On Isolated Points of Odd Degree

Abbey Bourdon, David R. Gill, Jeremy Rouse, Lori D. Watson Wake Forest University

August 31, 2020

Question: If C is a curve defined over a number field k, is C(k) finite or infinite?

Question: If C is a curve defined over a number field k, is C(k) finite or infinite?

- genus 0: If $C(k) \neq \emptyset$, then $C \cong \mathbb{P}^1$ and C(k) is infinite.
- genus 1: If C(k) ≠ Ø, then C is an elliptic curve and C(k) is a finitely generated abelian group.
- genus ≥ 2 : C(k) is finite by Faltings's theorem

Let $d \in \mathbb{Z}^+$.

Question: If *C* is a curve defined over a number field *k*, is the collection of closed points of degree *d* finite or infinite?

Let $d \in \mathbb{Z}^+$.

Question: If C is a curve defined over a number field k, is the collection of closed points of degree d finite or infinite?

• $f: C \to \mathbb{P}^1$, degree $d \implies$ infinitely many points of degree d

Let $d \in \mathbb{Z}^+$.

Question: If C is a curve defined over a number field k, is the collection of closed points of degree d finite or infinite?

• $f: C \to \mathbb{P}^1$, degree $d \implies$ infinitely many points of degree d

Debarre and Fahlaoui ('93): Can have infinitely many degree d points even without a map of degree $\leq d$ onto \mathbb{P}^1 or an elliptic curve.

$$\Phi_d : \operatorname{Sym}^d C \to \operatorname{Jac}(C)$$

 $x = P_1 + P_2 + \dots + P_d \mapsto [P_1 + \dots + P_d - dP_0]$

$$\Phi_d$$
: Sym^d $C \rightarrow Jac(C)$

$$x = P_1 + P_2 + \dots + P_d \mapsto [P_1 + \dots + P_d - dP_0]$$

If C has infinitely many closed points of degree d, then one of following is true:

$$\Phi_d$$
: Sym^d $C \rightarrow Jac(C)$

$$x = P_1 + P_2 + \dots + P_d \mapsto [P_1 + \dots + P_d - dP_0]$$

If C has infinitely many closed points of degree d, then one of following is true:

• $\Phi_d(x) = \Phi_d(y)$ for distinct $y \in (\text{Sym}^d C)(k)$. $\exists f \in k(C)^{\times}$ with div(f) = x - y, and $f : C \to \mathbb{P}^1$ has degree d.

$$\Phi_d$$
: Sym^d $C \rightarrow Jac(C)$

$$x = P_1 + P_2 + \dots + P_d \mapsto [P_1 + \dots + P_d - dP_0]$$

If C has infinitely many closed points of degree d, then one of following is true:

- $\Phi_d(x) = \Phi_d(y)$ for distinct $y \in (\text{Sym}^d C)(k)$. $\exists f \in k(C)^{\times}$ with div(f) = x - y, and $f : C \to \mathbb{P}^1$ has degree d.
- Φ_d is injective on degree d points. By Faltings ('94), there must be an infinite family of degree d points parametrized by a positive rank abelian subvariety of Jac(C).

 Φ_d : Sym^d $C \rightarrow Jac(C)$

Definition

• A closed point $x \in C$ of degree d is \mathbb{P}^1 -parametrized if there exists distinct $x' \in (\text{Sym}^d C)(k)$ such that $\Phi_d(x) = \Phi_d(x')$.

 Φ_d : Sym^d $C \rightarrow Jac(C)$

Definition

- A closed point $x \in C$ of degree d is \mathbb{P}^1 -parametrized if there exists distinct $x' \in (\text{Sym}^d C)(k)$ such that $\Phi_d(x) = \Phi_d(x')$.
- A closed point x ∈ C of degree d is AV-parametrized if there exists a positive rank abelian subvariety A ⊂ Jac(C) such that Φ_d(x) + A ⊂ im(Φ_d).

 Φ_d : Sym^d $C \rightarrow Jac(C)$

Definition

- A closed point $x \in C$ of degree d is \mathbb{P}^1 -parametrized if there exists distinct $x' \in (\text{Sym}^d C)(k)$ such that $\Phi_d(x) = \Phi_d(x')$.
- A closed point x ∈ C of degree d is AV-parametrized if there exists a positive rank abelian subvariety A ⊂ Jac(C) such that Φ_d(x) + A ⊂ im(Φ_d).
- A closed point x ∈ C of degree d is isolated if it is neither ^{P1}-parametrized nor AV-parametrized.

A closed point $x \in C$ of degree d is **isolated** if it is neither \mathbb{P}^1 -parametrized nor AV-parametrized.

A closed point $x \in C$ of degree d is **isolated** if it is neither \mathbb{P}^1 -parametrized nor AV-parametrized.

Theorem (B., Ejder, Liu, Odumodu, Viray - BELOV, '19)

Let C be a curve over a number field.

- There are infinitely many degree d points on C if and only if there is a degree d point on C that is not isolated.
- **2** There are only finitely many isolated points on C.

Isolated Points on Modular Curves

 $X_1(N)/\mathbb{Q}$: Noncuspidal points parametrize pairs $(E,P)/\sim$

Isolated Points on Modular Curves

 $X_1(N)/\mathbb{Q}$: Noncuspidal points parametrize pairs $(E,P)/\sim$

$$j: X_1(N) \to X_1(1) \cong \mathbb{P}^1$$
 sends $x = [E, P]$ to $j(E)$

 $X_1(N)/\mathbb{Q}$: Noncuspidal points parametrize pairs $(E,P)/\sim$

$$j: X_1(N) \rightarrow X_1(1) \cong \mathbb{P}^1$$
 sends $x = [E, P]$ to $j(E)$

Theorem (BELOV, '19)

Let \mathcal{I} denote the set of all isolated points on all modular curves $X_1(N)$ for $N \in \mathbb{Z}^+$. Suppose there exists a constant $C = C(\mathbb{Q})$ such that for all non-CM elliptic curves E/\mathbb{Q} , the mod p Galois representation associated to E is surjective for primes p > C. Then $j(\mathcal{I}) \cap \mathbb{Q}$ is finite.

 $X_1(N)/\mathbb{Q}$: Noncuspidal points parametrize pairs $(E,P)/\sim$

$$j: X_1(N) \rightarrow X_1(1) \cong \mathbb{P}^1$$
 sends $x = [E, P]$ to $j(E)$

Theorem (BELOV, '19)

Let \mathcal{I} denote the set of all isolated points on all modular curves $X_1(N)$ for $N \in \mathbb{Z}^+$. Suppose there exists a constant $C = C(\mathbb{Q})$ such that for all non-CM elliptic curves E/\mathbb{Q} , the mod p Galois representation associated to E is surjective for primes p > C. Then $j(\mathcal{I}) \cap \mathbb{Q}$ is finite.

We call $j \in j(\mathcal{I})$ an **isolated** *j*-invariant.

• Can the (likely finite) set $j(\mathcal{I}) \cap \mathbb{Q}$ be made explicit?

- Can the (likely finite) set $j(\mathcal{I}) \cap \mathbb{Q}$ be made explicit?
- What can be said about the proportion of CM versus non-CM *j*-invariants in $j(\mathcal{I}) \cap \mathbb{Q}$?

- Can the (likely finite) set $j(\mathcal{I}) \cap \mathbb{Q}$ be made explicit?
- What can be said about the proportion of CM versus non-CM *j*-invariants in $j(\mathcal{I}) \cap \mathbb{Q}$?
- Can the condition on Serre's Uniformity Conjecture be removed?

Restriction to Odd Degree

Let \mathcal{I}_{odd} denote the set of all isolated points of odd degree on all modular curves $X_1(N)$ for $N \in \mathbb{Z}^+$. Then $j(\mathcal{I}_{odd}) \cap \mathbb{Q}$ contains at most the *j*-invariants in the following list:

non-CM j-invariants	CM j-invariants
$-3^2 \cdot 5^6/2^3$	$-2^{18} \cdot 3^3 \cdot 5^3$
$3^3 \cdot 13/2^2$	$-2^{15} \cdot 3^3 \cdot 5^3 \cdot 11^3$
	$-2^{18} \cdot 3^3 \cdot 5^3 \cdot 23^3 \cdot 29^3$

Conversely, $j(\mathcal{I}_{odd}) \cap \mathbb{Q}$ contains $-3^2 \cdot 5^6/2^3$ and $3^3 \cdot 13/2^2$.

Let \mathcal{I}_{odd} denote the set of all isolated points of odd degree on all modular curves $X_1(N)$ for $N \in \mathbb{Z}^+$. Then $j(\mathcal{I}_{odd}) \cap \mathbb{Q}$ contains at most the *j*-invariants in the following list:

non-CM j-invariants	CM j-invariants
$-3^2 \cdot 5^6/2^3$	$-2^{18} \cdot 3^3 \cdot 5^3$
$3^3 \cdot 13/2^2$	$-2^{15} \cdot 3^3 \cdot 5^3 \cdot 11^3$
	$-2^{18} \cdot 3^3 \cdot 5^3 \cdot 23^3 \cdot 29^3$

Conversely, $j(\mathcal{I}_{odd}) \cap \mathbb{Q}$ contains $-3^2 \cdot 5^6/2^3$ and $3^3 \cdot 13/2^2$.

• Najman, '16: $\exists x \in X_1(21)$ of degree 3 with $j(x) = -3^2 \cdot 5^6/2^3$

Let \mathcal{I}_{odd} denote the set of all isolated points of odd degree on all modular curves $X_1(N)$ for $N \in \mathbb{Z}^+$. Then $j(\mathcal{I}_{odd}) \cap \mathbb{Q}$ contains at most the *j*-invariants in the following list:

non-CM j-invariants	CM j-invariants
$-3^2 \cdot 5^6/2^3$	$-2^{18} \cdot 3^3 \cdot 5^3$
$3^3 \cdot 13/2^2$	$-2^{15}\cdot 3^3\cdot 5^3\cdot 11^3$
	$-2^{18}\cdot 3^3\cdot 5^3\cdot 23^3\cdot 29^3$

Conversely, $j(\mathcal{I}_{odd}) \cap \mathbb{Q}$ contains $-3^2 \cdot 5^6/2^3$ and $3^3 \cdot 13/2^2$.

• Najman, '16: $\exists x \in X_1(21)$ of degree 3 with $j(x) = -3^2 \cdot 5^6/2^3$

• $\exists x \in X_1(28)$ of degree 9 and $j(x) = 3^3 \cdot 13/2^2$

Let \mathcal{I}_{odd} denote the set of all isolated points of odd degree on all modular curves $X_1(N)$ for $N \in \mathbb{Z}^+$. Then $j(\mathcal{I}_{odd}) \cap \mathbb{Q}$ contains at most the *j*-invariants in the following list:

non-CM j-invariants	CM j-invariants
$-3^2 \cdot 5^6/2^3$	$-2^{18} \cdot 3^3 \cdot 5^3$
$3^3 \cdot 13/2^2$	$-2^{15} \cdot 3^3 \cdot 5^3 \cdot 11^3$
	$-2^{18} \cdot 3^3 \cdot 5^3 \cdot 23^3 \cdot 29^3$

Conversely, $j(\mathcal{I}_{odd}) \cap \mathbb{Q}$ contains $-3^2 \cdot 5^6/2^3$ and $3^3 \cdot 13/2^2$.

CM points - are they AV-parametrized?

Let \mathcal{I}_{odd} denote the set of all isolated points of odd degree on all modular curves $X_1(N)$ for $N \in \mathbb{Z}^+$. Then $j(\mathcal{I}_{odd}) \cap \mathbb{Q}$ contains at most the *j*-invariants in the following list:

non-CM j-invariants	CM j-invariants
$-3^2 \cdot 5^6/2^3$	$-2^{18} \cdot 3^3 \cdot 5^3$
$3^3 \cdot 13/2^2$	$-2^{15}\cdot 3^3\cdot 5^3\cdot 11^3$
	$-2^{18} \cdot 3^3 \cdot 5^3 \cdot 23^3 \cdot 29^3$

Conversely, $j(\mathcal{I}_{odd}) \cap \mathbb{Q}$ contains $-3^2 \cdot 5^6/2^3$ and $3^3 \cdot 13/2^2$.

CM points - are they AV-parametrized?

• degree 21 on $X_1(43)$, degree 33 on $X_1(67)$, and degree 81 on $X_1(163)$, respectively

Characterization of Odd Degree Points

Let $x \in X_1(n)$ be a point of odd degree with $j(x) \in \mathbb{Q}$.

Characterization of Odd Degree Points

Let $x \in X_1(n)$ be a point of odd degree with $j(x) \in \mathbb{Q}$.

• Suppose
$$j(x) \neq 3^3 \cdot 5 \cdot 7^5/2^7$$
.

• Suppose $j(x) \neq j(z)$ for all $z \in X_0(21)(\mathbb{Q})$.

• Suppose
$$j(x) \neq 3^3 \cdot 5 \cdot 7^5/2^7$$
.

• Suppose $j(x) \neq j(z)$ for all $z \in X_0(21)(\mathbb{Q})$.

Theorem (B., Gill, Rouse, Watson, '20)

If p is an odd prime dividing n, then there exists $y \in X_0(p)(\mathbb{Q})$ with j(x) = j(y). Moreover,

$$n=2^ap^b$$

for $p \in \{3, 5, 7, 11, 13, 19, 43, 67, 163\}$ and nonnegative integers a, b with $a \le 3$. If b > 0, then $a \le 2$.

E/\mathbb{Q} with isogenies

For a fixed prime p, let m be the maximum integer such that an elliptic curve E/\mathbb{Q} possesses a \mathbb{Q} -rational cyclic p^m -isogeny.

For a fixed prime p, let m be the maximum integer such that an elliptic curve E/\mathbb{Q} possesses a \mathbb{Q} -rational cyclic p^m -isogeny.

Theorem (Greenberg, '12 & Greenberg, Rubin, Silverberg, Stoll, '14)

If E/\mathbb{Q} is a non-CM elliptic curve with a rational p-isogeny for some prime $p \ge 5$, then im $\rho_{E,p^{\infty}}$ is the complete pre-image of im $\rho_{E,p^{m}}$ in $GL_{2}(\mathbb{Z}_{p})$. For a fixed prime p, let m be the maximum integer such that an elliptic curve E/\mathbb{Q} possesses a \mathbb{Q} -rational cyclic p^m -isogeny.

Theorem (Greenberg, '12 & Greenberg, Rubin, Silverberg, Stoll, '14)

If E/\mathbb{Q} is a non-CM elliptic curve with a rational p-isogeny for some prime $p \ge 5$, then im $\rho_{E,p^{\infty}}$ is the complete pre-image of im $\rho_{E,p^{m}}$ in $GL_{2}(\mathbb{Z}_{p})$.

Theorem (BELOV, '19)

Let $f: C \to D$ be a finite map of curves and let $x \in C$ be an isolated point. If $\deg(x) = \deg(f(x)) \cdot \deg(f)$, then f(x) is an isolated point of D.

Proof Outline: Nice Cases

No E/Q with rational 21-isogeny and j(E) = j(x)
 ⇒ N = 2^ap^b with a ≤ 2.

- No E/\mathbb{Q} with rational 21-isogeny and j(E) = j(x) $\implies N = 2^a p^b$ with $a \le 2$.
- If p > 5, then Greenberg, Rubin, Silverberg, Stoll + BELOV $\implies f(x) \in X_1(2^a p)$ is isolated, with finite exceptions.

- No E/\mathbb{Q} with rational 21-isogeny and j(E) = j(x) $\implies N = 2^a p^b$ with $a \le 2$.
- If p > 5, then Greenberg, Rubin, Silverberg, Stoll + BELOV $\implies f(x) \in X_1(2^a p)$ is isolated, with finite exceptions.
- Demonstrate f(x) is isolated, or argue no such isolated point can exist.

What about rational cyclic 21-isogenies?

• $N = 2^a 3^b 7^c$

- $N = 2^a 3^b 7^c$
- $\mathbb{Q}(\zeta_9)^+ \subseteq \mathbb{Q}(E[7]) \cap \mathbb{Q}(E[9])$ "entanglement" occurs

- $N = 2^a 3^b 7^c$
- $\mathbb{Q}(\zeta_9)^+ \subseteq \mathbb{Q}(E[7]) \cap \mathbb{Q}(E[9])$ "entanglement" occurs

For fixed m, BELOV ('19) gives explicit (uniform) bound on level of m-adic Galois representation.

- $N = 2^a 3^b 7^c$
- $\mathbb{Q}(\zeta_9)^+ \subseteq \mathbb{Q}(E[7]) \cap \mathbb{Q}(E[9])$ "entanglement" occurs

For fixed m, BELOV ('19) gives explicit (uniform) bound on level of m-adic Galois representation.

These bounds can be improved when entanglement occurs!

What about p = 3?

Proposition (B., Gill, Rouse, Watson, '20)

There are no odd degree isolated points on $X_1(54)$ or $X_1(162)$ associated to a non-CM elliptic curve E with $j(E) \in \mathbb{Q}$.

Proposition (B., Gill, Rouse, Watson, '20)

There are no odd degree isolated points on $X_1(54)$ or $X_1(162)$ associated to a non-CM elliptic curve E with $j(E) \in \mathbb{Q}$.

For example:

Any elliptic curve E/Q for which Q(E[2]) ∩ Q(E[27]) is an S₃-extension gives a rational point on an explicit curve C/Q.

Proposition (B., Gill, Rouse, Watson, '20)

There are no odd degree isolated points on $X_1(54)$ or $X_1(162)$ associated to a non-CM elliptic curve E with $j(E) \in \mathbb{Q}$.

For example:

- Any elliptic curve E/Q for which Q(E[2]) ∩ Q(E[27]) is an S₃-extension gives a rational point on an explicit curve C/Q.
- Can reduce to case of a single C/\mathbb{Q} of genus 4.

Proposition (B., Gill, Rouse, Watson, '20)

There are no odd degree isolated points on $X_1(54)$ or $X_1(162)$ associated to a non-CM elliptic curve E with $j(E) \in \mathbb{Q}$.

For example:

- Any elliptic curve E/Q for which Q(E[2]) ∩ Q(E[27]) is an S₃-extension gives a rational point on an explicit curve C/Q.
- Can reduce to case of a single C/\mathbb{Q} of genus 4.
- Since C maps to a genus 1 curve, can show has no non-cuspidal points.

Let \mathcal{I}_{odd} denote the set of all isolated points of odd degree on all modular curves $X_1(N)$ for $N \in \mathbb{Z}^+$. Then $j(\mathcal{I}_{odd}) \cap \mathbb{Q}$ contains at most the *j*-invariants in the following list:

non-CM j-invariants	CM j-invariants
$-3^2 \cdot 5^6/2^3$	$-2^{18} \cdot 3^3 \cdot 5^3$
$3^3 \cdot 13/2^2$	$-2^{15}\cdot 3^3\cdot 5^3\cdot 11^3$
	$-2^{18} \cdot 3^3 \cdot 5^3 \cdot 23^3 \cdot 29^3$

Conversely, $j(\mathcal{I}_{odd}) \cap \mathbb{Q}$ contains $-3^2 \cdot 5^6/2^3$ and $3^3 \cdot 13/2^2$.

Thank you!