Almost global well-posedness for quasilinear strongly coupled wave-Klein-Gordon systems in two space dimensions

Mihaela Ifrim

University of Wisconsin, Madison

February 3, 2020

This is joint work with A. Stingo

Mihaela Ifrim

Introduction

We consider real solutions for the wave-Klein-Gordon system

$$\begin{cases} (\partial_t^2 - \Delta_x)u(t, x) = \mathbf{N}_1(v, \partial v) + \mathbf{N}_2(u, \partial v) \\ (\partial_t^2 - \Delta_x + 1)v(t, x) = \mathbf{N}_1(v, \partial u) + \mathbf{N}_2(u, \partial u) \end{cases} \quad (t, x) \in [0, +\infty) \times \mathbb{R}^2,$$

with initial conditions

$$\begin{cases} (u, v)(0, x) = (u_0(x), v_0(x)) \\ (\partial_t u, \partial_t v)(0, x) = (u_1(x), v_1(x)), \end{cases}$$

Here the nonlinearities $N_1(\cdot, \cdot)$ and $N_2(\cdot, \cdot)$ are combinations of the classical quadratic null forms

$$\begin{cases} Q_{ij}(\phi,\psi) = \partial_i \phi \partial_j \psi - \partial_j \phi \partial_i \psi, \\ Q_{0i}(\phi,\psi) = \partial_t \phi \partial_i \psi - \partial_t \psi \partial_i \phi, \\ Q_0(\phi,\psi) = \partial_t \phi \partial_t \psi - \nabla_x \psi \cdot \nabla_x \phi. \end{cases}$$

• Physical models related to general relativity have shown the importance of studying such systems.

• Very few results are known at present in low (2) space dimensions

Vector fields associated with the WKG system

Translation in the coords direct.: ∂_t , ∂_1 , ∂_2 Rotations in x: $\Omega_{ij} = x_j \partial_i - x_i \partial_j$ Hyperbolic rotations: $\Omega_{0i} = t\partial_i + x_i\partial_t$ Scaling: $\mathscr{S} = t\partial_t + r\partial_r$

Here $1 \leq i \neq j \leq 2, r = |x|$ and $\partial_r = \frac{x}{r} \cdot \nabla_x$

- We denote $Z := \{\Omega_{ij}, \Omega_{0i}\}$ Lorentz vector fields.
- We denote $\mathcal{Z} := \{\partial_0, \partial_1, \partial_2, \Omega_{ij}, \Omega_{0i}\}$ the full set of vector fields associated to the symmetries of the linear problem.

Notation

For a multiindex $\gamma = (\alpha, \beta)$ we denote $\mathcal{Z}^{\gamma} = \partial^{\alpha} Z^{\beta}$ and define the size

 $|\gamma| = |\alpha| + h|\beta|$

Here $h \in \mathbb{N} \to$ balance between Lorentz v.f. and reg. derivatives

Energy functionals and Functional Spaces

The linear system WKG has an associated conserved energy

$$E(t; u, v) = \int_{\mathbb{R}} u_t^2 + u_x^2 + v_t^2 + v_x^2 + v^2 \, dx$$

The system linear WKG system is a well-posed linear evolution in the space \mathcal{H}^0 with norm

$$\|(u[t], v[t])\|_{\mathcal{H}^0}^2 := \|u\|_{\dot{H}^1}^2 + \|u_t\|_{L^2}^2 + \|v\|_{H^1}^2 + \|v_t\|_{L^2}^2$$

where we use the following notation for the Cauchy data in WKG system at time t:

 $(u[t], v[t]) := (u(t), u_t(t), v(t), v_t(t))$

Higher order functional spaces

The higher order energy spaces for the linear WKG system are the spaces \mathcal{H}^n endowed with the norm

$$\|(u_0, u_1, v_0, v_1)\|_{\mathcal{H}^n}^2 := \sum_{|\alpha| \le n} \|\partial_x^{\alpha}(u_0, u_1, v_0, v_1)\|_{\mathcal{H}^0}^2,$$

where $n \ge 1$. We use the energy spaces for the nonlinear system!

Higher order counterparts of the energy functionals:

a) the energy $E^n(t, u, v)$ measures the regularity in the function space \mathcal{H}^n of the solutions that carry *n* derivatives,

$$E^{n}(t, u, v) := \sum_{|\alpha| \le n} E(t; \partial^{\alpha} u, \partial^{\alpha} v)$$

b) the energy $E^{[n]}(t, u, v)$ which in addition to regular derivatives, keeps track of Z vector fields applied to the solution,

$$E^{[n]}(t,u,v) := \sum_{|\gamma| \le n} E\left(t; \mathcal{Z}^{\gamma}u, \mathcal{Z}^{\gamma}v\right)$$

Scaling, criticality and local well-posedness

Scaling

We define the notion of criticality by means of the scaling symmetry matched at the highest order:

$$\begin{cases} u(t,x) \to \lambda^{-1} u(\lambda t, \lambda x) \\ v(t,x) \to \lambda^{-1} v(\lambda t, \lambda x). \end{cases}$$

This, leads to the critical Sobolev space \mathcal{H}^{s_c} with $s_c = d/2 + 1$.

Hyperbolic quasilinear system

Thus, it is not too difficult to show that in two dimensions WKG is locally well-posed in \mathcal{H}^n for $n \geq 4$ (or $\mathcal{H}^{3+\epsilon}$ if we do not restrict ourselves to integers). Lower regularity than that would require different set of tools.

Control norms

To describe the lifespan of the solutions we define the control norms

• The following is a scale invariant quantity:

$$A := \sum_{|\alpha|=1} \|D_x^{\alpha} u\|_{L^{\infty}} + \sum_{|\alpha|=1} \|D_x^{\alpha} v\|_{L^{\infty}} + \|u_t\|_{L^{\infty}} + \|v_t\|_{L^{\infty}}$$

This needs to remain small throughout in order to guarantee the hyperbolicity of the system.

• The following norm (and in particular its smallness) assures the propagation of higher regularity.

$$B := \sum_{|\alpha| \le 2} \|D_x^{\alpha} u\|_{L^{\infty}} + \sum_{|\alpha| \le 2} \|D_x^{\alpha} v\|_{L^{\infty}} + \|u_{tt}\|_{L^{\infty}} + \|v_{tt}\|_{L^{\infty}}$$

Main question:

Study the long time well-posedness problem for the nonlinear WKG system for small and localized initial data.

Mihaela Ifrim

Theorem

Let $h \ge 7$. Assume that the initial data (u[0], v[0]) for WKG equation satisfies

 $\|(u[0], v[0])\|_{\mathcal{H}^{2h}} + \|x\partial_x(u[0], v[0])\|_{\mathcal{H}^h} + \|x^2\partial_x^2(u[0], v[0])\|_{\mathcal{H}^0} \le \epsilon \ll 1.$

Then the WKG equation is almost globally well-posed in \mathcal{H}^{2h} , with L^2 bounds as follows:

 $E^{[2h]}(t, u, v) \lesssim \epsilon^2,$

 $and \ pointwise \ bounds$

$$\begin{split} |\partial^{j}v| &\lesssim \epsilon \langle t+r \rangle^{-1}, \qquad j = \overline{0,3}, \\ |\partial^{j}u| &\lesssim \epsilon \langle t+r \rangle^{-\frac{1}{2}} \langle t-r \rangle^{-\frac{1}{2}}, \qquad j = \overline{1,3}, \\ |\partial^{j}Zu| &\lesssim \epsilon, \qquad j = \overline{0,2}. \end{split}$$

- Forthcoming global result, under the same assumptions.
- We used only minimal x^2 type decay, but we did not attempt to fully optimize the choice of h

What is known about the well-posedness for WKG

3D WKG results:

Gorgiev '90 , Katayama '12.

Related models:

KG systems - Delort '04, '09, '12,'15, '16, Einstein's field equations, Dirac-Klein-Gordon system, etc: LeFloch , Ma '14, '16, Wang '16, massive Dirac-Klein-Gordon system: Bejenaru-Herr(s),Candy-Herr(l).

Global existence of solutions to WKG systems in 3D:

Quasilinear quadratic nonlinearities satisfying suitable conditions, initial data are small, smooth and compactly support \rightarrow method by Tataru '01 and then used by LeFloch under name: *hyperboloidal foliation method*; Ionescu-Pausader'17

2D WKG results:

Global existence of small amplitude solutions in lower space dimensions \rightarrow Ma: '17, 19. (semilinear, compactly supported data); Stingo '18 (only Q_0 null forms)

The scaling vector field S

• The main difficulty on this type of system, compared with the pure wave or Klein-Gordon systems, is the lack of symmetry. The conformal Killing vector filed $S = x_{\alpha}\partial_{\alpha}$ of the linear wave operator is no longer conformal Killing with respect to the linear Klein-Gordon operator.

• This prevents any possibility of naive combination of the methods for wave equations with those for Klein-Gordon equations.

Quadratic resonant interactions

Wave equation: dispersion relation

 $\omega_W(\xi) = \pm |\xi|$

Klein-Gordon equation: dispersion relation

 $\omega(\xi)_{KG} = \pm \sqrt{|\xi|^2 - 1}$

- Two wave resonant interactions for the wave eq alone occur only in between parallel waves (null condition helps).
- Two wave resonant interactions for the KG equation alone or mixed wave KG never occur.
- However, in the last two cases there is a near resonance for almost parallel waves in the high frequency limit, which becomes stronger in a quasilinear setting.

Quadratic resonances and normal forms

Suppose that N_1 and N_2 are of Ω_{ij} type. Then $u \times v$ interactions do not cancel at second order along paralel directions: they lead to an unbounded bilinear symbol in the normal form transformation

$$c(\eta,\xi) = \frac{2\langle \xi,\eta\rangle\,\xi\wedge\eta}{|\xi|^2|\eta|^2 - \langle \xi,\eta\rangle^2 + |\xi|^2}$$

 \rightarrow If ξ is at frequency ≈ 1 and η is very large then the symbol of C(u, v) can become unbounded as the angle in between ξ and η (let's call it θ) becomes very small:

$$c(\xi,\eta) = \frac{\eta^2 \theta}{\eta^2 \theta^2 + 1} \approx \eta \text{ or } \approx \frac{1}{\theta}$$

This says that the normal form introduces a derivative every time is used. Hence a normal form approach cannot be used!

2d wave-Klein-Gordon

Mihaela Ifrim

Sketch of the proof

Standard approach has two main steps

- (i) vector field fixed time energy estimates,
- (ii) fixed time pointwise bounds derived from energy estimates (Klainerman-Sobolev inequalities).

Novelty: a twist of the standard approach

- Energy estimates are space-time L^2 local energy bounds, localized to dyadic regions C_{TS}^{\pm} , where T stands for dyadic time, S for the dyadic distance to the cone, and \pm for the interior/exterior cone.
- Similarly, pointwise bounds are akin to Sobolev embeddings or interpolation inequalities in the same type of regions.

$$\begin{split} C^+_{TS} &:= \left\{ (t,x) \ : \ S \leq t-r \leq 2S, \ T \leq t \leq 2T \right\}, \ \text{where} \ 1 \leq S \lesssim T \\ C^-_{TS} &:= \left\{ (t,x) \ : \ S \leq r-t \leq 2S, \ T \leq t \leq 2T \right\}, \ \text{where} \ 1 \leq S \lesssim T \end{split}$$

Figure: 1D vertical section of space-time regions C_{TS}^{\pm} \rightarrow Metcalfe - Tataru - Tohaneanu

Exterior region: $C_T^{out} := \{T \le t \le 2T, \ r \gg T\},$ treated directly

Prerequisites for the proof

These have to do with the local in time theory for our evolution:

- Local well-posedness in \mathcal{H}^4 (also in \mathcal{H}^n for $n \ge 4$).
- Continuation of \mathcal{H}^4 solutions for as long as $\partial^2(u, v)$ remain bdd+ propagation of higher regularity, i.e. bounds in $\mathcal{H}^n \forall n$.
- Uniform finite speed of propagation as long as $|\nabla v|$ stays pointwise small.

Our proof is set up as a bootstrap argument, where the bootstrap assumption is on pointwise decay bounds for the solution:

$$|Zu| \le C\epsilon \langle t - r \rangle^{\frac{\delta}{2}},$$

$$\begin{split} |\partial u| &\leq C\epsilon \langle t+r \rangle^{-\frac{1}{2}} \langle t-r \rangle^{-\frac{1}{2}+\frac{\delta}{2}}, \\ &|Z\partial^{j}u| \leq C\epsilon, \quad j=\overline{1,2}, \\ |\partial^{j+1}u| &\leq C\epsilon \langle t+r \rangle^{-\frac{1}{2}} \langle t-r \rangle^{-\frac{1}{2}-\delta}, \quad j=\overline{1,2}, \\ &|\partial^{j}v| \leq C\epsilon \langle t+r \rangle^{-1}, \quad j=\overline{1,3}. \end{split}$$

Part 1 of the proof: Energy Estimates

Energy estimates

Consider a solution (u, v) to WKG in a time interval $[0, T_0]$, which is a-priori assumed to satisfy the pointwise bootstrap assumptions.

Then (u, v) satisfies the energy estimates in $[0, T_0]$:

$$E^{[2h]}(u,v)(t) \lesssim \langle t \rangle^{\tilde{C}\epsilon} E^{[2h]}(u,v)(0), \qquad t \in [0,T_0].$$

- \tilde{C} is a large constant -depends on C in our bootstrap assumption, $\tilde{C} \approx C$. However, the implicit constant in energy estimates cannot depend on C.
- The time T_0 is arbitrary!

Part 2 of the proof: Uniform Bounds

Pointwise bounds

Assume (u, v) a sol to WKG in a time interval $[0, T_0]$, such that the energy bounds hold

$$E^{[2h]}(u,v)(t) \lesssim \epsilon \langle t \rangle^{\tilde{C}\epsilon}, \qquad t \in [0,T_0].$$

Then we show (u, v) satisfies the pointwise bounds

$$\begin{split} \|Zu\|_{L^{\infty}} &\leq \epsilon \langle t \rangle^{\tilde{C}\epsilon}, \\ |\partial u| &\leq \epsilon \langle t \rangle^{\tilde{C}\epsilon} \langle t+r \rangle^{-\frac{1}{2}} \langle t-r \rangle^{-\frac{1}{2}}, \\ \|Z\partial^{j}u\|_{L^{\infty}} &\leq \epsilon \langle t \rangle^{\tilde{C}\epsilon}, \quad j=\overline{1,2}, \\ |\partial^{j}u| &\leq \epsilon \langle t \rangle^{\tilde{C}\epsilon} \langle t+r \rangle^{-\frac{1}{2}} \langle t-r \rangle^{-\frac{1}{2}-2\delta}, \quad j=\overline{2,3}, \\ |\partial^{j}v| &\leq \epsilon \langle t \rangle^{\tilde{C}\epsilon} \langle t+r \rangle^{-1}, \quad j=\overline{0,3}. \end{split}$$

Lifespan T_0 is again arbitrary

Conclusion of the proof

In both steps, the time T_0 is arbitrary. However, in order to close the bootstrap argument one needs to recover the bootstrapped assumptions/ bounds from what we need to show. This requires

$$T_0^{\epsilon \tilde{C}} \ll C \to T_0 \ll e^{\frac{c}{\epsilon}},$$

i.e. our almost global result.

- Previous work in higher D is done in higher regularity setting (large number of v.f) both in the energy estimates and in the pointwise bounds, and the argument works as above.
- Both steps require only fixed time bounds, and the pointwise bounds are akin to an improved form of the Sobolev embeddings.

This approach fails in 2 + 1 dimensions because there is less dispersive decay, and the problem is strongly quasilinear! Thus, analysis must be adapted to the light cone geometry!

Energy estimates

- (a) for the linearized equation
- (b) for the solution and its higher derivatives
- (c) for the vector fields applied to the solution
- The main work goes into the energy estimates for the linearized system.
- Equations for higher derivatives $\partial^{\alpha}(u, v)$ and vector fields $\mathcal{Z}^{\beta}(u, v)$ are interpreted as the linearized equations with source terms.
- Source terms are estimated perturbatively using the null structure and interpolation inequalities.

Linearized WKG

(U, V) = linearized variables:

$$\begin{array}{l} (\partial_t^2 - \Delta_x)U(t, x) = \mathbf{N_1}(v, \partial V) + \mathbf{N_1}(V, \partial v) + \mathbf{N_2}(u, \partial V) + \mathbf{N_2}(U, \partial v) + \mathbf{F} \\ (\partial_t^2 - \Delta_x + 1)V(t, x) = \mathbf{N_1}(v, \partial U) + \mathbf{N_1}(V, \partial u) + \mathbf{N_2}(u, \partial U) + \mathbf{N_2}(U, \partial u) + \mathbf{G} \end{array}$$

- Fixed time energy estimate for the homogeneous linearized equations $E(U,V)(t)\lesssim t^{C\epsilon}E(U,V)(0),\quad t\in[0,T]$
- Replace linear energy E(U, V) with $E^{quasi}(U, V)$: better adapted to lin. pb.

$$E^{quasi}(U,V) := E(U,V) + \int_{\mathbb{R}^2} B_1(\partial v; \partial U, \partial V) + B_2(\partial u; \partial U, \partial V) \, dx$$

and

$$E^{quasi}(U,V)(t) \lesssim t^{C\epsilon} E^{quasi}(U,V)(0), \quad t \in [0,T]$$

• Time dyadic version

$$\sup_{t \in [T,2T]} E^{quasi}(U,V)(t) \lesssim (1+\epsilon C) E^{quasi}(U,V)(T).$$

Space-time norms Additional space-time bound

$$\sup_{1 \le S \lesssim T} \int_{C_{TS}} \frac{1}{S} \left\{ \left(V_j + \frac{x_j}{r} V_t \right)^2 + \left(U_j + \frac{x_j}{r} U_t \right)^2 + V^2 \right\} dx dt \lesssim \sup_{t \in [T, 2T]} E^{quasi}(U, V)(t).$$

• Helps to bound the time derivative of the energy

$$\frac{d}{dt}E^{quasi}(U,V) = \int N(\partial^2 u, \partial U, \partial V) + N(\partial^2 v, \partial U, \partial V) \, dx$$

 \bullet Proved using Alinhac's ghost weight method with weights adapted to each C_{TS}

Final** space-time norm:

$$\|(U,V)\|_{X_T}^2 := \sup_{t \in [T,2T]} E^{quasi}(U,V)(t) + \sup_{1 \le S} S^{-1} \Big(\|\mathcal{T}(U,V)\|_{L^2_{C_{TS}}}^2 + \|V\|_{L^2_{C_{TS}}}^2 \Big)$$

**Uniform energy bounds on hyperboloids are also included in X_T^+ , but omitted for simplicity.

Energy bounds for the inhomogeneous problem

(i) Uniform in time bound

 $\sup_{t \in [T,2T]} E^{quasi}(U,V)(t) \lesssim (1 + \epsilon C) E^{quasi}(U,V)(T) + \|(F,G)\|_{Y^T}$

(ii) Space-time bound

 $\|(U,V)\|_{X^T} \lesssim E^{quasi}(U,V)(T) + \|(F,G)\|_{Y^T}.$ where the norm Y^T for the source term is given by

$$||(F,G)||_{Y^T} = \sup_{1 \le S \le T} T^{\frac{1}{2}} ||(F,G)||_{L^2(C_{TS})}.$$

Klainerman-Sobolev inequalities

Theorem

Let $h \geq 7$. Assume that the functions (u, v) in C_T^{in} satisfy the bounds

$$\|\mathcal{Z}^{\gamma}(u,v)\|_{X^{T}} \le 1, \qquad |\gamma| \le 2h,$$

as well as

$$\|\mathcal{Z}^{\gamma}(\Box u, (\Box+1)v)\|_{Y^T} \le 1, \qquad |\gamma| \le h.$$

Then they also satisfy the pointwise bounds

$$\begin{split} |\partial u| \lesssim \langle t \rangle^{-\frac{1}{2}} \langle t - r \rangle^{-\frac{1}{2}}, \\ |Zu| \lesssim 1, \\ |\partial^{j}u| \lesssim \langle t \rangle^{-\frac{1}{2}} \langle t - r \rangle^{-\frac{1}{2}-\delta}, \quad j = \overline{2,3} \\ |Z\partial^{j}u| \lesssim \langle t - r \rangle^{-\delta} \quad j = \overline{1,2}, \\ |\partial^{j}v| \lesssim \langle t \rangle^{-1}, \quad j = \overline{0,3}. \end{split}$$

Main elements of the proof

- Separate proofs in each of the dyadic regions C_{TS}^{\pm} .
- Separate arguments for the wave and KG equations
- Use hyperbolic coordinates to represent C_{TS}^{\pm} as a unit size region
- Differentiate between interior and exterior regions relative to the cone
- Vector fields give bounds for derivatives along hyperboloids
- Use the equations to capture information about the scaling derivative
- Use Gagliando-Niremberg-Sobolev inequalities or frequency localized Bernstein's inequalities on C_{TS}^{\pm} .
- (optional, more efficient) Use L^2 bounds on hyperboloids in the case of C_{TS}^+ (inside the cone)

Pointwise bounds for KG inside the cone

Spherical hyperbolic coordinates in $\mathbb{H}^2 \times \mathbb{R}$:

$$\begin{cases} t = e^{\sigma} \cosh(\phi) \\ x_1 = e^{\sigma} \sinh(\phi) \sin(\theta) \\ x_2 = e^{\sigma} \sinh(\phi) \cos(\theta) \end{cases}$$

The KG equation in the new coordinates:

$$-e^{2\sigma}(\Box+1) = -e^{2\sigma} - \left(\partial_{\sigma} + \frac{1}{2}\right)^2 + \frac{1}{4} + \partial_{\phi}^2 + \frac{1}{\sinh^2\phi}\partial_{\theta}^2 + \frac{\cosh\phi}{\sinh\phi}\partial_{\phi},$$

 L^2 bounds for the KG sol and vf(KG sol) on hyperboloids H intersected with unit size regions C^+_{ST} :

$$\begin{aligned} \|\mathcal{Z}^{\alpha}v\|_{L^{2}_{h}(H)} + \|\mathcal{Z}^{\alpha}\mathcal{T}v\|_{L^{2}_{h}(H)} &\lesssim T^{-1}, \qquad |\alpha| \leq 2h, \\ \|\mathcal{Z}^{\alpha}\nabla v\|_{L^{2}_{h}(H)} &\lesssim S^{-\frac{1}{2}}T^{-\frac{1}{2}}, \qquad |\alpha| \leq 2h. \end{aligned}$$

Here Z includes $\partial_{\phi}, \partial_{\theta}$, i.e. a unit frame on H. Now use Bernstein/Sobolev and interpolation inequalities on $H \cap C_{TS}^+$.

Pointwise bounds for Wave equation outside the cone Spherical hyperbolic coordinates in $\mathbb{H}^2_{out} \times \mathbb{R}$:

$$\begin{cases} t = e^{\sigma} \sinh(\phi) \\ x_1 = e^{\sigma} \cosh(\phi) \sin(\theta) \\ x_2 = e^{\sigma} \cosh(\phi) \cos(\theta) \end{cases}$$

Wave equation in the new coordinates:

$$-\Box = e^{-2\sigma} \left(\partial_{\sigma}^2 - \partial_{\phi}^2 + \frac{1}{\cosh^2(\phi)} \partial_{\theta}^2 - \partial_{\sigma} + \frac{\sinh(\phi)}{\cosh(\phi)} \partial_{\phi} \right).$$

 L^2 bounds for the Wave soln and vf(Wave soln) in C_{TS}^- regions:

$$\begin{split} \|\mathcal{Z}^{\alpha} Zu\|_{L_{h}^{2}} &\lesssim 1, \qquad |\alpha| \leq 2h \\ \|\mathcal{Z}^{\alpha} (\partial_{\sigma} - \partial_{\phi})u\|_{L_{h}^{2}} &\lesssim S^{\frac{1}{2}}T^{-\frac{1}{2}}, \qquad |\alpha| \leq 2h \\ \|\mathcal{Z}^{\alpha} (\partial_{\sigma} - \partial_{\phi})(\partial_{\sigma} + \partial_{\phi} + 1)u\|_{L_{h}^{2}} &\lesssim S^{\frac{1}{2}}T^{-\frac{1}{2}}, \qquad |\alpha| \leq h. \end{split}$$

Here Z includes ∂_{ϕ} , ∂_{θ} . Now use Bernstein/Sobolev and interpolation inequalities on C_{TS}^- , first two bounds for Zu and last two for $(\partial_{\sigma} - \partial_{\phi})u$.

Thank you.

2d wave-Klein-Gordon

Mihaela Ifrim