough to recover $f \in C\left(S^{n-1}\right)$, unless $|a|=1$. This gives rise to

Q: What sets $g_{a}=F_{a} f, a \in A$, of Funk data uniquely determine $f$ ?
Q: How to reconstruct $f$ from $g_{a}, a \in A$ ?

We will give answers for two-point sets $A=\{a, b\}$.

## Multiple Funk transform

Given $A=\left\{a_{1}, \ldots, a_{s}\right\} \subset \mathbb{R}^{n}$ define

$$
F_{A} f=\left(F_{a_{1}} f, \ldots, F_{a_{s}} f\right)
$$

Q: For what sets $A$ the multiple Funk transform $F_{A}$ is injective, i.e.,

$$
\operatorname{ker} F_{A}=\cap_{j=1}^{s} \operatorname{ker} F_{a_{j}}=\{0\} ?
$$

Motivation: Single Funk data $g_{a}=F_{a}$ is not enough to recover $f \in C\left(S^{n-1}\right)$, unless $|a|=1$. This gives rise to

Q: What sets $g_{a}=F_{a} f, a \in A$, of Funk data uniquely determine $f$ ?
Q: How to reconstruct $f$ from $g_{a}, a \in A$ ?

We will give answers for two-point sets $A=\{a, b\}$.

## Multiple Funk transform

Given $A=\left\{a_{1}, \ldots, a_{s}\right\} \subset \mathbb{R}^{n}$ define

$$
F_{A} f=\left(F_{a_{1}} f, \ldots, F_{a_{s}} f\right)
$$

Q: For what sets $A$ the multiple Funk transform $F_{A}$ is injective, i.e.,

$$
\operatorname{ker} F_{A}=\cap_{j=1}^{s} \operatorname{ker} F_{a_{j}}=\{0\} ?
$$

Motivation: Single Funk data $g_{a}=F_{a}$ is not enough to recover $f \in C\left(S^{n-1}\right)$, unless $|a|=1$. This gives rise to

Q: What sets $g_{a}=F_{a} f, a \in A$, of Funk data uniquely determine $f$ ?
Q: How to reconstruct $f$ from $g_{a}, a \in A$ ?

We will give answers for two-point sets $A=\{a, b\}$.

## Multiple Funk transform

Given $A=\left\{a_{1}, \ldots, a_{s}\right\} \subset \mathbb{R}^{n}$ define

$$
F_{A} f=\left(F_{a_{1}} f, \ldots, F_{a_{s}} f\right)
$$

Q: For what sets $A$ the multiple Funk transform $F_{A}$ is injective, i.e.,

$$
\operatorname{ker} F_{A}=\cap_{j=1}^{s} \operatorname{ker} F_{a_{j}}=\{0\} ?
$$

Motivation: Single Funk data $g_{a}=F_{a}$ is not enough to recover $f \in C\left(S^{n-1}\right)$, unless $|a|=1$. This gives rise to

Q: What sets $g_{a}=F_{a} f, a \in A$, of Funk data uniquely determine $f$ ?
Q: How to reconstruct $f$ from $g_{a}, a \in A$ ?
We will give answers for two-point sets $A=\{a, b\}$.

The double reflection billiard $T$

To formulate the injectivity result for the pairs, we need to define a $V$-mapping $T: S^{n-1} \rightarrow S^{n-1}$, by

$$
T=\tau_{b} \circ \tau_{a}:
$$



The mapping $T$ :
Start with $x \in S^{n-1}$. Go to the direction a till intersection with $S^{n-1}$. Proceed to the direction $b$. End up with $T x \in S^{n-1}$

## The double reflection billiard $T$

To formulate the injectivity result for the pairs, we need to define a $V$-mapping $T: S^{n-1} \rightarrow S^{n-1}$, by

$$
T=\tau_{b} \circ \tau_{a}
$$



The mapping $T$ :
Start with $x \in S^{n-1}$. Go to the direction a till intersection with $S^{n-1}$. Proceed to the direction b. End up with $T x \in S^{n-1}$

## The double reflection billiard $T$

To formulate the injectivity result for the pairs, we need to define a $V$-mapping $T: S^{n-1} \rightarrow S^{n-1}$, by

$$
T=\tau_{b} \circ \tau_{a}
$$



The mapping $T$ :
Start with $x \in S^{n-1}$. Go to the direction a till intersection with $S^{n-1}$. Proceed to the direction b. End up with $T x \in S^{n-1}$

## The double reflection billiard $T$

To formulate the injectivity result for the pairs, we need to define a $V$-mapping $T: S^{n-1} \rightarrow S^{n-1}$, by

$$
T=\tau_{b} \circ \tau_{a}:
$$



The mapping $T$ :
Start with $x \in S^{n-1}$. Go to the direction a till intersection with $S^{n-1}$. Proceed to the direction $b$. End up with $T x \in S^{n-1}$.

Injectivity theorem for paired FT. Group-theoretical formulation

In algebraic terms:

Thm Given $a, b \in \mathbb{R}^{n}$, TFAE
$-\operatorname{ker} F_{a} \cap \operatorname{ker} F_{b}=\{0\}$.

- The group generated by the reflections $\tau_{a}, \tau_{b}$ is infinite.
- The mapping $T$ is non-periodic, i.e., $\forall q \in \mathbb{N}$,


Injectivity theorem for paired FT. Group-theoretical formulation

In algebraic terms:
Thm Given $a, b \in \mathbb{R}^{n}$, TFAE

- $\operatorname{ker} F_{a} \cap \operatorname{ker} F_{b}=\{0\}$.
- The group generated by the reflections $\tau_{a}, \tau_{b}$ is infinite.
- The mapping $T$ is non-periodic, i.e., $\forall q \in \mathbb{N}$,


Injectivity theorem for paired FT. Group-theoretical formulation

In algebraic terms:
Thm Given $a, b \in \mathbb{R}^{n}$, TFAE

- $\operatorname{ker} F_{a} \cap \operatorname{ker} F_{b}=\{0\}$
- The group generated by the reflections $\tau_{a}, \tau_{b}$ is infinite.
- The mapping $T$ is non-periodic, i.e., $\forall q \in \mathbb{N}$,


Injectivity theorem for paired FT. Group-theoretical formulation

In algebraic terms:
Thm Given $a, b \in \mathbb{R}^{n}$, TFAE

- ker $F_{a} \cap \operatorname{ker} F_{b}=\{0\}$.
- The group generated by the reflections $\tau_{a}, \tau_{b}$ is infinite.
- The mapping $T$ is non-periodic, i.e., $\forall q \in \mathbb{N}$,


Injectivity theorem for paired FT. Group-theoretical formulation

In algebraic terms:
Thm Given $a, b \in \mathbb{R}^{n}$, TFAE

- ker $F_{a} \cap \operatorname{kerF}_{b}=\{0\}$.
- The group generated by the reflections $\tau_{a}, \tau_{b}$ is infinite.
- The mapping $T$ is non-periodic, i.e., $\forall q \in \mathbb{N}$,



## Injectivity theorem for paired FT. Group-theoretical formulation

In algebraic terms:

Thm Given $a, b \in \mathbb{R}^{n}$, TFAE

- ker $F_{a} \cap \operatorname{kerF}_{b}=\{0\}$.
- The group generated by the reflections $\tau_{a}, \tau_{b}$ is infinite.
- The mapping $T$ is non-periodic, i.e., $\forall q \in \mathbb{N}$,

$$
T^{\circ q}=\underbrace{T \circ \ldots \circ T}_{q} \neq \mathrm{id} .
$$

## Analytic formulation

Thm Given $a, b \in \mathbb{R}^{n}$, define

$$
\Theta(a, b)=\frac{a \cdot b-1}{\sqrt{\left(1-|a|^{2}\right)\left(1-|b|^{2}\right)}}
$$

$$
\kappa(a, b):=\frac{1}{\pi} \arccos \Theta(a, b)
$$

Then ker $F_{a} \cap \operatorname{ker} F_{b}=\{0\}$ if and only if one of the conditions is fulfilled:
(i) $\Theta(a, b) \in \mathbb{C} \backslash[-1,1]$.
(ii) $\Theta(a, b) \in[-1,1]$ but $\kappa(a, b)$ (rotation number) is irrational.

In other words, the paired FT $F_{a, b}=\left(F_{a}, F_{b}\right)$ fails to be injective if and only if the rotation number $\kappa(a, b)$ is real rational.

## Analytic formulation

Thm Given $a, b \in \mathbb{R}^{n}$, define

$$
\Theta(a, b)=\frac{a \cdot b-1}{\sqrt{\left(1-|a|^{2}\right)\left(1-|b|^{2}\right)}}
$$

$$
\kappa(a, b):=\frac{1}{\pi} \arccos \Theta(a, b)
$$

Then ker $F_{a} \cap \operatorname{ker} F_{b}=\{0\}$ if and only if one of the conditions is fulfilled:
(i) $\Theta(a, b) \in \mathbb{C} \backslash[-1,1]$.
(ii) $\Theta(a, b) \in[-1,1]$ but $\kappa(a, b)$ (rotation number) is irrational.

In other words, the paired FT $F_{a, b}=\left(F_{a}, F_{b}\right)$ fails to be injective if and only if the rotation number $\kappa(a, b)$ is real rational.

## Analytic formulation

Thm Given $a, b \in \mathbb{R}^{n}$, define

$$
\Theta(a, b)=\frac{a \cdot b-1}{\sqrt{\left(1-|a|^{2}\right)\left(1-|b|^{2}\right)}}
$$

$$
\kappa(a, b):=\frac{1}{\pi} \arccos \Theta(a, b)
$$

Then ker $F_{a} \cap \operatorname{ker} F_{b}=\{0\}$ if and only if one of the conditions is fulfilled:
(i) $\Theta(a, b) \in \mathbb{C} \backslash[-1,1]$
(ii) $\Theta(a, b) \in[-1,1]$ but $\kappa(a, b)$ (rotation number) is irrational.

In other words, the paired FT $F_{a, b}=\left(F_{a}, F_{b}\right)$ fails to be injective if and only if the rotation number $\kappa(a, b)$ is real rational.

## Analytic formulation

Thm Given $a, b \in \mathbb{R}^{n}$, define

$$
\Theta(a, b)=\frac{a \cdot b-1}{\sqrt{\left(1-|a|^{2}\right)\left(1-|b|^{2}\right)}},
$$

$$
\kappa(a, b):=\frac{1}{\pi} \arccos \Theta(a, b) .
$$

Then $\operatorname{ker} F_{a} \cap \operatorname{ker} F_{b}=\{0\}$ if and only if one of the conditions is fulfilled:
(i) $\Theta(a, b) \in \mathbb{C} \backslash[-1,1]$.
(ii) $\Theta(a, b) \in[-1,1]$ but $\kappa(a, b)$ (rotation number) is irrational.

In other words, the paired FT $F_{a, b}=\left(F_{a}, F_{b}\right)$ fails to be injective if and only if the rotation number $\kappa(a, b)$ is real rational.

## Analytic formulation

Thm Given $a, b \in \mathbb{R}^{n}$, define

$$
\Theta(a, b)=\frac{a \cdot b-1}{\sqrt{\left(1-|a|^{2}\right)\left(1-|b|^{2}\right)}}
$$

$$
\kappa(a, b):=\frac{1}{\pi} \arccos \Theta(a, b) .
$$

Then ker $F_{a} \cap$ ker $F_{b}=\{0\}$ if and only if one of the conditions is fulfilled:
(ii) $\Theta(a, b) \in[-1,1]$ but $\kappa(a, b)$ (rotation number) is irrational.

In other words, the paired FT $F_{a, b}=\left(F_{a}, F_{b}\right)$ fails to be injective if and only if the rotation number $\kappa(a, b)$ is real rational.

## Analytic formulation

Thm Given $a, b \in \mathbb{R}^{n}$, define

$$
\Theta(a, b)=\frac{a \cdot b-1}{\sqrt{\left(1-|a|^{2}\right)\left(1-|b|^{2}\right)}},
$$

$$
\kappa(a, b):=\frac{1}{\pi} \arccos \Theta(a, b) .
$$

Then ker $F_{a} \cap$ ker $F_{b}=\{0\}$ if and only if one of the conditions is fulfilled:
(i) $\Theta(a, b) \in \mathbb{C} \backslash[-1,1]$.
(ii) $\Theta(a, b) \in[-1,1]$ but $k(a, b)$ (rotation number) is irrational.

In other words, the paired FT $F_{a, b}=\left(F_{a}, F_{b}\right)$ fails to be injective if and only if the rotation number $\kappa(a, b)$ is real rational.

## Analytic formulation

Thm Given $a, b \in \mathbb{R}^{n}$, define

$$
\Theta(a, b)=\frac{a \cdot b-1}{\sqrt{\left(1-|a|^{2}\right)\left(1-|b|^{2}\right)}},
$$

$$
\kappa(a, b):=\frac{1}{\pi} \arccos \Theta(a, b)
$$

Then ker $F_{a} \cap$ ker $F_{b}=\{0\}$ if and only if one of the conditions is fulfilled:
(i) $\Theta(a, b) \in \mathbb{C} \backslash[-1,1]$.
(ii) $\Theta(a, b) \in[-1,1]$ but $\kappa(a, b)$ (rotation number) is irrational.

## Analytic formulation

Thm Given $a, b \in \mathbb{R}^{n}$, define

$$
\Theta(a, b)=\frac{a \cdot b-1}{\sqrt{\left(1-|a|^{2}\right)\left(1-|b|^{2}\right)}}
$$

$$
\kappa(a, b):=\frac{1}{\pi} \arccos \Theta(a, b) .
$$

Then ker $F_{a} \cap$ ker $F_{b}=\{0\}$ if and only if one of the conditions is fulfilled:
(i) $\Theta(a, b) \in \mathbb{C} \backslash[-1,1]$.
(ii) $\Theta(a, b) \in[-1,1]$ but $\kappa(a, b)$ (rotation number) is irrational.

In other words, the paired FT $F_{a, b}=\left(F_{a}, F_{b}\right)$ fails to be injective if and only if the rotation number $\kappa(a, b)$ is real rational.

## Geometrical formulation

In analytic-geometric terms:

Thm ker $F_{a} \cap \operatorname{ker} F_{b}=\{0\}$ if and only if the following conditions hold:
(i) $a \cdot b \neq 1$.
(ii) Either $L_{a, b} \cap S^{n-1} \neq \emptyset$ or, if not, then $\kappa(a, b)$ (automatically real) is irrational.

## Geometrical formulation

In analytic-geometric terms:

Thm ker $F_{a} \cap \operatorname{ker} F_{b}=\{0\}$ if and only if the following conditions hold:
(i) $a \cdot b \neq 1$.
(ii) Either $L_{a, b} \cap S^{n-1} \neq \emptyset$ or, if not, then $\kappa(a, b)$ (automatically real) is irrational.

## Geometrical formulation

In analytic-geometric terms:
Thm ker $F_{a} \cap \operatorname{ker} F_{b}=\{0\}$ if and only if the following conditions hold:
(ii) Either $L_{a, b} \cap S^{n-1} \neq \emptyset$ or, if not, then $\kappa(a, b)$ (automatically real) is irrational.

## Geometrical formulation

In analytic-geometric terms:
Thm ker $F_{a} \cap \operatorname{ker} F_{b}=\{0\}$ if and only if the following conditions hold:
(i) $a \cdot b \neq 1$.
(ii) Either $L_{a, b} \cap S^{n-1} \neq \emptyset$ or, if not, then $\kappa(a, b)$ (automatically real) is irrational.

## Geometrical formulation

In analytic-geometric terms:
Thm ker $F_{a} \cap$ ker $F_{b}=\{0\}$ if and only if the following conditions hold:
(i) $a \cdot b \neq 1$.
(ii) Either $L_{a, b} \cap S^{n-1} \neq \emptyset$ or, if not, then $\kappa(a, b)$ (automatically real) is irrational.

## Reconstruction functions from a pair of Funk transforms

Given

$$
F_{a} f=g_{a}, \quad F_{b} f=g_{b} .
$$

Then one can reconstruct:

$$
F_{a}^{-1} g_{a}=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

a-even part

$$
F_{b}^{-1} g_{b}=\frac{1}{2}\left(f+\rho_{b}\left(f \circ \tau_{a}\right)\right)
$$

b-even part. From here

$$
\begin{aligned}
& f=2 F_{a}^{-1} g_{a}-\rho_{a}\left(f \circ \tau_{a}\right):=2 F_{a}^{-1} g_{a}+W_{a} f \\
& f=2 F_{b}^{-1} g_{b}-\rho_{b}\left(f \circ \tau_{b}\right):=2 F_{b}^{-1} g_{b}+W_{b} f .
\end{aligned}
$$

Substitute:

$$
f=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right)+W_{b} W_{a} f:=h+W f .
$$

Iterate:

$$
f=h+W f=h+W h+W^{2} h=\ldots=\sum_{k=0}^{\infty} W^{k} h
$$

(formal series).

## Reconstruction functions from a pair of Funk transforms

Given

$$
F_{a} f=g_{a}, \quad F_{b} f=g_{b}
$$

Then one can reconstruct:

$$
F_{a}^{-1} g_{a}=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

a-even part

$$
F_{b}^{-1} g_{b}=\frac{1}{2}\left(f+\rho_{b}\left(f \circ \tau_{a}\right)\right)
$$

b-even part. From here

$$
\begin{aligned}
& f=2 r_{a}^{-1} g_{a}-\rho_{a}\left(f \circ \tau_{a}\right):=2 F_{a}^{-1} g_{a}+W_{a} f \\
& f=2 F_{b}^{-1} g_{b}-\rho_{b}\left(f \circ \tau_{b}\right):=2 F_{b}^{-1} g_{b}+W_{b} f .
\end{aligned}
$$

Substitute:

$$
f=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right)+W_{b} W_{a} f:=h+W f .
$$

Iterate:

$$
f=h+W f=h+W h+W^{2} h=\ldots=\sum_{k=0}^{\infty} W^{k} h
$$

## Reconstruction functions from a pair of Funk transforms

Given

$$
F_{a} f=g_{a}, \quad F_{b} f=g_{b}
$$

Then one can reconstruct:

$$
F_{a}^{-1} g_{a}=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

- a-even part

$$
F_{b}^{-1} g_{b}=\frac{1}{2}\left(f+\rho_{b}\left(f \circ \tau_{a}\right)\right)
$$

b-even part. From here

$$
\begin{aligned}
& f=2 F_{a}^{-1} g_{a}-\rho_{a}\left(f \circ \tau_{a}\right):=2 F_{a}^{-1} g_{a}+W_{a} f, \\
& f=2 F_{b}^{-1} g_{b}-\rho_{b}\left(f \circ \tau_{b}\right):=2 F_{b}^{-1} g_{b}+W_{b} f .
\end{aligned}
$$

Substitute:

$$
f=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right)+W_{b} W_{a} f:=h+W f .
$$

Iterate:


## Reconstruction functions from a pair of Funk transforms

Given

$$
F_{a} f=g_{a}, \quad F_{b} f=g_{b} .
$$

Then one can reconstruct:

$$
F_{a}^{-1} g_{a}=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

- a-even part

$$
F_{b}^{-1} g_{b}=\frac{1}{2}\left(f+\rho_{b}\left(f \circ \tau_{a}\right)\right)
$$

- b-even part. From here

$$
\begin{aligned}
& f=2 F_{a}^{-1} g_{a}-\rho_{a}\left(f \circ \tau_{a}\right):=2 F_{a}^{-1} g_{a}+W_{a} f, \\
& f=2 F_{b}^{-1} g_{b}-\rho_{b}\left(f \circ \tau_{b}\right):=2 F_{b}^{-1} g_{b}+W_{b} f .
\end{aligned}
$$

Substitute:

$$
f=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right)+W_{b} W_{a} f:=h+W f .
$$

Iterate:


## Reconstruction functions from a pair of Funk transforms

Given

$$
F_{a} f=g_{a}, \quad F_{b} f=g_{b}
$$

Then one can reconstruct:

$$
F_{a}^{-1} g_{a}=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

- a-even part

$$
F_{b}^{-1} g_{b}=\frac{1}{2}\left(f+\rho_{b}\left(f \circ \tau_{a}\right)\right)
$$

- b-even part. From here

$$
\begin{aligned}
& f=2 F_{a}^{-1} g_{a}-\rho_{a}\left(f \circ \tau_{a}\right):=2 F_{a}^{-1} g_{a}+W_{a} f, \\
& f=2 F_{b}^{-1} g_{b}-\rho_{b}\left(f \circ \tau_{b}\right):=2 F_{b}^{-1} g_{b}+W_{b} f .
\end{aligned}
$$

Substitute:

$$
f=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right)+W_{b} W_{a} f:=h+W f .
$$

Iterate:

## Reconstruction functions from a pair of Funk transforms

Given

$$
F_{a} f=g_{a}, \quad F_{b} f=g_{b}
$$

Then one can reconstruct:

$$
F_{a}^{-1} g_{a}=\frac{1}{2}\left(f+\rho_{a}\left(f \circ \tau_{a}\right)\right)
$$

- a-even part

$$
F_{b}^{-1} g_{b}=\frac{1}{2}\left(f+\rho_{b}\left(f \circ \tau_{a}\right)\right)
$$

- $b$-even part. From here

$$
\begin{aligned}
& f=2 F_{a}^{-1} g_{a}-\rho_{a}\left(f \circ \tau_{a}\right):=2 F_{a}^{-1} g_{a}+W_{a} f, \\
& f=2 F_{b}^{-1} g_{b}-\rho_{b}\left(f \circ \tau_{b}\right):=2 F_{b}^{-1} g_{b}+W_{b} f .
\end{aligned}
$$

Substitute:

$$
f=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right)+W_{b} W_{a} f:=h+W f .
$$

Iterate:

$$
f=h+W f=h+W h+W^{2} h=\ldots=\sum_{k=0}^{\infty} W^{k} h
$$

(formal series).

Convergence of the formal Neumann series

Thm Let $k>1$. Suppose $L(a, b) \cap S^{n-1} \neq \emptyset$ (stable injectivity). Then

$$
f=\sum_{j=0}^{\infty} W^{j} h, \quad \lim _{N \rightarrow \infty} \int_{S^{n}-1}\left|f(x)-\sum_{j=0}^{N} W^{j} h(x)\right|^{p} d A(x)=0
$$

where
$h=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right),(W h)(x)=\left(W_{b} W_{a} h\right)(x)=\rho(x) f(T x), \rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}\left(\tau_{a} x\right)$, and

$$
1 \leq p<\frac{n-1}{k-1}
$$

Moreover, for any nonzero $f$ the series diverges for $p \geq \frac{n-1}{k-1}$

In the case of unstable injectivity $\left(L_{a, b} \cap S^{n-1}=\emptyset, \kappa(a, b) \notin \mathbb{Q}\right)$ - the convergence holds in Cesaro sense (ergodicity).

## Convergence of the formal Neumann series

Thm Let $k>1$. Suppose $L(a, b) \cap S^{n-1} \neq \emptyset$ (stable injectivity). Then

where
$h=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right),(W h)(x)=\left(W_{b} W_{a} h\right)(x)=\rho(x) f(T x), \rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}\left(\tau_{a} x\right)$,
and

$$
1 \leq p<\frac{n-1}{k-1}
$$

Moreover, for any nonzero $f$ the series diverges for $p \geq \frac{n-1}{k-1}$.

In the case of unstable injectivity $\left(L_{a, b} \cap S^{n-1}=\emptyset, \kappa(a, b) \notin \mathbb{Q}\right)$ - the convergence holds in Cesaro sense (ergodicity).

Convergence of the formal Neumann series

Thm Let $k>1$. Suppose $L(a, b) \cap S^{n-1} \neq \emptyset$ (stable injectivity). Then

$$
f=\sum_{j=0}^{\infty} W^{j} h, \quad \lim _{N \rightarrow \infty} \int_{S^{n-1}}\left|f(x)-\sum_{j=0}^{N} W^{j} h(x)\right|^{p} d A(x)=0
$$

where
$h=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right),(W h)(x)=\left(W_{b} W_{a} h\right)(x)=\rho(x) f(T x), \rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}\left(T_{a} x\right)$, and

$$
1 \leq p<\frac{n-1}{k-1} .
$$

Moreover, for any nonzero $f$ the series diverges for $p \geq \frac{n-1}{k-1}$
In the case of unstable injectivity $\left(L_{a, b} \cap S^{n-1}=\emptyset, k(a, b) \notin \mathbb{Q}\right)$ - the convergence holds in Cesaro sense (ergodicity).

Convergence of the formal Neumann series

Thm Let $k>1$. Suppose $L(a, b) \cap S^{n-1} \neq \emptyset$ (stable injectivity). Then

$$
f=\sum_{j=0}^{\infty} W^{j} h, \quad \lim _{N \rightarrow \infty} \int_{S^{n-1}}\left|f(x)-\sum_{j=0}^{N} W^{j} h(x)\right|^{p} d A(x)=0
$$

where
$h=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right),(W h)(x)=\left(W_{b} W_{a} h\right)(x)=\rho(x) f(T x), \rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}\left(\tau_{a} x\right)$,
and


Moreover, for any nonzero $f$ the series diverges for $p \geq \frac{n-1}{k-1}$.
In the case of unstable injectivity $\left(L_{a, b} \cap S^{n-1}=\emptyset, \kappa(a, b) \notin \mathbb{Q}\right)$ - the convergence holds in Cesaro sense (ergodicity).

Convergence of the formal Neumann series

Thm Let $k>1$. Suppose $L(a, b) \cap S^{n-1} \neq \emptyset$ (stable injectivity). Then

$$
f=\sum_{j=0}^{\infty} W^{j} h, \quad \lim _{N \rightarrow \infty} \int_{S^{n-1}}\left|f(x)-\sum_{j=0}^{N} W^{j} h(x)\right|^{p} d A(x)=0
$$

where
$h=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right),(W h)(x)=\left(W_{b} W_{a} h\right)(x)=\rho(x) f(T x), \rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}\left(\tau_{a} x\right)$, and

$$
1 \leq p<\frac{n-1}{k-1}
$$

Moreover, for any nonzero $f$ the series diverges for $p \geq \frac{n-1}{k-1}$.
In the case of unstable injectivity $\left(L_{a, b} \cap S^{n-1}=\emptyset, \kappa(a, b) \notin \mathbb{Q}\right)$ - the convergence holds in Cesaro sense (ergodicity).

## Convergence of the formal Neumann series

Thm Let $k>1$. Suppose $L(a, b) \cap S^{n-1} \neq \emptyset$ (stable injectivity). Then

$$
f=\sum_{j=0}^{\infty} W^{j} h, \quad \lim _{N \rightarrow \infty} \int_{S^{n-1}}\left|f(x)-\sum_{j=0}^{N} W^{j} h(x)\right|^{p} d A(x)=0
$$

where
$h=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right),(W h)(x)=\left(W_{b} W_{a} h\right)(x)=\rho(x) f(T x), \rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}\left(\tau_{a} x\right)$, and

$$
1 \leq p<\frac{n-1}{k-1} .
$$

Moreover, for any nonzero $f$ the series diverges for $p \geq \frac{n-1}{k-1}$.
In the case of unstable injectivity $\left(L_{a, b} \cap S^{n-1}=\emptyset, \kappa(a, b) \notin \mathbb{Q}\right)$ - the convergence holds in Cesaro sense (ergodicity)

## Convergence of the formal Neumann series

Thm Let $k>1$. Suppose $L(a, b) \cap S^{n-1} \neq \emptyset$ (stable injectivity). Then

$$
f=\sum_{j=0}^{\infty} W^{j} h, \quad \lim _{N \rightarrow \infty} \int_{S^{n-1}}\left|f(x)-\sum_{j=0}^{N} W^{j} h(x)\right|^{p} d A(x)=0
$$

where
$h=2\left(F_{b}^{-1} g_{b}+W_{b} F_{a}^{-1} g_{a}\right),(W h)(x)=\left(W_{b} W_{a} h\right)(x)=\rho(x) f(T x), \rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}\left(\tau_{a} x\right)$,
and

$$
1 \leq p<\frac{n-1}{k-1} .
$$

Moreover, for any nonzero $f$ the series diverges for $p \geq \frac{n-1}{k-1}$.
In the case of unstable injectivity $\left(L_{a, b} \cap S^{n-1}=\emptyset, \kappa(a, b) \notin \mathbb{Q}\right)$ - the convergence holds in Cesaro sense (ergodicity).

## Strategy of the proof

## $T$-automorphic functions

- We know

$$
f \in \operatorname{Ker}_{a} \cap \operatorname{ker}_{b} \quad \Leftrightarrow \quad f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right), \quad f(y)=-\rho_{b}(y) f\left(\tau_{b} y\right)
$$

Substitute $y=\tau_{b} x$ :

$$
f(x)=\rho(x) f(T x)
$$

where

$$
\rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}(x), \quad T x=\tau_{b}\left(\tau_{a} x\right)
$$

- Thus,

$$
\operatorname{Ker}\left(F_{a}, F_{b}\right) \subset C_{T}\left(S^{n-1}\right)=\left\{f \in C\left(S^{n-1}\right): f(x)=\rho(x) f(T x)\right\}
$$


depends on the type of dynamics of iterations of

## Strategy of the proof

## $T$-automorphic functions

- We know

$$
f \in \operatorname{KerF}_{a} \cap \operatorname{ker} F_{b} \Leftrightarrow f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right), \quad f(y)=-\rho_{b}(y) f\left(\tau_{b} y\right)
$$

Substitute $y=\tau_{b} x$ :

$$
f(x)=\rho(x) f(T x),
$$

## where

$$
\rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}(x), \quad T x=\tau_{b}\left(\tau_{a} x\right)
$$

- Thus,

$$
\operatorname{Ker}\left(F_{a}, F_{b}\right) \subset C_{T}\left(S^{n-1}\right)=\left\{f \in C\left(S^{n-1}\right): f(x)=\rho(x) f(T x)\right\}
$$

## Strategy of the proof

## $T$-automorphic functions

- We know

$$
f \in \operatorname{KerF}_{a} \cap \operatorname{ker} F_{b} \Leftrightarrow f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right), \quad f(y)=-\rho_{b}(y) f\left(\tau_{b} y\right)
$$

Substitute $y=\tau_{b} x$ :

$$
f(x)=\rho(x) f(T x),
$$

## where

$$
\rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}(x), \quad T x=\tau_{b}\left(\tau_{a} x\right)
$$

- Thus,
$\operatorname{Ker}\left(F_{a}, F_{b}\right) \subset C_{T}\left(S^{n-1}\right)=\left\{f \in C\left(S^{n-1}\right): f(x)=\rho(x) f(T x)\right\}$


## Strategy of the proof

## $T$-automorphic functions

- We know

$$
f \in \operatorname{KerF}_{a} \cap \operatorname{ker} F_{b} \Leftrightarrow f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right), \quad f(y)=-\rho_{b}(y) f\left(\tau_{b} y\right)
$$

Substitute $y=\tau_{b} x$ :

$$
f(x)=\rho(x) f(T x)
$$

## where

$$
\rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}(x), \quad T x=\tau_{b}\left(\tau_{a} x\right)
$$

- Thus,


## Strategy of the proof

## $T$-automorphic functions

- We know

$$
f \in \operatorname{KerF}_{a} \cap \operatorname{ker}_{b} \Leftrightarrow f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right), \quad f(y)=-\rho_{b}(y) f\left(\tau_{b} y\right)
$$

Substitute $y=\tau_{b} x$ :

$$
f(x)=\rho(x) f(T x)
$$

where

$$
\rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}(x), \quad T x=\tau_{b}\left(\tau_{a} x\right)
$$

- Thus,


## Strategy of the proof

## $T$-automorphic functions

- We know

$$
f \in \operatorname{KerF}_{a} \cap \operatorname{ker} F_{b} \Leftrightarrow f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right), \quad f(y)=-\rho_{b}(y) f\left(\tau_{b} y\right)
$$

Substitute $y=\tau_{b} x$ :

$$
f(x)=\rho(x) f(T x)
$$

where

$$
\rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}(x), \quad T x=\tau_{b}\left(\tau_{a} x\right)
$$

- Thus,

$$
\operatorname{Ker}\left(F_{a}, F_{b}\right) \subset C_{T}\left(S^{n-1}\right)=\left\{f \in C\left(S^{n-1}\right): f(x)=\rho(x) f\left(T_{x}\right)\right\}
$$

## Strategy of the proof

## $T$-automorphic functions

- We know

$$
f \in \operatorname{KerF}_{a} \cap \operatorname{ker} F_{b} \Leftrightarrow f(x)=-\rho_{a}(x) f\left(\tau_{a} x\right), \quad f(y)=-\rho_{b}(y) f\left(\tau_{b} y\right)
$$

Substitute $y=\tau_{b} x$ :

$$
f(x)=\rho(x) f(T x)
$$

where

$$
\rho(x)=\rho_{b}\left(\tau_{a} x\right) \rho_{a}(x), \quad T x=\tau_{b}\left(\tau_{a} x\right)
$$

- Thus,

$$
\operatorname{Ker}\left(F_{a}, F_{b}\right) \subset C_{T}\left(S^{n-1}\right)=\left\{f \in C\left(S^{n-1}\right): f(x)=\rho(x) f\left(T_{x}\right)\right\}
$$

- The "size" of $C_{T}\left(S^{n-1}\right)$ depends on the type of dynamics of iterations of $T: S^{n-1} \rightarrow S^{n-1}$.


## Reduction to $T$-dynamics on the unit circle

- The orbit $O_{x}=\left\{x, T_{x}, T^{2} x, \ldots\right\}$ entirely belongs to 2 -dim plane $\operatorname{span}(x, a, b)$.
- After a shift and re-scaling, the problem reduces to study of complex $T$-dynamics on the unit circle $S^{1} \subset \mathbb{C}$.



## Reduction to $T$-dynamics on the unit circle

- The orbit $O_{x}=\left\{x, T_{x}, T^{2} x, \ldots\right\}$ entirely belongs to 2-dim plane $\operatorname{span}(x, a, b)$.
- After a shift and re-scaling, the problem reduces to study of complex $T$-dynamics on the unit circle $S^{1} \subset \mathbb{C}$.



## Reduction to $T$-dynamics on the unit circle

- The orbit $O_{x}=\left\{x, T_{x}, T^{2} x, \ldots\right\}$ entirely belongs to 2-dim plane $\operatorname{span}(x, a, b)$.
- After a shift and re-scaling, the problem reduces to study of complex $T$-dynamics on the unit circle $S^{1} \subset \mathbb{C}$.



## Complex dynamics on $S^{1}$

- $T$ generates a complex Möbius transformation of $S^{1}$, associated with $T \in P S L(2, \mathbb{C})$.
- Classification of the types of $T$-dynamics according to trace $T=$ Theta $(a, b)$. The cases: 1)hyperbolic, 2) parabolic, 3) loxodromic, 4) elliptic. Different types of orbits behaviour (convergence to attracting fixed points; dense orbits; finite orbits).
In 1), 2), 3): two fixed points- attracting and repelling those. In elliptic case: T is conjugate with a rotation $z \rightarrow z e^{i \theta}$. Splits into: rational or irrational rotation number $\frac{\theta}{2 \pi}=\kappa(a, b)$.
$\Rightarrow$ Thm The space of $T$-automorphic $C_{T}\left(S^{1}\right)=0$ in cases 1$\left.), 2\right)$, 3). Elliptic case with irrational $\kappa(a, b)$ - dense orbits.
$\Rightarrow C_{T}\left(S^{1}\right) \neq\{0\}$ for $T$ for elliptic type with rational rotation number.
$\rightarrow$ Glueing up dynamics on 2D sections into global dynamics on $S^{n-1} .\left(F_{a}, F_{b}\right)$ can be non-injective only for periodic $T$ : elliptic case with rational $\kappa(a, b)$.



## Complex dynamics on $S^{1}$

- $T$ generates a complex Möbius transformation of $S^{1}$, associated with $T \in P S L(2, \mathbb{C})$.
- Classification of the types of $T$-dynamics according to trace $T=$ Theta $(a, b)$. The cases: 1)hyperbolic, 2) parabolic, 3) loxodromic, 4) elliptic. Different types of orbits behaviour (convergence to attracting fixed points; dense orbits; finite orbits).
In 1), 2), 3): two fixed points- attracting and repelling those. In elliptic case: $T$ is conjugate with a rotation $z \rightarrow z e^{i \theta}$. Splits into: rational or irrational rotation number $\frac{\theta}{2 \pi}=\kappa(a, b)$.
- Thm The space of $T$-automorphic $C_{T}\left(S^{1}\right)=0$ in cases 1), 2), 3). Elliptic case with irrational $\kappa(a, b)$ - dense orbits.
- $C_{T}\left(S^{1}\right) \neq\{0\}$ for $T$ for elliptic type with rational rotation number.
- Glueing up dynamics on 2D sections into global dynamics on $S^{n-1} .\left(F_{a}, F_{b}\right)$ can be non-injective only for periodic $T$ : elliptic case with rational $\kappa(a, b)$.



## Complex dynamics on $S^{1}$

- $T$ generates a complex Möbius transformation of $S^{1}$, associated with $T \in \operatorname{PSL}(2, \mathbb{C})$.
- Classification of the types of $T$-dynamics according to $\operatorname{trace} T=\operatorname{Theta}(a, b)$. The cases: 1)hyperbolic, 2) parabolic, 3) loxodromic, 4) elliptic. Different types of orbits behaviour (convergence to attracting fixed points; dense orbits; finite orbits).
In 1), 2), 3): two fixed points- attracting and repelling those. In elliptic case: T is conjugate with a rotation $z \rightarrow z e^{\prime \theta}$. Splits into: rational or irrational rotation number $\frac{\theta}{2 \pi}=\kappa(a, b)$.
- Thm The space of $T$-automorphic $C_{T}\left(S^{1}\right)=0$ in cases 1), 2), 3). Elliptic case with irrational $\kappa(a, b)$ - dense orbits.
- $C_{T}\left(S^{1}\right) \neq\{0\}$ for $T$ for ellintic type with rational rotation number.
- Glueing up dynamics on 2D sections into global dynamics on $S^{n-1} .\left(F_{a}, F_{b}\right)$ can be non-injective only for periodic $T$ : elliptic case with rational $\kappa(a, b)$.


## Complex dynamics on $S^{1}$

- $T$ generates a complex Möbius transformation of $S^{1}$, associated with $T \in \operatorname{PSL}(2, \mathbb{C})$.
- Classification of the types of $T$-dynamics according to $\operatorname{trace} T=\operatorname{Theta}(a, b)$. The cases: 1)hyperbolic, 2) parabolic, 3) loxodromic, 4) elliptic. Different types of orbits behaviour (convergence to attracting fixed points; dense orbits; finite orbits).


- Thm The space of $T$-automorphic $C_{T}\left(S^{1}\right)=0$ in cases 1), 2), 3). Elliptic case with irrational $\kappa(a, b)$ - dense orbits.
- $C_{T}\left(S^{1}\right) \neq\{0\}$ for $T$ for elliptic type with rational rotation number.
$\Rightarrow$ Glueing up dynamics on 2D sections into global dynamics on $S^{n-1} .\left(F_{a}, F_{b}\right)$ can be non-injective only for periodic $T$ : elliptic case with rational $\kappa(a, b)$.


## Complex dynamics on $S^{1}$

- $T$ generates a complex Möbius transformation of $S^{1}$, associated with $T \in \operatorname{PSL}(2, \mathbb{C})$.
- Classification of the types of $T$-dynamics according to $\operatorname{trace} T=\operatorname{Theta}(a, b)$. The cases: 1)hyperbolic, 2) parabolic, 3) loxodromic, 4) elliptic. Different types of orbits behaviour (convergence to attracting fixed points; dense orbits; finite orbits).
In 1), 2), 3): two fixed points- attracting and repelling those. In elliptic case: $T$ is conjugate with a rotation $z \rightarrow z e^{i \theta}$. Splits into: rational or irrational rotation number $\frac{\theta}{2 \pi}=\kappa(a, b)$.
- Thm The space of $T$-automorphic $C_{T}\left(S^{1}\right)=0$ in cases 1), 2), 3). Elliptic case with irrational $\kappa(a, b)$ - dense orbits.
- $C_{T}\left(S^{1}\right) \neq\{0\}$ for $T$ for ellintic tyne with rational rotation number.
- Glueing up dynamics on 2D sections into global dynamics on $S^{n-1}$. ( $F_{a}, F_{b}$ ) can be non-injective only for periodic $T$ : elliptic case with rational $\kappa(a, b)$.


## Complex dynamics on $S^{1}$

- $T$ generates a complex Möbius transformation of $S^{1}$, associated with $T \in \operatorname{PSL}(2, \mathbb{C})$.
- Classification of the types of $T$-dynamics according to $\operatorname{trace} T=\operatorname{Theta}(a, b)$. The cases: 1)hyperbolic, 2) parabolic, 3) loxodromic, 4) elliptic. Different types of orbits behaviour (convergence to attracting fixed points; dense orbits; finite orbits).
In 1), 2), 3): two fixed points- attracting and repelling those. In elliptic case: $T$ is conjugate with a rotation $z \rightarrow z e^{i \theta}$. Splits into: rational or irrational rotation number $\frac{\theta}{2 \pi}=\kappa(a, b)$.
- Thm The space of $T$-automorphic $C_{T}\left(S^{1}\right)=0$ in cases 1$\left.\left.), 2\right), 3\right)$. Elliptic case with irrational $\kappa(a, b)$ - dense orbits.
- $C_{T}\left(S^{1}\right) \neq\{0\}$ for $T$ for elliptic type with rational rotation number.
- Glueing up dynamics on 2D sections into global dynamics on $S^{n-1}$. ( $F_{a}, F_{b}$ ) can be non-injective only for periodic $T$ : elliptic case with rational $\kappa(a, b)$.


## Complex dynamics on $S^{1}$

- $T$ generates a complex Möbius transformation of $S^{1}$, associated with $T \in \operatorname{PSL}(2, \mathbb{C})$.
- Classification of the types of $T$-dynamics according to $\operatorname{trace} T=\operatorname{Theta}(a, b)$. The cases: 1)hyperbolic, 2) parabolic, 3) loxodromic, 4) elliptic. Different types of orbits behaviour (convergence to attracting fixed points; dense orbits; finite orbits).
In 1), 2), 3): two fixed points- attracting and repelling those. In elliptic case: $T$ is conjugate with a rotation $z \rightarrow z e^{i \theta}$. Splits into: rational or irrational rotation number $\frac{\theta}{2 \pi}=\kappa(a, b)$.
- Thm The space of $T$-automorphic $C_{T}\left(S^{1}\right)=0$ in cases 1$), 2$ ), 3). Elliptic case with irrational $\kappa(a, b)$ - dense orbits.
- $C_{T}\left(S^{1}\right) \neq\{0\}$ for $T$ for elliptic type with rational rotation number.
- Glueing up dynamics on 2D sections into global dynamics on $S^{n-1}$. ( $F_{a}, F_{b}$ ) can be non-injective only for periodic $T$ : elliptic case with rational $\kappa(a, b)$.


## Complex dynamics on $S^{1}$

- $T$ generates a complex Möbius transformation of $S^{1}$, associated with $T \in \operatorname{PSL}(2, \mathbb{C})$.
- Classification of the types of $T$-dynamics according to $\operatorname{trace} T=\operatorname{Theta}(a, b)$. The cases: 1)hyperbolic, 2) parabolic, 3) loxodromic, 4) elliptic. Different types of orbits behaviour (convergence to attracting fixed points; dense orbits; finite orbits).
In 1), 2), 3): two fixed points- attracting and repelling those. In elliptic case: $T$ is conjugate with a rotation $z \rightarrow z e^{i \theta}$. Splits into: rational or irrational rotation number $\frac{\theta}{2 \pi}=\kappa(a, b)$.
- Thm The space of $T$-automorphic $C_{T}\left(S^{1}\right)=0$ in cases 1$\left.\left.), 2\right), 3\right)$. Elliptic case with irrational $\kappa(a, b)$ - dense orbits.
- $C_{T}\left(S^{1}\right) \neq\{0\}$ for $T$ for elliptic type with rational rotation number.
- Glueing up dynamics on 2D sections into global dynamics on $S^{n-1}$. ( $F_{\mathrm{a}}, F_{b}$ ) can be non-injective only for periodic $T$ : elliptic case with rational $\kappa(a, b)$.
- For periodic $T: S^{n-1} \rightarrow S^{n-1}$ construct a non-zero $f \in \operatorname{ker}\left(F_{a}, F_{b}\right)$.

Illustration of the classification of the types of $T$-dynamics for $\operatorname{ker}_{a} \cap \operatorname{ker}_{b}=\{0\}$


Illustration of the classification of the types of $T$-dynamics for $\operatorname{ker}_{a} \cap \operatorname{ker}_{b}=\{0\}$


## More than two centers

Q: Describe the common kernel of more than two shifted Funk transforms?

Q: $\operatorname{ker} F_{A}=\operatorname{ker} F_{a_{1}} \cap \ldots \cap \operatorname{ker} F_{a_{s}}=$ ?, $s>2$.

It follows that if $\operatorname{ker} F_{A} \neq\{0\}$ then $G(A):=\operatorname{Group}\left(\tau_{\alpha_{j}}, j=1, \ldots, s\right)$ is a Coxeter group $\left(\tau_{a_{i}}^{2}=e,\left(\tau_{a_{i}} \tau_{a_{j}}\right)^{q_{i, j}}=e.\right)$

Q: Is the converse true?
Does $G(A)$ being Coxeter group imply ker $F_{A}:=\cap_{j=1}^{s} \operatorname{ker} F_{\mathrm{a}_{j}} \neq\{0\}$ ?
True: if $G(A)$ is finite then ker $F_{A} \neq\{0\}$.

## More than two centers

Q: Describe the common kernel of more than two shifted Funk transforms?

Q: $\operatorname{ker} F_{A}=\operatorname{ker} F_{a_{1}} \cap \ldots \cap \operatorname{ker} F_{a_{s}}=$ ?, $s>2$.

It follows that if $\operatorname{ker} F_{A} \neq\{0\}$ then $G(A):=\operatorname{Group}\left(\tau_{a_{j}}, j=1, \ldots, s\right)$ is a Coxeter group $\left(\tau_{a_{i}}^{2}=e,\left(\tau_{a_{i}} \tau_{a_{j}}\right)^{q_{i, j}}=e.\right)$

Q: Is the converse true?
Does $G(A)$ being Coxeter group imply ker $F_{A}:=\cap_{j=1}^{s} \operatorname{ker} F_{\mathrm{a}_{j}} \neq\{0\}$ ?
True: if $G(A)$ is finite then ker $F_{A} \neq\{0\}$.

## More than two centers

Q: Describe the common kernel of more than two shifted Funk transforms?

Q: $\operatorname{ker} F_{A}=\operatorname{ker} F_{a_{1}} \cap \ldots \cap \operatorname{ker} F_{a_{s}}=$ ?, $s>2$.
It follows that if $\operatorname{ker} F_{A} \neq\{0\}$ then $G(A):=\operatorname{Group}\left(\tau_{a_{j}}, j=1, \ldots, s\right)$ is a Coxeter group $\left(\tau_{a_{i}}^{2}=e,\left(\tau_{a_{i}} \tau_{a_{j}}\right)^{q_{i, j}}=e.\right)$

Q: Is the converse true?
Does $G(A)$ being Coxeter group imply ker $F_{A}:=\cap_{j=1}^{s} \operatorname{ker} F_{\mathrm{a}_{j}} \neq\{0\}$ ?
True: if $G(A)$ is finite then $\operatorname{ker} F_{A} \neq\{0\}$.

## More than two centers

Q: Describe the common kernel of more than two shifted Funk transforms?

Q: $\operatorname{ker} F_{A}=\operatorname{ker} F_{a_{1}} \cap \ldots \cap \operatorname{ker} F_{a_{s}}=$ ?, $s>2$.
It follows that if $\operatorname{ker} F_{A} \neq\{0\}$ then $G(A):=\operatorname{Group}\left(\tau_{a_{j}}, j=1, \ldots, s\right)$ is a Coxeter group $\left(\tau_{a_{i}}^{2}=e,\left(\tau_{a_{i}} \tau_{a_{j}}\right)^{q_{i, j}}=e.\right)$

Q: Is the converse true?
Does $G(A)$ being Coxeter group imply $\operatorname{ker} F_{A}:=\cap_{j=1}^{s} \operatorname{ker} F_{a_{j}} \neq\{0\}$ ?
True: if $G(A)$ is finite then $\operatorname{ker} F_{A} \neq\{0\}$.

## More than two centers

Q: Describe the common kernel of more than two shifted Funk transforms?

Q: $\operatorname{ker} F_{A}=\operatorname{ker} F_{a_{1}} \cap \ldots \cap \operatorname{ker} F_{a_{s}}=?, s>2$.
It follows that if $\operatorname{ker} F_{A} \neq\{0\}$ then $G(A):=\operatorname{Group}\left(\tau_{a_{j}}, j=1, \ldots, s\right)$ is a Coxeter group $\left(\tau_{a_{i}}^{2}=e,\left(\tau_{a_{i}} \tau_{a_{j}}\right)^{q_{i, j}}=e.\right)$

Q: Is the converse true?
Does $G(A)$ being Coxeter group imply ker $F_{A}:=\cap_{j=1}^{s} \operatorname{ker} F_{a_{j}} \neq\{0\}$ ?
True: if $G(A)$ is finite then $\operatorname{ker} F_{A} \neq\{0\}$.

> Thank you!

