Quasi-Periodic Water Waves

Jon Wilkening UC Berkeley / LBNL wilken@math.berkeley.edu

Support: NSF, DMS-1716560 DOE, DE-AC02-05CH11231

Collaborator

Xinyu Zhao

Collaborator

SPATIALLY QUASI-PERIODIC GRAVITY-CAPILLARY WATER WAVES OF INFINITE DEPTH

JON WILKENING AND XINYU ZHAO

ABSTRACT. We formulate the two-dimensional gravity-capillary water wave equations in a spatially quasi-periodic setting and present a numerical study of traveling waves and more general solutions of the initial value problem. The former are a generalization of the classical Wilton ripple problem. We adopt a conformal mapping formulation and employ a quasi-periodic version of the Hilbert transform to determine the normal velocity of the free surface. We compute traveling waves in a nonlinear least-squares framework using a variant of the Levenberg-Marquardt method. We propose four methods for timestepping the initial value problem, two explicit Runge-Kutta (ERK) methods and two exponential time-differencing (ETD) schemes. The latter approach makes use of the small-scale decomposition to eliminate stiffness due to surface tension. We investigate various properties of quasi-periodic traveling waves, including Fourier resonances and the dependence of wave speed and surface tension on the amplitude parameters that describe a two-parameter family of waves. We also present an example of a periodic wave profile containing vertical tangent lines that is set in motion with a quasi-periodic velocity potential that causes some of the waves to overturn and others to flatten out as time evolves.

Periodic solutions sampled at equal time intervals

paths connecting pairs of traveling waves

Feb 4, 2020

Banff Workshop on Dynamics in Geometric Dispersive Equations

Wilkening

A solution on the path $(1,0,4,1) \leftrightarrow (5,-1,4,1)$

Feb 4, 2020

Banff Workshop on Dynamics in Geometric Dispersive Equations

Wilkening 6

Quasi-periodic solutions

$$(\star) \quad \underline{\operatorname{def}}: \quad u(x,t) = U(\vec{\kappa}\,x + \vec{\omega}\,t + \vec{\theta}) \quad \begin{cases} U \in C(\mathbb{T}^n) \\ \vec{\kappa}, \ \vec{\omega}, \ \vec{\theta} \in \mathbb{R}^n \end{cases}$$

Example: Benjamin-Ono (Satsuma/Ishimori 79, Dobrokhotov/Krichever 91)

Pick
$$\vec{\theta} \in \mathbb{R}^n$$
 and $C < a_1 < b_1 < \dots < a_n < b_n$
define
$$\begin{cases} c_m = |c_m|e^{i\theta_m}, \quad |c_m|^2 = -\frac{(b_m - C)\prod_{j \neq m}(a_m - a_j)(b_m - b_j)}{(a_m - C)\prod_j(b_m - a_j)(a_m - b_j)} \\ M_{jm}(y) = |c_m|e^{iy_m}\delta_{jm} - \frac{1}{b_j - a_m} \quad (n \times n \text{ matrix}) \end{cases}$$
Then (\star) is a solution of $u_t + 2uu_x - Hu_{xx} = 0$ with
 $U(y) = C + \sum_m (a_m - b_m) - 2 \operatorname{Im} \partial_x \ln \det M(y),$
 $\kappa_m = -(b_m - a_m), \qquad \omega_m = b_m^2 - a_m^2$

Are there analogues for the water wave?

Part 1: spatially quasi-periodic water waves

* Equations of motion
* Initial value problem
*Traveling waves (two quasi-periods)

Part 2: temporally Quasi-periodic solutions (if time permits)

- * two quasi-periods (methods and examples)
- * three quasi-periods (method and example)

$\zeta_j(\alpha, t)$ parametrizes Γ_j

Feb 4, 2020

Banff Workshop on Dynamics in Geometric Dispersive Equations

Cauchy integral code (method 3 below)

Ambrose, Camassa, Marzuola, McLaughlin, Robinson, Wilkening Numerical Algorithms for Water Waves with Background Flow over Obstacles and Topology, (coming soon!)

Equations of Motion

$$\zeta(\alpha, t) = \xi(\alpha, t) + i\eta(\alpha, t), \qquad \varphi(\alpha, t) = \phi(\zeta(\alpha, t), t)$$

$$\mathbf{u} = \nabla\phi, \qquad \zeta(\alpha, 0) = \zeta_0(\alpha), \qquad \varphi(\alpha, 0) = \varphi_0(\alpha), \qquad t = 0$$

Bernoulli
$$\nabla\left(\phi_t + \frac{1}{2}\|\mathbf{u}\|^2 + \frac{p}{\rho} + gy\right) = 0$$
$$\phi_{xx} + \phi_{yy} = 0, \qquad \text{in } \Omega$$
$$\partial_n \phi = 0, \qquad \text{on } \Gamma_j$$
$$\phi_t \qquad \qquad \phi_t \qquad \qquad \phi_t + \frac{1}{2}\phi_x^2 + \frac{1}{2}\phi_y^2 + \frac{p}{\rho} + gy - \tau\kappa = c(t), \qquad \text{on } \Gamma$$

$$\kappa = \frac{\xi_{\alpha}\eta_{\alpha\alpha} - \eta_{\alpha}\xi_{\alpha\alpha}}{s_{\alpha}^{3}}, \qquad s_{\alpha} = \left|\zeta_{\alpha}\right|$$

Equations of Motion

$$\zeta(\alpha, t) = \xi(\alpha, t) + i\eta(\alpha, t), \qquad \varphi(\alpha, t) = \phi(\zeta(\alpha, t), t)$$

$$\mathbf{u} = \nabla\phi, \quad \zeta(\alpha, 0) = \zeta_0(\alpha), \quad \varphi(\alpha, 0) = \varphi_0(\alpha), \quad t = 0$$
Bernoulli
$$\phi_{xx} + \phi_{yy} = 0, \quad \text{in } \Omega$$

$$\nabla\left(\phi_t + \frac{1}{2}\|\mathbf{u}\|^2 + \frac{p}{\rho} + gy\right) = 0$$

$$\phi_t \quad \phi_t = 0, \quad \text{on } \Gamma_j$$

$$\phi_t \quad \phi_t = \mathbf{u} \cdot \mathbf{n} \quad \text{on } \Gamma$$

$$\varphi_t - \nabla\phi \cdot \zeta_t + \frac{1}{2}\phi_x^2 + \frac{1}{2}\phi_y^2 + \frac{p}{\rho} + gy - \tau\kappa = c(t), \quad \text{on } \Gamma$$
particle on surface:
$$\mathbf{n} = i\frac{\zeta\alpha}{s_\alpha}$$

$$x = \xi(\alpha(t), t), \quad \dot{x} = \xi_\alpha \dot{\alpha} + \xi_t = u, \quad \eta_t \xi_\alpha - \xi_t \eta_\alpha = v\xi_\alpha - u\eta_\alpha$$

$$y = \eta(\alpha(t), t), \quad \dot{y} = \eta_\alpha \dot{\alpha} + \eta_t = v, \quad \zeta_t \cdot \mathbf{n} = \nabla\phi \cdot \mathbf{n}$$

$$\alpha(t), t), \qquad \dot{y} = \eta_{\alpha} \dot{\alpha} + \eta_t = v, \qquad \zeta$$

$$U = \zeta_t \cdot \mathbf{n} = \mathbf{u} \cdot \mathbf{n} = \frac{\partial \phi}{\partial n}$$

$$\zeta_{\alpha} = s_{\alpha} e^{i\theta}, \qquad \zeta_t = (V + iU)e^{i\theta}$$

method 1:
$$\begin{cases} \zeta(\alpha, t) = \alpha + i\eta(\alpha, t) \\ \xi(\alpha, t) = \alpha, \quad \xi_t = 0 \end{cases}$$

standard graph-based representation

$$U\mathbf{n} \quad V\mathbf{s} \quad \zeta(\alpha, t) \\ \quad \zeta(\alpha, t - h) \\ \quad \alpha_0$$

$$\xi_t = \operatorname{Re}\left\{ (V+iU) \frac{1+i\eta_{\alpha}}{\sqrt{1+\eta_{\alpha}^2}} \right\} = 0 \quad \Rightarrow \quad V = \eta_{\alpha} U$$
$$\eta_t = \operatorname{Im}\left\{ (V+iU) \frac{1+i\eta_{\alpha}}{\sqrt{1+\eta_{\alpha}^2}} \right\} = \frac{U+\eta_{\alpha}^2 U}{\sqrt{1+\eta_{\alpha}^2}} = \sqrt{1+\eta_{\alpha}^2} \frac{\partial \phi}{\partial n} \qquad \text{(DNO)}$$

$$U = \zeta_t \cdot \mathbf{n} = \mathbf{u} \cdot \mathbf{n} = \frac{\partial \phi}{\partial n}$$

$$\zeta_{\alpha} = s_{\alpha}e^{i\theta}, \qquad \zeta_{t} = (V + iU)e^{i\theta}$$
method 2:
$$\begin{cases} \zeta(\alpha) = \xi(\alpha) + i\eta(\alpha) \\ \eta(\cdot) = -H[\xi(\alpha) - \alpha] \\ z(w) = x(w) + iy(w), \quad w = \alpha + i\beta, \\ \zeta = z|_{\beta=0}, \quad \xi = x|_{\beta=0}, \quad \eta = y|_{\beta=0} \end{cases}$$

Here we also define the complex velocity potential: $\Phi(z) = \phi(z) + i\psi(z)$

chain rule + Cauchy-Riemann: $\frac{\partial}{\partial \alpha}\phi(\zeta(\alpha)) = \phi_x\xi_\alpha + \phi_y\eta_\alpha = \nabla\phi \cdot (s_\alpha\hat{\mathbf{s}}) = s_\alpha\frac{\partial\phi}{\partial s}$ $-\frac{\partial}{\partial \alpha}\psi(\zeta(\alpha)) = -\psi_x\xi_\alpha - \psi_y\eta_\alpha = -\phi_x\eta_\alpha + \phi_y\xi_\alpha = \nabla\phi \cdot (s_\alpha\hat{\mathbf{n}}) = s_\alpha\frac{\partial\phi}{\partial n}$

$$U = \zeta_t \cdot \mathbf{n} = \mathbf{u} \cdot \mathbf{n} = \frac{\partial \phi}{\partial n}$$

. /

$$\zeta_{\alpha} = s_{\alpha} e^{i\theta}, \qquad \zeta_{t} = (V + iU)e^{i\theta}$$

$$\text{method 2:} \begin{cases} \zeta(\alpha) = \xi(\alpha) + i\eta(\alpha) \\ \eta(\cdot) = -H[\xi(\alpha) - \alpha] \\ z(w) = x(w) + iy(w), \quad w = \alpha + i\beta, \\ \zeta = z|_{\beta=0}, \quad \xi = x|_{\beta=0}, \quad \eta = y|_{\beta=0} \end{cases}$$

$$\overbrace{\xi(\alpha, t) = \alpha + x_{0}(t) + H[\eta](\alpha, t)}{\frac{dx_{0}}{dt} = P_{0}\left[\xi_{\alpha}\left(-H\left[\frac{\psi_{\alpha}}{J}\right] + C_{1}\right) + \frac{\eta_{\alpha}\psi_{\alpha}}{J}\right]}$$

$$\frac{z_t}{z_\alpha}\Big|_{\beta=0} = \frac{\zeta_t}{\zeta_\alpha} = \frac{V + iU}{s_\alpha} \implies \frac{V}{s_\alpha} = H\left(\frac{U}{s_\alpha}\right) + C_1 = -H\left(\frac{\psi_\alpha}{s_\alpha^2}\right) + C_1$$
$$\begin{pmatrix} \xi_t\\\eta_t \end{pmatrix} = \begin{pmatrix} \xi_\alpha & -\eta_\alpha\\\eta_\alpha & \xi_\alpha \end{pmatrix} \begin{pmatrix} V/s_\alpha\\U/s_\alpha \end{pmatrix} \longleftarrow \zeta_t = (\zeta_\alpha)\left(\zeta_t/\zeta_\alpha\right)$$

$$U = \zeta_t \cdot \mathbf{n} = \mathbf{u} \cdot \mathbf{n} = \frac{\partial \phi}{\partial n}$$

$$\zeta_{\alpha} = s_{\alpha} e^{i\theta}, \qquad \zeta_t = (V + iU)e^{i\theta}$$

$$\zeta_{\alpha t} = s_{\alpha t} e^{i\theta} + s_{\alpha} \theta_t i e^{i\theta}$$
$$= (V_{\alpha} + iU_{\alpha}) e^{i\theta} + (V + iU) \theta_{\alpha} i e^{i\theta}$$

$$U\mathbf{n} \quad V\mathbf{s} \quad \zeta(\alpha, t) \\ \zeta(\alpha, t - h) \\ \alpha_0$$

$$s_{\alpha t} = V_{\alpha} - \theta_{\alpha} U$$
$$s_{\alpha} \theta_t = U_{\alpha} + \theta_{\alpha} V$$

method 3 (HLS): choose V so that $s_{\alpha}(t) = \text{const}(t)$

$$V = \partial_{\alpha}^{-1} P[\theta_{\alpha} U] + c$$

$$s_{\alpha t} = -P_0[\theta_{\alpha} U]$$

$$\theta_t = \frac{U_{\alpha} + \theta_{\alpha} V}{s_{\alpha}}$$

$$Pf(\alpha) = f(\alpha) - P_0 f$$

$$P_0 f = \frac{1}{2\pi} \int_0^{2\pi} f(\alpha) d\alpha$$

$$Can \text{ pick } c \text{ so that } e.g. \ \xi(0, t) = 0.$$

Dirichlet-Neumann operator

$$U = \zeta_t \cdot \mathbf{n} = \mathbf{u} \cdot \mathbf{n} = \frac{\partial \phi}{\partial n}$$

Given φ , need to solve Laplace equation to get $\frac{\partial \phi}{\partial n}$. The tangential derivative is just $\frac{\partial \phi}{\partial s} = \varphi_{\alpha}/s_{\alpha}$.

$$U\mathbf{n} \quad V\mathbf{s} \quad \zeta(\alpha, t)$$

$$\zeta(\alpha, t - h)$$

$$\alpha_0$$

$$\mathbf{n} = i\frac{\zeta\alpha}{s_\alpha}$$

 $\zeta(\alpha, t) = \xi(\alpha, t) + i\eta(\alpha, t), \qquad \varphi(\alpha, t) = \phi(\zeta(\alpha, t), t)$

$\mathbf{u} = abla \phi,$	$\zeta(\alpha,0) = \zeta_0(\alpha),$	$\varphi(\alpha, 0) = \varphi_0(\alpha),$	t = 0
		$\phi_{xx} + \phi_{yy} = 0,$	in Ω
		$\partial_n \phi = 0,$	on Γ_j
		$\phi=\varphi,$	on Γ
ϕ_t		$\zeta_t \cdot \mathbf{n} = \mathbf{u} \cdot \mathbf{n},$	on Γ
$\varphi_t - \nabla q$	$\overline{\phi \cdot \zeta_t} + \frac{1}{2} \left \nabla \phi \right ^2 + \frac{p}{\rho}$	$f + gy - \tau \kappa = c(t),$	on Γ

Conformal mapping approach (method 2)

The Bernoulli equation simplifies to

$$\varphi_{t} = \nabla \phi \cdot \zeta_{t} - \frac{1}{2} |\nabla \phi|^{2} - \frac{p}{\rho} - gy + \tau \kappa + c$$

$$= \underbrace{(\phi_{x}, \phi_{y}) \begin{pmatrix} \xi_{\alpha} & -\eta_{\alpha} \\ \eta_{\alpha} & \xi_{\alpha} \end{pmatrix}}_{(\varphi_{\alpha}, -\psi_{\alpha})} \begin{pmatrix} -H \begin{bmatrix} \psi_{\alpha}/s_{\alpha}^{2} \end{bmatrix} + C_{1} \\ -\psi_{\alpha}/s_{\alpha}^{2} \end{pmatrix} - \frac{\varphi_{\alpha}^{2} + \psi_{\alpha}^{2}}{2s_{\alpha}^{2}} - g\eta + \tau \kappa + c$$

$$= P\left[\frac{\psi_{\alpha}^2 - \varphi_{\alpha}^2}{2s_{\alpha}^2} - \varphi_{\alpha}H[\psi_{\alpha}/s_{\alpha}^2] + C_1\varphi_{\alpha} - g\eta + \tau\kappa\right]$$

Conformal mapping approach (method 2)

Summary of equations of motion:

$$\begin{aligned} \xi_{\alpha} &= 1 + H[\eta_{\alpha}], \qquad \psi = -H[\varphi], \qquad J = \xi_{\alpha}^{2} + \eta_{\alpha}^{2}, \qquad \chi = \frac{\psi_{\alpha}}{J}, \\ \text{choose } C_{1}, \text{ e.g. as in (1)}, \qquad \text{compute } \frac{dx_{0}}{dt} \text{ in (2) if necessary,} \\ \eta_{t} &= -\eta_{\alpha} H[\chi] - \xi_{\alpha} \chi + C_{1} \eta_{\alpha}, \qquad \kappa = \frac{\xi_{\alpha} \eta_{\alpha\alpha} - \eta_{\alpha} \xi_{\alpha\alpha}}{J^{3/2}}, \\ \varphi_{t} &= P\left[\frac{\psi_{\alpha}^{2} - \varphi_{\alpha}^{2}}{2J} - \varphi_{\alpha} H[\chi] + C_{1} \varphi_{\alpha} - g\eta + \tau \kappa\right]. \end{aligned}$$

(1a) $C_1 = 0$: (1b) $C_1 = P_0 [\xi_{\alpha} H[\psi_{\alpha}/J] - \eta_{\alpha} \psi_{\alpha}/J]$: $x_0(t) = 0,$ (1c) $C_1 = [H[\psi_{\alpha}/J] - \eta_{\alpha} \psi_{\alpha}/(\xi_{\alpha}J)]_{\alpha=0}$: $\xi(0,t) = 0.$

(2)
$$\frac{dx_0}{dt} = P_0 \left[\xi_\alpha \left(-H \left[\frac{\psi_\alpha}{J} \right] + C_1 \right) + \frac{\eta_\alpha \psi_\alpha}{J} \right], \qquad \xi(\alpha, t) = \alpha + x_0(t) + H[\eta](\alpha, t)$$

Quasi-periodic, real-analytic functions

$$u(\alpha) = \tilde{u}(\boldsymbol{k}\alpha), \qquad \tilde{u}(\boldsymbol{\alpha}) = \sum_{\boldsymbol{j} \in \mathbb{Z}^d} \hat{u}_{\boldsymbol{j}} e^{i\langle \boldsymbol{j}, \boldsymbol{\alpha} \rangle}, \qquad \alpha \in \mathbb{R}, \ \boldsymbol{\alpha} \in \mathbb{T}^d, \ \boldsymbol{k} \in \mathbb{R}^d$$

Bounded, analytic extension to lower half-plane satisfying $\left(\operatorname{Re} f\right)\Big|_{\beta=0} = u$

$$f(w) = \hat{u}_{\mathbf{0}} + i\hat{v}_{\mathbf{0}} + \sum_{\langle \mathbf{j}, \mathbf{k} \rangle < 0} 2\hat{u}_{\mathbf{j}} e^{i\langle \mathbf{j}, \mathbf{k} \rangle w}, \qquad (w = \alpha + i\beta, \ \beta \le 0)$$

Extract imaginary part on real axis $\left(\operatorname{Im} f\right)\Big|_{\beta=0} = v$

$$v(\alpha) = \tilde{v}(\boldsymbol{k}\alpha), \qquad \tilde{v}(\boldsymbol{\alpha}) = \sum_{\boldsymbol{j} \in \mathbb{Z}^d} \hat{v}_{\boldsymbol{j}} e^{i\langle \boldsymbol{j}, \boldsymbol{\alpha} \rangle}, \qquad \hat{v}_{\boldsymbol{j}} = i \operatorname{sgn}(\langle \boldsymbol{j}, \boldsymbol{k} \rangle) \hat{u}_{\boldsymbol{j}}, \quad (\boldsymbol{j} \neq 0)$$

$$v = \hat{v}_{\mathbf{0}} - H[u], \qquad u = \hat{u}_{\mathbf{0}} + H[v]$$

Quasi-periodic Hilbert transform

$$H[u](\alpha) = \frac{1}{\pi} \operatorname{PV} \int_{-\infty}^{\infty} \frac{u(\xi)}{\alpha - \xi} d\xi = \sum_{\boldsymbol{j} \in \mathbb{Z}^d} (-i) \operatorname{sgn}(\langle \boldsymbol{j}, \, \boldsymbol{k} \rangle) \hat{u}_{\boldsymbol{j}} e^{i \langle \boldsymbol{j}, \, \boldsymbol{k} \rangle \alpha}$$

Torus version: want $H[u](\alpha) = H[\tilde{u}](\boldsymbol{k}\alpha)$

$$H[\tilde{u}](\boldsymbol{\alpha}) = \sum_{\boldsymbol{j} \in \mathbb{Z}^d} (-i) \operatorname{sgn}(\langle \boldsymbol{j}, \, \boldsymbol{k} \rangle) \hat{u}_{\boldsymbol{j}} e^{i \langle \boldsymbol{j}, \, \boldsymbol{\alpha} \rangle} \quad (\text{or } H_k[\tilde{u}])$$

Projections

$$P = \mathrm{id} - P_0, \qquad P_0[u] = P_0[\tilde{u}] = \hat{u}_0 = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} \tilde{u}(\boldsymbol{\alpha}) \, d\alpha_1 \dots d\alpha_d$$

The analytic extension is quasi-periodic on slices of constant depth

$$f(w) = f(\mathbf{k}\alpha, \beta), \qquad (w = \alpha + i\beta, \ \beta \le 0)$$
$$\tilde{f}(\boldsymbol{\alpha}, \beta) = \hat{u}_{\mathbf{0}} + i\hat{v}_{\mathbf{0}} + \sum_{\langle \mathbf{j}, \mathbf{k} \rangle < 0} 2[\hat{u}_{\mathbf{j}}e^{-\langle \mathbf{j}, \mathbf{k} \rangle \beta}]e^{i\langle \mathbf{j}, \boldsymbol{\alpha} \rangle}$$

Pseudo-spectral method in space (on torus)

Let f denote η, φ, χ etc. and let \tilde{f} denote

$$f(\alpha) = \tilde{f}(\alpha, k\alpha), \qquad \tilde{f}(\alpha_1, \alpha_2) = \sum_{j_1, j_2 \in \mathbb{Z}} \hat{f}_{j_1, j_2} e^{i(j_1\alpha_1 + j_2k\alpha_2)}, \qquad (\alpha_1, \alpha_2) \in \mathbb{T}^2$$

$$\widetilde{f}_{\alpha}(\alpha_{1},\alpha_{2}) = \sum_{j_{1},j_{2}\in\mathbb{Z}} i(j_{1}+j_{2}k)\hat{f}_{j_{1},j_{2}}e^{i(j_{1}\alpha_{1}+j_{2}\alpha_{2})},$$

$$\widetilde{H[f]}(\alpha_{1},\alpha_{2}) = \sum_{j_{1},j_{2}\in\mathbb{Z}} (-i)\mathrm{sgn}(j_{1}+j_{2}k)\hat{f}_{j_{1},j_{2}}e^{i(j_{1}\alpha_{1}+j_{2}\alpha_{2})}.$$

$$\tilde{f}_{m_1,m_2} = \tilde{f}(2\pi m_1/M_1, 2\pi m_2/M_2), \qquad (0 \le m_1 < M_1, 0 \le m_2 < M_2)$$

$$\hat{f}_{j_1,j_2} = \frac{1}{M_2} \sum_{m_2=0}^{M_2-1} \left(\frac{1}{M_1} \sum_{m_1=0}^{M_1-1} \tilde{f}_{m_1,m_2} e^{-2\pi i j_1 m_1/M_1} \right) e^{-2\pi i j_2 m_2/M_2}, \quad \begin{pmatrix} 0 \le j_1 \le M_1/2 \\ -M_2/2 < j_2 \le M_2/2 \end{pmatrix}$$

High-order Runge-Kutta or ETD in time

$$\begin{aligned} \xi_{\alpha} &= 1 + H[\eta_{\alpha}], \qquad \psi = -H[\varphi], \qquad J = \xi_{\alpha}^{2} + \eta_{\alpha}^{2}, \qquad \chi = \frac{\psi_{\alpha}}{J}, \\ \text{choose } C_{1}, \text{ e.g. as in (1)}, \qquad \text{compute } \frac{dx_{0}}{dt} \text{ in (2) if necessary,} \\ \eta_{t} &= -\eta_{\alpha}H[\chi] - \xi_{\alpha}\chi + C_{1}\eta_{\alpha}, \qquad \kappa = \frac{\xi_{\alpha}\eta_{\alpha\alpha} - \eta_{\alpha}\xi_{\alpha\alpha}}{J^{3/2}}, \\ \varphi_{t} &= P\left[\frac{\psi_{\alpha}^{2} - \varphi_{\alpha}^{2}}{2J} - \varphi_{\alpha}H[\chi] + C_{1}\varphi_{\alpha} - g\eta + \tau\kappa\right]. \end{aligned}$$

ETD/SSD:

$$\begin{pmatrix} \eta_t \\ \varphi_t \end{pmatrix} = L \begin{pmatrix} \eta \\ \varphi \end{pmatrix} + \mathcal{N}, \qquad L = \begin{pmatrix} 0 & H\partial_\alpha \\ -(gP - \tau\partial_{\alpha\alpha}) & 0 \end{pmatrix}$$
$$\mathcal{N} = \begin{pmatrix} -\eta_\alpha H[\chi] - (\xi_\alpha \chi - \psi_\alpha) + C_1 \eta_\alpha \\ P\left[\frac{\psi_\alpha^2 - \varphi_\alpha^2}{2J} - \varphi_\alpha H[\chi] + C_1 \varphi_\alpha + \tau(\kappa - \eta_{\alpha\alpha})\right] \end{pmatrix}$$

Overturning wave example ($k=1/\sqrt{2}$)

initial parametrization
(not conformal yet)

$$\xi_1(\sigma) = \sigma + \frac{3}{5}\sin\sigma - \frac{1}{5}\sin 2\sigma,$$

$$\eta_1(\sigma) = -(1/2)\cos(\sigma + \pi/2.5),$$

$$\varphi_1(\sigma) = -(1/2)\cos(\sigma + \pi/4).$$

search for $\eta_3(\alpha)$, $B_3(\alpha)$, x_3 such that

4

$$\alpha + x_3 + H [\eta_3] (\alpha) = \xi_1 (\alpha + B_3(\alpha)),$$

$$\eta_3(\alpha) = \eta_1 (\alpha + B_3(\alpha)),$$

$$B_3(0) = 0$$

$$\varphi_3(\alpha) = \varphi_1 (\alpha + B_3(\alpha))$$

$$\tilde{\eta}_0(\alpha_1, \alpha_2) = \eta_3(\alpha_1),$$

$$\tilde{\varphi}_0(\alpha_1, \alpha_2) = \varphi_3(\alpha_1) \cos(\alpha_2 - q)$$

$$q = 0.6k\pi$$

Overturning wave example

M=4096 (over 16 million degrees of freedom) (evolved over 5400 timesteps)

Spatially quasi-periodic traveling waves

(1)
$$\psi_{\alpha} = c\eta_{\alpha}, \qquad \varphi_{\alpha} = H[\psi_{\alpha}] = cH[\eta_{\alpha}] = c(\xi_{\alpha} - 1)$$

 $\xi_{\alpha} = 1 + H[\eta_{\alpha}], \qquad J = \xi_{\alpha}^{2} + \eta_{\alpha}^{2},$
 $\kappa = \frac{\xi_{\alpha}\eta_{\alpha\alpha} - \eta_{\alpha}\xi_{\alpha\alpha}}{J^{3/2}}, \qquad P\left[\frac{c^{2}}{2J} + g\eta - \tau\kappa\right] = 0.$ (2)

(1)
$$-\psi_{\alpha}/\sqrt{J} = \zeta_t \cdot \hat{\mathbf{n}} = (c,0) \cdot \hat{\mathbf{n}} = -c\eta_{\alpha}/\sqrt{J}$$
 (kinematic condition)

(2) $\breve{z} = z - ct$, $\breve{\Phi}^{\text{phys}}(\breve{z}) = \Phi^{\text{phys}}(\breve{z} + ct, t) - c\breve{z}$ stationary (time independent) $\breve{\Phi}(w) = \breve{\Phi}^{\text{phys}}(\breve{z}(w)) = -cw$, $\breve{z}(w) = z(w, 0)$ $|\breve{\nabla}\breve{\Phi}^{\text{phys}}|^2 = |\breve{\Phi}'(w)/\breve{z}'(w)|^2 = c^2/J$ (2) then follows from steady Bernoulli

see also Bridges/Dias, 1996

Linearization about zero

$$-c^2 H\eta_\alpha + g\eta - \tau\eta_{\alpha\alpha} = 0$$

dispersion relation:

$$c^2 = gk^{-1} + \tau k$$

denote zeros by k_1, k_2 . Non-dimensionalize so $k_1 = 1, k_2 = k_1 k$

$$c^{2} - g - \tau = 0 \qquad c^{2}k - g - \tau k^{2} = 0$$
$$(c = \sqrt{g + \tau}, \quad k = g/\tau)$$

If *k* is rational, this leads to the classical Wilton ripple problem

If *k* is irrational, good place to search for quasi-periodic traveling waves

Nonlinear least squares problem (overdetermined)

Residual

$$\mathcal{R}[\tau, b, \hat{\eta}] := P\left[\frac{b}{2\tilde{J}} + g\tilde{\eta} - \tau\tilde{\kappa}\right] \qquad (b = c^2)$$

Objective function

$$\mathcal{F}[\tau, b, \hat{\eta}] := \frac{1}{8\pi^2} \int_{\mathbb{T}^2} \mathcal{R}^2[\tau, b, \hat{\eta}] \ d\alpha_1 \ d\alpha_2$$

Numerical version

 $f(p) = \frac{1}{2}r(p)^T r(p) \approx \mathcal{F}\left[\tau, b, \hat{\eta}\right]$

$$r_{m}(p) = \mathcal{R}[\tau, b, \eta] (\alpha_{m_{1}}, \alpha_{m_{2}})/M, \qquad \begin{pmatrix} m = 1 + m_{1} + Mm_{2} \\ \alpha_{m_{i}} = 2\pi m_{i}/M \end{pmatrix}, \qquad 0 \le m_{i} < M.$$

Nonlinear least squares problem (overdetermined)

Numerical version

$$r_m(p) = \mathcal{R}\left[\tau, b, \eta\right] (\alpha_{m_1}, \alpha_{m_2})/M, \qquad \begin{pmatrix} m = 1 + m_1 + Mm_2 \\ \alpha_{m_i} = 2\pi m_i/M \end{pmatrix}, \qquad 0 \le m_i < M.$$

$$f(p) = \frac{1}{2}r(p)^{T}r(p) \approx \mathcal{F}[\tau, b, \hat{\eta}]$$
(also set $\hat{\eta}_{00} = 0$)
unknowns: fix $\hat{\eta}_{1,0}$ and $\hat{\eta}_{0,1}$ (replace them with τ and $b = c^{2}$ in the list)
 $p_{1} = \tau, \quad p_{2} = \hat{\eta}_{1,1}, \quad p_{3} = b, \quad p_{4} = \hat{\eta}_{1,-1}, \quad p_{5} = \hat{\eta}_{0,2}, \quad \dots, \quad p_{N(N/2+1)} = \hat{\eta}_{1,-N/2}$

Two-parameter family of spatially quasi-periodic traveling waves

Spatially quasi-periodic traveling waves (t = 0)

Spatially quasi-periodic traveling waves

Spatially quasi-periodic traveling waves (torus view)

 $\gamma = 5$

 $\gamma = 1$

 $\gamma = 0.2$

Spatially quasi-periodic traveling waves (Fourier modes)

Error in evolving the solution from t = 0 to t = 3

Families of quasi-periodic solutions and a return to physical space

Theorem B.1. The solution pair $(\tilde{\zeta}, \tilde{\varphi})$ on the torus represents an infinite family of quasi-periodic solutions on \mathbb{R} given by

(B.1)
$$\begin{aligned} \zeta(\alpha,t\,;\,\theta_1,\theta_2,\delta) &= \alpha + \delta + \tilde{\zeta}(\theta_1 + \alpha,\theta_2 + k\alpha,t), \\ \varphi(\alpha,t\,;\,\theta_1,\theta_2) &= \tilde{\varphi}(\theta_1 + \alpha,\theta_2 + k\alpha,t), \end{aligned} \qquad \begin{pmatrix} \alpha \in \mathbb{R}, t \ge 0\\ \theta_1,\theta_2,\delta \in \mathbb{R} \end{pmatrix}$$

Theorem B.2. Fix $t \ge 0$ and suppose $\xi_{\alpha}(\alpha, t; 0, \theta, 0) > 0$ for $\alpha \in [0, 2\pi)$ and $\theta \in [0, 2\pi)$. Then there is a periodic, real analytic function $\mathcal{A}(x_1, x_2, t)$ defined on \mathbb{T}^2 satisfying

(B.6)
$$\mathcal{A}(x_1, x_2, t) + \tilde{\xi}(x_1 + \mathcal{A}(x_1, x_2, t), x_2 + k\mathcal{A}(x_1, x_2, t), t) = 0, \quad (x_1, x_2) \in \mathbb{T}^2.$$

Given $\theta \in [0, 2\pi)$ *, the change of variables* $\alpha = x + A(x, \theta + kx, t)$ *satisfies*

(B.7)
$$\xi(\alpha,t;0,\theta,0) = \alpha + \tilde{\xi}(\alpha,\theta + k\alpha,t) = x, \quad (x \in \mathbb{R}).$$

This allows us to express solutions in the family (B.4) as functions of x and t,

(B.8)
$$\begin{aligned} \eta^{phys}(x,t\,;\,0,\theta,0) &= \eta(\alpha,t\,;\,0,\theta,0), \\ \varphi^{phys}(x,t\,;\,0,\theta,0) &= \varphi(\alpha,t\,;\,0,\theta), \end{aligned} \qquad \left(\alpha = x + \mathcal{A}(x,\theta + kx,t)\right). \end{aligned}$$

These functions are real analytic, quasi-periodic functions of x in the sense that

(B.9)

$$\eta^{phys}(x,t;0,\theta,0) = \tilde{\eta}^{phys}(x,\theta+kx,t)$$

$$\varphi^{phys}(x,t;0,\theta,0) = \tilde{\varphi}^{phys}(x,\theta+kx,t)$$

with

(B.10)
$$\tilde{\eta}^{phys}(x_1, x_2, t) = \tilde{\eta}(x_1 + \mathcal{A}(x_1, x_2, t), x_2 + k\mathcal{A}(x_1, x_2, t), t), \\ \tilde{\varphi}^{phys}(x_1, x_2, t) = \tilde{\varphi}(x_1 + \mathcal{A}(x_1, x_2, t), x_2 + k\mathcal{A}(x_1, x_2, t), t).$$

Conformal mapping theorems

Theorem A.1. Suppose $\varepsilon > 0$ and z(w) is analytic on the half-plane $\mathbb{C}_{\varepsilon}^{-} = \{w : \operatorname{Im} w < \varepsilon\}$. Suppose there is a constant M > 0 such that $|z(w) - w| \leq M$ for $w \in \mathbb{C}_{\varepsilon}^{-}$, and that the restriction $\zeta = z|_{\mathbb{R}}$ is injective. Then the curve $\zeta(\alpha)$ separates the complex plane into two regions, and z(w) is an analytic isomorphism of the lower half-plane onto the region below the curve $\zeta(\alpha)$.

Corollary A.3. Suppose k > 0 is irrational, $\tilde{\eta}(\alpha_1, \alpha_2) = \sum_{(j_1, j_2) \in \mathbb{Z}^2} \hat{\eta}_{j_1, j_2} e^{i(j_1\alpha_1 + j_2\alpha_2)}$, and there exist constants C and $\varepsilon > 0$ such that

(A.7)
$$\hat{\eta}_{-j_1,-j_2} = \overline{\hat{\eta}_{j_1,j_2}}, \qquad |\hat{\eta}_{j_1,j_2}| \leq C e^{-3\varepsilon K \max(|j_1|,|j_2|)}, \qquad (j_1,j_2) \in \mathbb{Z}^2,$$

where $K = \max(k, 1)$. Let x_0 be real and define $\tilde{\xi} = x_0 + H[\tilde{\eta}]$, $\tilde{\zeta} = \tilde{\xi} + i\tilde{\eta}$ and

(A.8)
$$\tilde{z}(\alpha_1, \alpha_2, \beta) = x_0 + i\hat{\eta}_{0,0} + \sum_{j_1+j_2k<0} 2i\hat{\eta}_{j_1,j_2} e^{-(j_1+j_2k)\beta} e^{i(j_1\alpha_1+j_2\alpha_2)}, \quad (\beta < \varepsilon),$$

where the sum is over all integer pairs (j_1, j_2) satisfying the inequality. Suppose also that for each fixed $\theta \in [0, 2\pi)$, the function $\alpha \mapsto \zeta(\alpha; \theta) = \alpha + \tilde{\zeta}(\alpha, \theta + k\alpha)$ is injective from \mathbb{R} to \mathbb{C} and $\zeta_{\alpha}(\alpha; \theta) \neq 0$ for $\alpha \in \mathbb{R}$. Then for each $\theta \in \mathbb{R}$, the curve $\zeta(\alpha; \theta)$ separates the complex plane into two regions and

(A.9)
$$z(\alpha + i\beta; \theta) = (\alpha + i\beta) + \tilde{z}(\alpha, \theta + k\alpha, \beta), \qquad (\beta < \varepsilon)$$

is an analytic isomorphism of the lower half-plane onto the region below $\zeta(\alpha; \theta)$ *. Moreover, there is a constant* $\delta > 0$ *such that* $|z_w(w; \theta)| \ge \delta$ *for* Im $w \le 0$ *and* $\theta \in \mathbb{R}$ *.*

Part 0: Introduction

Part 1: spatially quasi-periodic water waves

* Equations of motion
* Initial value problem
*Traveling waves (two quasi-periods)

Part 2: temporally Quasi-periodic solutions (ran out of time)

- * two quasi-periods (methods and examples)
- * three quasi-periods (method and example)