Almost global well-posedness for quasilinear strongly coupled wave-Klein-Gordon systems in two space dimensions

Mihaela Ifrim
University of Wisconsin, Madison

February 3, 2020

This is joint work with A. Stingo

Introduction

We consider real solutions for the wave-Klein-Gordon system

$$
\left\{\begin{array}{l}
\left(\partial_{t}^{2}-\Delta_{x}\right) u(t, x)=\mathbf{N}_{\mathbf{1}}(v, \partial v)+\mathbf{N}_{\mathbf{2}}(u, \partial v) \\
\left(\partial_{t}^{2}-\Delta_{x}+1\right) v(t, x)=\mathbf{N}_{\mathbf{1}}(v, \partial u)+\mathbf{N}_{\mathbf{2}}(u, \partial u)
\end{array} \quad(t, x) \in[0,+\infty) \times \mathbb{R}^{2}\right.
$$

with initial conditions

$$
\left\{\begin{array}{l}
(u, v)(0, x)=\left(u_{0}(x), v_{0}(x)\right) \\
\left(\partial_{t} u, \partial_{t} v\right)(0, x)=\left(u_{1}(x), v_{1}(x)\right) .
\end{array}\right.
$$

Here the nonlinearities $\mathbf{N}_{\mathbf{1}}(\cdot, \cdot)$ and $\mathbf{N}_{\mathbf{2}}(\cdot, \cdot)$ are combinations of the classical quadratic null forms

$$
\left\{\begin{array}{l}
Q_{i j}(\phi, \psi)=\partial_{i} \phi \partial_{j} \psi-\partial_{j} \phi \partial_{i} \psi, \\
Q_{0 i}(\phi, \psi)=\partial_{t} \phi \partial_{i} \psi-\partial_{t} \psi \partial_{i} \phi, \\
Q_{0}(\phi, \psi)=\partial_{t} \phi \partial_{t} \psi-\nabla_{x} \psi \cdot \nabla_{x} \phi .
\end{array}\right.
$$

- Physical models related to general relativity have shown the importance of studying such systems.
- Very few results are known at present in low (2) space dimensionss

Vector fields associated with the WKG system

$$
\begin{array}{ll}
\text { Translation in the coords direct.: } & \partial_{t}, \partial_{1}, \partial_{2} \\
\text { Rotations in x: } & \Omega_{i j}=x_{j} \partial_{i}-x_{i} \partial_{j} \\
\text { Hyperbolic rotations: } & \Omega_{0 i}=t \partial_{i}+x_{i} \partial_{t} \\
\text { Scaling: } & \mathscr{S}=t \partial_{t}+r \partial_{r}
\end{array}
$$

Here $1 \leq i \neq j \leq 2, r=|x|$ and $\partial_{r}=\frac{x}{r} \cdot \nabla_{x}$

- We denote $Z:=\left\{\Omega_{i j}, \Omega_{0 i}\right\}$ Lorentz vector fields.
- We denote $\mathcal{Z}:=\left\{\partial_{0}, \partial_{1}, \partial_{2}, \Omega_{i j}, \Omega_{0 i}\right\}$ the full set of vector fields associated to the symmetries of the linear problem.

Notation

For a multiindex $\gamma=(\alpha, \beta)$ we denote $\mathcal{Z}^{\gamma}=\partial^{\alpha} Z^{\beta}$ and define the size

$$
|\gamma|=|\alpha|+h|\beta|
$$

Here $h \in \mathbb{N} \rightsquigarrow$ balance between Lorentz v.f. and reg. derivatives

Energy functionals and Functional Spaces

The linear system WKG has an associated conserved energy

$$
E(t ; u, v)=\int_{\mathbb{R}} u_{t}^{2}+u_{x}^{2}+v_{t}^{2}+v_{x}^{2}+v^{2} d x
$$

The system linear WKG system is a well-posed linear evolution in the space \mathcal{H}^{0} with norm

$$
\|(u[t], v[t])\|_{\mathcal{H}^{0}}^{2}:=\|u\|_{\dot{H}^{1}}^{2}+\left\|u_{t}\right\|_{L^{2}}^{2}+\|v\|_{H^{1}}^{2}+\left\|v_{t}\right\|_{L^{2}}^{2}
$$

where we use the following notation for the Cauchy data in WKG system at time t :

$$
(u[t], v[t]):=\left(u(t), u_{t}(t), v(t), v_{t}(t)\right)
$$

Higher order functional spaces

The higher order energy spaces for the linear WKG system are the spaces \mathcal{H}^{n} endowed with the norm

$$
\left\|\left(u_{0}, u_{1}, v_{0}, v_{1}\right)\right\|_{\mathcal{H}^{n}}^{2}:=\sum_{|\alpha| \leq n}\left\|\partial_{x}^{\alpha}\left(u_{0}, u_{1}, v_{0}, v_{1}\right)\right\|_{\mathcal{H}^{0}}^{2}
$$

where $n \geq 1$. We use the energy spaces for the nonlinear system!

Higher order counterparts of the energy functionals:
a) the energy $E^{n}(t, u, v)$ measures the regularity in the function space \mathcal{H}^{n} of the solutions that carry n derivatives,

$$
E^{n}(t, u, v):=\sum_{|\alpha| \leq n} E\left(t ; \partial^{\alpha} u, \partial^{\alpha} v\right)
$$

b) the energy $E^{[n]}(t, u, v)$ which in addition to regular derivatives, keeps track of Z vector fields applied to the solution,

$$
E^{[n]}(t, u, v):=\sum_{|\gamma| \leq n} E\left(t ; \mathcal{Z}^{\gamma} u, \mathcal{Z}^{\gamma} v\right)
$$

Scaling, criticality and local well-posedness

Scaling

We define the notion of criticality by means of the scaling symmetry matched at the highest order:

$$
\left\{\begin{aligned}
u(t, x) & \rightarrow \lambda^{-1} u(\lambda t, \lambda x) \\
v(t, x) & \rightarrow \lambda^{-1} v(\lambda t, \lambda x)
\end{aligned}\right.
$$

This, leads to the critical Sobolev space $\mathcal{H}^{s_{c}}$ with $s_{c}=d / 2+1$.

Hyperbolic quasilinear system

Thus, it is not too difficult to show that in two dimensions WKG is locally well-posed in \mathcal{H}^{n} for $n \geq 4$ (or $\mathcal{H}^{3+\epsilon}$ if we do not restrict ourselves to integers). Lower regularity than that would require different set of tools.

Control norms

To describe the lifespan of the solutions we define the control norms

- The following is a scale invariant quantity:

$$
A:=\sum_{|\alpha|=1}\left\|D_{x}^{\alpha} u\right\|_{L^{\infty}}+\sum_{|\alpha|=1}\left\|D_{x}^{\alpha} v\right\|_{L^{\infty}}+\left\|u_{t}\right\|_{L^{\infty}}+\left\|v_{t}\right\|_{L^{\infty}}
$$

This needs to remain small throughout in order to guarantee the hyperbolicity of the system.

- The following norm (and in particular its smallness) assures the propagation of higher regularity.

$$
B:=\sum_{|\alpha| \leq 2}\left\|D_{x}^{\alpha} u\right\|_{L^{\infty}}+\sum_{|\alpha| \leq 2}\left\|D_{x}^{\alpha} v\right\|_{L^{\infty}}+\left\|u_{t t}\right\|_{L^{\infty}}+\left\|v_{t t}\right\|_{L^{\infty}}
$$

Main question:

Study the long time well-posedness problem for the nonlinear WKG system for small and localized initial data.

Theorem

Let $h \geq 7$. Assume that the initial data $(u[0], v[0])$ for WKG equation satisfies

$$
\|(u[0], v[0])\|_{\mathcal{H}^{2 h}}+\left\|x \partial_{x}(u[0], v[0])\right\|_{\mathcal{H}^{h}}+\left\|x^{2} \partial_{x}^{2}(u[0], v[0])\right\|_{\mathcal{H}^{0}} \leq \epsilon \ll 1 .
$$

Then the WKG equation is almost globally well-posed in $\mathcal{H}^{2 h}$, with L^{2} bounds as follows:

$$
E^{[2 h]}(t, u, v) \lesssim \epsilon^{2},
$$

and pointwise bounds

$$
\begin{gathered}
\left|\partial^{j} v\right| \lesssim \epsilon\langle t+r\rangle^{-1}, \quad j=\overline{0,3}, \\
\left|\partial^{j} u\right| \lesssim \epsilon\langle t+r\rangle^{-\frac{1}{2}}\langle t-r\rangle^{-\frac{1}{2}}, \quad j=\overline{1,3}, \\
\left|\partial^{j} Z u\right| \lesssim \epsilon, \quad j=\overline{0,2} .
\end{gathered}
$$

- Forthcoming global result, under the same assumptions.
- We used only minimal x^{2} type decay, but we did not attempt to fully optimize the choice of h

What is known about the well-posedness for WKG

$3 D$ WKG results:
Gorgiev '90, Katayama '12.

Related models:

KG systems - Delort '04, '09, '12,'15, '16, Einstein's field equations, Dirac-Klein-Gordon system, etc: LeFloch, Ma '14, '16, Wang '16, massive Dirac-Klein-Gordon system: Bejenaru-Herr(s),Candy-Herr(l).

Global existence of solutions to WKG systems in 3D:

Quasilinear quadratic nonlinearities satisfying suitable conditions, initial data are small, smooth and compactly support \rightarrow method by Tataru '01 and then used by LeFloch under name: hyperboloidal foliation method; Ionescu-Pausader'17

2D WKG results:

Global existence of small amplitude solutions in lower space dimensions \rightarrow Ma: '17, 19. (semilinear, compactly supported data); Stingo '18 (only Q_{0} null forms)

The scaling vector field S

- The main difficulty on this type of system, compared with the pure wave or Klein-Gordon systems, is the lack of symmetry. The conformal Killing vector filed $S=x_{\alpha} \partial_{\alpha}$ of the linear wave operator is no longer conformal Killing with respect to the linear Klein-Gordon operator.
- This prevents any possibility of naive combination of the methods for wave equations with those for Klein-Gordon equations.

Quadratic resonant interactions

Wave equation: dispersion relation

$$
\omega_{W}(\xi)= \pm|\xi|
$$

$\underline{\text { Klein-Gordon equation: dispersion relation }}$

$$
\omega(\xi)_{K G}= \pm \sqrt{|\xi|^{2}-1}
$$

- Two wave resonant interactions for the wave eq alone occur only in between parallel waves (null condition helps).
- Two wave resonant interactions for the KG equation alone or mixed wave - KG never occur.
- However, in the last two cases there is a near resonance for almost parallel waves in the high frequency limit, which becomes stronger in a quasilinear setting.

Quadratic resonances and normal forms

Suppose that N_{1} and N_{2} are of $\Omega_{i j}$ type. Then $u \times v$ interactions do not cancel at second order along paralel directions: they lead to an unbounded bilinear symbol in the normal form transformation

$$
c(\eta, \xi)=\frac{2\langle\xi, \eta\rangle \xi \wedge \eta}{|\xi|^{2}|\eta|^{2}-\langle\xi, \eta\rangle^{2}+|\xi|^{2}}
$$

\rightarrow If ξ is at frequency ≈ 1 and η is very large then the symbol of $C(u, v)$ can become unbounded as the angle in between ξ and η (let's call it θ) becomes very small:

$$
c(\xi, \eta)=\frac{\eta^{2} \theta}{\eta^{2} \theta^{2}+1} \approx \eta \text { or } \approx \frac{1}{\theta}
$$

This says that the normal form introduces a derivative every time is used. Hence a normal form approach cannot be used!

Sketch of the proof

Standard approach has two main steps

- (i) vector field fixed time energy estimates,
- (ii) fixed time pointwise bounds derived from energy estimates (Klainerman-Sobolev inequalities).

Novelty: a twist of the standard approach

- Energy estimates are space-time L^{2} local energy bounds, localized to dyadic regions $C_{T S}^{ \pm}$, where T stands for dyadic time, S for the dyadic distance to the cone, and \pm for the interior/exterior cone.
- Similarly, pointwise bounds are akin to Sobolev embeddings or interpolation inequalities in the same type of regions.

$$
\begin{aligned}
& C_{T S}^{+}:=\{(t, x): S \leq t-r \leq 2 S, T \leq t \leq 2 T\}, \text { where } 1 \leq S \lesssim T \\
& C_{T S}^{-}:=\{(t, x): S \leq r-t \leq 2 S, T \leq t \leq 2 T\}, \text { where } 1 \leq S \lesssim T
\end{aligned}
$$

Figure: 1D vertical section of space-time regions $C_{T S}^{ \pm}$
\rightarrow Metcalfe - Tataru - Tohaneanu
Exterior region: $\quad C_{T}^{\text {out }}:=\{T \leq t \leq 2 T, r \gg T\}, \quad$ treated directly

Prerequisites for the proof

These have to do with the local in time theory for our evolution:

- Local well-posedness in \mathcal{H}^{4} (also in \mathcal{H}^{n} for $\left.n \geq 4\right)$.
- Continuation of \mathcal{H}^{4} solutions for as long as $\partial^{2}(u, v)$ remain bdd+ propagation of higher regularity, i.e. bounds in $\mathcal{H}^{n} \forall n$.
- Uniform finite speed of propagation as long as $|\nabla v|$ stays pointwise small.

Our proof is set up as a bootstrap argument, where the bootstrap assumption is on pointwise decay bounds for the solution:

$$
\begin{gathered}
|Z u| \leq C \epsilon\langle t-r\rangle^{\frac{\delta}{2}} \\
|\partial u| \leq C \epsilon\langle t+r\rangle^{-\frac{1}{2}}\langle t-r\rangle^{-\frac{1}{2}+\frac{\delta}{2}}, \\
\left|Z \partial^{j} u\right| \leq C \epsilon, \quad j=\overline{1,2}, \\
\left|\partial^{j+1} u\right| \leq C \epsilon\langle t+r\rangle^{-\frac{1}{2}}\langle t-r\rangle^{-\frac{1}{2}-\delta}, \quad j=\overline{1,2}, \\
\left|\partial^{j} v\right| \leq C \epsilon\langle t+r\rangle^{-1}, \quad j=\overline{1,3} .
\end{gathered}
$$

Part 1 of the proof: Energy Estimates

Energy estimates

Consider a solution (u, v) to WKG in a time interval $\left[0, T_{0}\right]$, which is a-priori assumed to satisfy the pointwise bootstrap assumptions.
Then (u, v) satisfies the energy estimates in $\left[0, T_{0}\right]$:

$$
E^{[2 h]}(u, v)(t) \lesssim\langle t\rangle^{\tilde{C} \epsilon} E^{[2 h]}(u, v)(0), \quad t \in\left[0, T_{0}\right] .
$$

- \tilde{C} is a large constant -depends on C in our bootstrap assumption, $\tilde{C} \approx C$. However, the implicit constant in energy estimates cannot depend on C.
- The time T_{0} is arbitrary!

Part 2 of the proof: Uniform Bounds

Pointwise bounds

Assume (u, v) a sol to WKG in a time interval $\left[0, T_{0}\right]$, such that the energy bounds hold

$$
E^{[2 h]}(u, v)(t) \lesssim \epsilon\langle t\rangle^{\tilde{C} \epsilon}, \quad t \in\left[0, T_{0}\right] .
$$

Then we show (u, v) satisfies the pointwise bounds

$$
\begin{gathered}
\|Z u\|_{L^{\infty}} \leq \epsilon\langle t\rangle^{\tilde{C} \epsilon}, \\
|\partial u| \leq \epsilon\langle t\rangle\rangle^{\tilde{C} \epsilon}\langle t+r\rangle^{-\frac{1}{2}}\langle t-r\rangle^{-\frac{1}{2}}, \\
\left\|Z \partial^{j} u\right\|_{L^{\infty}} \leq \epsilon\langle t\rangle{ }^{\tilde{C} \epsilon}, \quad j=\overline{1,2}, \\
\left|\partial^{j} u\right| \leq \epsilon\langle t\rangle^{\tilde{C} \epsilon}\langle t+r\rangle^{-\frac{1}{2}}\langle t-r\rangle^{-\frac{1}{2}-2 \delta}, \quad j=\overline{2,3}, \\
\left|\partial^{j} v\right| \leq \epsilon\langle\langle \rangle\rangle^{\tilde{C} \epsilon}\langle t+r\rangle^{-1}, \quad j=\overline{0,3} . \\
\hline
\end{gathered}
$$

Lifespan T_{0} is again arbitrary

Conclusion of the proof

In both steps, the time T_{0} is arbitrary. However, in order to close the bootstrap argument one needs to recover the bootstrapped assumptions/ bounds from what we need to show. This requires

$$
T_{0}^{\epsilon \tilde{C}} \ll C \rightarrow T_{0} \ll e^{\frac{c}{\epsilon}},
$$

i.e. our almost global result.

- Previous work in higher D is done in higher regularity setting (large number of v.f) both in the energy estimates and in the pointwise bounds, and the argument works as above.
- Both steps require only fixed time bounds, and the pointwise bounds are akin to an improved form of the Sobolev embeddings.

This approach fails in $2+1$ dimensions because there is less dispersive decay, and the problem is strongly quasilinear! Thus, analysis must be adapted to the light cone geometry!

Energy estimates

- (a) for the linearized equation
- (b) for the solution and its higher derivatives
- (c) for the vector fields applied to the solution
- The main work goes into the energy estimates for the linearized system.
- Equations for higher derivatives $\partial^{\alpha}(u, v)$ and vector fields $\mathcal{Z}^{\beta}(u, v)$ are interpreted as the linearized equations with source terms.
- Source terms are estimated perturbatively using the null structure and interpolation inequalities.

Linearized WKG

$(U, V)=$ linearized variables:

$$
\left\{\begin{array}{l}
\left(\partial_{t}^{2}-\Delta_{x}\right) U(t, x)=\mathbf{N}_{\mathbf{1}}(v, \partial V)+\mathbf{N}_{\mathbf{1}}(V, \partial v)+\mathbf{N}_{\mathbf{2}}(u, \partial V)+\mathbf{N}_{\mathbf{2}}(U, \partial v)+F \\
\left(\partial_{t}^{2}-\Delta_{x}+1\right) V(t, x)=\mathbf{N}_{\mathbf{1}}(v, \partial U)+\mathbf{N}_{\mathbf{1}}(V, \partial u)+\mathbf{N}_{\mathbf{2}}(u, \partial U)+\mathbf{N}_{\mathbf{2}}(U, \partial u)+G
\end{array}\right.
$$

- Fixed time energy estimate for the homogeneous linearized equations

$$
E(U, V)(t) \lesssim t^{C \epsilon} E(U, V)(0), \quad t \in[0, T]
$$

- Replace linear energy $E(U, V)$ with $E^{q u a s i}(U, V)$: better adapted to lin. pb.

$$
E^{\text {quasi }}(U, V):=E(U, V)+\int_{\mathbb{R}^{2}} B_{1}(\partial v ; \partial U, \partial V)+B_{2}(\partial u ; \partial U, \partial V) d x
$$

and

$$
E^{\text {quasi }}(U, V)(t) \lesssim t^{C \epsilon} E^{q u a s i}(U, V)(0), \quad t \in[0, T]
$$

- Time dyadic version

$$
\sup _{t \in[T, 2 T]} E^{q u a s i}(U, V)(t) \lesssim(1+\epsilon C) E^{q u a s i}(U, V)(T)
$$

Space-time norms

Additional space-time bound
$\sup _{1 \leq S \lesssim T} \int_{C_{T S}} \frac{1}{S}\left\{\left(V_{j}+\frac{x_{j}}{r} V_{t}\right)^{2}+\left(U_{j}+\frac{x_{j}}{r} U_{t}\right)^{2}+V^{2}\right\} d x d t{\underset{\sup }{t \in[T, 2 T]}} E^{\text {quasi }}(U, V)(t)$.

- Helps to bound the time derivative of the energy

$$
\frac{d}{d t} E^{q u a s i}(U, V)=\int N\left(\partial^{2} u, \partial U, \partial V\right)+N\left(\partial^{2} v, \partial U, \partial V\right) d x
$$

- Proved using Alinhac's ghost weight method with weights adapted to each $C_{T S}$
Final** space-time norm:

$$
\|(U, V)\|_{X_{T}}^{2}:=\sup _{t \in[T, 2 T]} E^{\text {quasi }}(U, V)(t)+\sup _{1 \leq S} S^{-1}\left(\|\mathcal{T}(U, V)\|_{L_{C_{T S}}^{2}}^{2}+\|V\|_{L_{C_{T S}}^{2}}^{2}\right)
$$

**Uniform energy bounds on hyperboloids are also included in X_{T}^{+}, but omitted for simplicity.

Energy bounds for the inhomogeneous problem

(i) Uniform in time bound

$$
\sup _{t \in[T, 2 T]} E^{\text {quasi }}(U, V)(t) \lesssim(1+\epsilon C) E^{\text {quasi }}(U, V)(T)+\|(F, G)\|_{Y^{T}}
$$

(ii) Space-time bound

$$
\|(U, V)\|_{X^{T}} \lesssim E^{q u a s i}(U, V)(T)+\|(F, G)\|_{Y^{T}}
$$

where the norm Y^{T} for the source term is given by

$$
\|(F, G)\|_{Y^{T}}=\sup _{1 \leq S \leq T} T^{\frac{1}{2}}\|(F, G)\|_{L^{2}\left(C_{T S}\right)}
$$

Klainerman-Sobolev inequalities

Theorem

Let $h \geq 7$. Assume that the functions (u, v) in $C_{T}^{i n}$ satisfy the bounds

$$
\left\|\mathcal{Z}^{\gamma}(u, v)\right\|_{X^{T}} \leq 1, \quad|\gamma| \leq 2 h
$$

as well as

$$
\left\|\mathcal{Z}^{\gamma}(\square u,(\square+1) v)\right\|_{Y^{T}} \leq 1, \quad|\gamma| \leq h
$$

Then they also satisfy the pointwise bounds

$$
\begin{gathered}
|\partial u| \lesssim\langle t\rangle^{-\frac{1}{2}}\langle t-r\rangle^{-\frac{1}{2}}, \\
|Z u| \lesssim 1, \\
\left|\partial^{j} u\right| \lesssim\langle t\rangle^{-\frac{1}{2}}\langle t-r\rangle^{-\frac{1}{2}-\delta}, \quad j=\overline{2,3} \\
\left|Z \partial^{j} u\right| \lesssim\langle t-r\rangle^{-\delta} \quad j=\overline{1,2}, \\
\left|\partial^{j} v\right| \lesssim\langle t\rangle^{-1}, \quad j=\overline{0,3} .
\end{gathered}
$$

Main elements of the proof

- Separate proofs in each of the dyadic regions $C_{T S}^{ \pm}$.
- Separate arguments for the wave and KG equations
- Use hyperbolic coordinates to represent $C_{T S}^{ \pm}$as a unit size region
- Differentiate between interior and exterior regions relative to the cone
- Vector fields give bounds for derivatives along hyperboloids
- Use the equations to capture information about the scaling derivative
- Use Gagliando-Niremberg-Sobolev inequalities or frequency localized Bernstein's inequalities on $C_{T S}^{ \pm}$.
- (optional, more efficient) Use L^{2} bounds on hyperboloids in the case of $C_{T S}^{+}$(inside the cone)

Pointwise bounds for KG inside the cone

 Spherical hyperbolic coordinates in $\mathbb{H}^{2} \times \mathbb{R}$:$$
\left\{\begin{array}{l}
t=e^{\sigma} \cosh (\phi) \\
x_{1}=e^{\sigma} \sinh (\phi) \sin (\theta) \\
x_{2}=e^{\sigma} \sinh (\phi) \cos (\theta)
\end{array}\right.
$$

The KG equation in the new coordinates:

$$
-e^{2 \sigma}(\square+1)=-e^{2 \sigma}-\left(\partial_{\sigma}+\frac{1}{2}\right)^{2}+\frac{1}{4}+\partial_{\phi}^{2}+\frac{1}{\sinh ^{2} \phi} \partial_{\theta}^{2}+\frac{\cosh \phi}{\sinh \phi} \partial_{\phi}
$$

L^{2} bounds for the KG sol and $\operatorname{vf}(\mathrm{KG}$ sol $)$ on hyperboloids H intersected with unit size regions $C_{S T}^{+}$:

$$
\begin{aligned}
& \left\|\mathcal{Z}^{\alpha} v\right\|_{L_{h}^{2}(H)}+\left\|\mathcal{Z}^{\alpha} \mathcal{T} v\right\|_{L_{h}^{2}(H)} \lesssim T^{-1}, \quad|\alpha| \leq 2 h \\
& \left\|\mathcal{Z}^{\alpha} \nabla v\right\|_{L_{h}^{2}(H)} \lesssim S^{-\frac{1}{2}} T^{-\frac{1}{2}}, \quad|\alpha| \leq 2 h
\end{aligned}
$$

Here Z includes $\partial_{\phi}, \partial_{\theta}$, i.e. a unit frame on H. Now use Bernstein/Sobolev and interpolation inequalities on $H \cap C_{T S}^{+}$.

Pointwise bounds for Wave equation outside the cone

 Spherical hyperbolic coordinates in $\mathbb{H}_{\text {out }}^{2} \times \mathbb{R}$:$$
\left\{\begin{array}{l}
t=e^{\sigma} \sinh (\phi) \\
x_{1}=e^{\sigma} \cosh (\phi) \sin (\theta) \\
x_{2}=e^{\sigma} \cosh (\phi) \cos (\theta),
\end{array}\right.
$$

Wave equation in the new coordinates:

$$
-\square=e^{-2 \sigma}\left(\partial_{\sigma}^{2}-\partial_{\phi}^{2}+\frac{1}{\cosh ^{2}(\phi)} \partial_{\theta}^{2}-\partial_{\sigma}+\frac{\sinh (\phi)}{\cosh (\phi)} \partial_{\phi}\right) .
$$

L^{2} bounds for the Wave soln and $\operatorname{vf}\left(\right.$ Wave soln) in $C_{T S}^{-}$regions:

$$
\begin{aligned}
& \left\|\mathcal{Z}^{\alpha} Z u\right\|_{L_{h}^{2}} \lesssim 1, \quad|\alpha| \leq 2 h \\
& \left\|\mathcal{Z}^{\alpha}\left(\partial_{\sigma}-\partial_{\phi}\right) u\right\|_{L_{h}^{2}} \lesssim S^{\frac{1}{2}} T^{-\frac{1}{2}}, \quad|\alpha| \leq 2 h \\
& \left\|\mathcal{Z}^{\alpha}\left(\partial_{\sigma}-\partial_{\phi}\right)\left(\partial_{\sigma}+\partial_{\phi}+1\right) u\right\|_{L_{h}^{2}} \lesssim S^{\frac{1}{2}} T^{-\frac{1}{2}}, \quad|\alpha| \leq h .
\end{aligned}
$$

Here Z includes $\partial_{\phi}, \partial_{\theta}$. Now use Bernstein/Sobolev and interpolation inequalities on $C_{T S}^{-}$, first two bounds for $Z u$ and last two for $\left(\partial_{\sigma}-\partial_{\phi}\right) u$.

Thank you.

