On Isolated Points of Odd Degree

Abbey Bourdon, David R. Gill, Jeremy Rouse, Lori D. Watson Wake Forest University

August 31, 2020

Introduction

Question: If C is a curve defined over a number field k, is $C(k)$ finite or infinite?

Introduction

Question: If C is a curve defined over a number field k, is $C(k)$ finite or infinite?

- genus 0: If $C(k) \neq \emptyset$, then $C \cong \mathbb{P}^{1}$ and $C(k)$ is infinite.
- genus 1: If $C(k) \neq \emptyset$, then C is an elliptic curve and $C(k)$ is a finitely generated abelian group.
- genus \geq 2: $C(k)$ is finite by Faltings's theorem

Introduction

Let $d \in \mathbb{Z}^{+}$.

Question: If C is a curve defined over a number field k, is the collection of closed points of degree d finite or infinite?

Introduction

Let $d \in \mathbb{Z}^{+}$.
Question: If C is a curve defined over a number field k, is the collection of closed points of degree d finite or infinite?

- $f: C \rightarrow \mathbb{P}^{1}$, degree $d \Longrightarrow$ infinitely many points of degree d

Introduction

Let $d \in \mathbb{Z}^{+}$.

Question: If C is a curve defined over a number field k, is the collection of closed points of degree d finite or infinite?

- $f: C \rightarrow \mathbb{P}^{1}$, degree $d \Longrightarrow$ infinitely many points of degree d

Debarre and Fahlaoui ('93): Can have infinitely many degree d points even without a map of degree $\leq d$ onto \mathbb{P}^{1} or an elliptic curve.

Introduction

Suppose $P_{0} \in C(k)$ and $x \in C$ is a closed point of degree d.

Introduction

Suppose $P_{0} \in C(k)$ and $x \in C$ is a closed point of degree d.

$$
\begin{gathered}
\Phi_{d}: \operatorname{Sym}^{d} C \rightarrow \operatorname{Jac}(C) \\
x=P_{1}+P_{2}+\cdots+P_{d} \mapsto\left[P_{1}+\cdots+P_{d}-d P_{0}\right]
\end{gathered}
$$

Introduction

Suppose $P_{0} \in C(k)$ and $x \in C$ is a closed point of degree d.

$$
\begin{gathered}
\Phi_{d}: \operatorname{Sym}^{d} C \rightarrow \operatorname{Jac}(C) \\
x=P_{1}+P_{2}+\cdots+P_{d} \mapsto\left[P_{1}+\cdots+P_{d}-d P_{0}\right]
\end{gathered}
$$

If C has infinitely many closed points of degree d, then one of following is true:

Introduction

Suppose $P_{0} \in C(k)$ and $x \in C$ is a closed point of degree d.

$$
\begin{gathered}
\Phi_{d}: \operatorname{Sym}^{d} C \rightarrow \operatorname{Jac}(C) \\
x=P_{1}+P_{2}+\cdots+P_{d} \mapsto\left[P_{1}+\cdots+P_{d}-d P_{0}\right]
\end{gathered}
$$

If C has infinitely many closed points of degree d, then one of following is true:

- $\Phi_{d}(x)=\Phi_{d}(y)$ for distinct $y \in\left(\operatorname{Sym}^{d} C\right)(k) . \exists f \in k(C)^{x}$ with $\operatorname{div}(f)=x-y$, and $f: C \rightarrow \mathbb{P}^{1}$ has degree d.

Introduction

Suppose $P_{0} \in C(k)$ and $x \in C$ is a closed point of degree d.

$$
\begin{gathered}
\Phi_{d}: \operatorname{Sym}^{d} C \rightarrow \operatorname{Jac}(C) \\
x=P_{1}+P_{2}+\cdots+P_{d} \mapsto\left[P_{1}+\cdots+P_{d}-d P_{0}\right]
\end{gathered}
$$

If C has infinitely many closed points of degree d, then one of following is true:

- $\Phi_{d}(x)=\Phi_{d}(y)$ for distinct $y \in\left(\operatorname{Sym}^{d} C\right)(k) . \exists f \in k(C)^{x}$ with $\operatorname{div}(f)=x-y$, and $f: C \rightarrow \mathbb{P}^{1}$ has degree d.
- Φ_{d} is injective on degree d points. By Faltings ('94), there must be an infinite family of degree d points parametrized by a positive rank abelian subvariety of $\operatorname{Jac}(C)$.

Isolated Points

$$
\Phi_{d}: \operatorname{Sym}^{d} C \rightarrow \operatorname{Jac}(C)
$$

Definition

(1) A closed point $x \in C$ of degree d is \mathbb{P}^{1}-parametrized if there exists distinct $x^{\prime} \in\left(\operatorname{Sym}^{d} C\right)(k)$ such that $\Phi_{d}(x)=\Phi_{d}\left(x^{\prime}\right)$.

Isolated Points

$$
\Phi_{d}: \operatorname{Sym}^{d} C \rightarrow \operatorname{Jac}(C)
$$

Definition

(1) A closed point $x \in C$ of degree d is \mathbb{P}^{1}-parametrized if there exists distinct $x^{\prime} \in\left(\operatorname{Sym}^{d} C\right)(k)$ such that $\Phi_{d}(x)=\Phi_{d}\left(x^{\prime}\right)$.
(2) A closed point $x \in C$ of degree d is $\mathbf{A V}$-parametrized if there exists a positive rank abelian subvariety $A \subset \operatorname{Jac}(C)$ such that $\Phi_{d}(x)+A \subset \operatorname{im}\left(\Phi_{d}\right)$.

Isolated Points

$$
\Phi_{d}: \operatorname{Sym}^{d} C \rightarrow \operatorname{Jac}(C)
$$

Definition

(1) A closed point $x \in C$ of degree d is \mathbb{P}^{1}-parametrized if there exists distinct $x^{\prime} \in\left(\operatorname{Sym}^{d} C\right)(k)$ such that $\Phi_{d}(x)=\Phi_{d}\left(x^{\prime}\right)$.
(2) A closed point $x \in C$ of degree d is $\mathbf{A V}$-parametrized if there exists a positive rank abelian subvariety $A \subset \operatorname{Jac}(C)$ such that $\Phi_{d}(x)+A \subset \operatorname{im}\left(\Phi_{d}\right)$.
(3) A closed point $x \in C$ of degree d is isolated if it is neither \mathbb{P}^{1}-parametrized nor AV-parametrized.

Isolated Points

A closed point $x \in C$ of degree d is isolated if it is neither \mathbb{P}^{1}-parametrized nor AV -parametrized.

Isolated Points

A closed point $x \in C$ of degree d is isolated if it is neither \mathbb{P}^{1}-parametrized nor AV-parametrized.

Theorem (B., Ejder, Liu, Odumodu, Viray - BELOV, '19)
Let C be a curve over a number field.
(1) There are infinitely many degree d points on C if and only if there is a degree d point on C that is not isolated.
(2) There are only finitely many isolated points on C.

Isolated Points on Modular Curves

$X_{1}(N) / \mathbb{Q}$: Noncuspidal points parametrize pairs $(E, P) / \sim$

Isolated Points on Modular Curves

$X_{1}(N) / \mathbb{Q}$: Noncuspidal points parametrize pairs $(E, P) / \sim$

$$
j: X_{1}(N) \rightarrow X_{1}(1) \cong \mathbb{P}^{1} \text { sends } x=[E, P] \text { to } j(E)
$$

Isolated Points on Modular Curves

$X_{1}(N) / \mathbb{Q}$: Noncuspidal points parametrize pairs $(E, P) / \sim$
$j: X_{1}(N) \rightarrow X_{1}(1) \cong \mathbb{P}^{1}$ sends $x=[E, P]$ to $j(E)$

Theorem (BELOV, '19)

Let \mathcal{I} denote the set of all isolated points on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$. Suppose there exists a constant $C=C(\mathbb{Q})$ such that for all non-CM elliptic curves E / \mathbb{Q}, the $\bmod p$ Galois representation associated to E is surjective for primes $p>C$. Then $j(\mathcal{I}) \cap \mathbb{Q}$ is finite.

Isolated Points on Modular Curves

$X_{1}(N) / \mathbb{Q}$: Noncuspidal points parametrize pairs $(E, P) / \sim$
$j: X_{1}(N) \rightarrow X_{1}(1) \cong \mathbb{P}^{1}$ sends $x=[E, P]$ to $j(E)$

Theorem (BELOV, '19)

Let \mathcal{I} denote the set of all isolated points on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$. Suppose there exists a constant $C=C(\mathbb{Q})$ such that for all non-CM elliptic curves E / \mathbb{Q}, the $\bmod p$ Galois representation associated to E is surjective for primes $p>C$. Then $j(\mathcal{I}) \cap \mathbb{Q}$ is finite.

We call $j \in j(\mathcal{I})$ an isolated j-invariant.

Isolated Points on Modular Curves

Let \mathcal{I} denote the set of all isolated points on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$.

Isolated Points on Modular Curves

Let \mathcal{I} denote the set of all isolated points on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$.

- Can the (likely finite) set $j(\mathcal{I}) \cap \mathbb{Q}$ be made explicit?

Isolated Points on Modular Curves

Let \mathcal{I} denote the set of all isolated points on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$.

- Can the (likely finite) set $j(\mathcal{I}) \cap \mathbb{Q}$ be made explicit?
- What can be said about the proportion of CM versus non-CM j-invariants in $j(\mathcal{I}) \cap \mathbb{Q}$?

Isolated Points on Modular Curves

Let \mathcal{I} denote the set of all isolated points on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$.

- Can the (likely finite) set $j(\mathcal{I}) \cap \mathbb{Q}$ be made explicit?
- What can be said about the proportion of CM versus non-CM j-invariants in $j(\mathcal{I}) \cap \mathbb{Q}$?
- Can the condition on Serre's Uniformity Conjecture be removed?

Restriction to Odd Degree

Restriction to Odd Degree

Theorem (B., Gill, Rouse, Watson, '20)

Let $\mathcal{I}_{\text {odd }}$ denote the set of all isolated points of odd degree on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$. Then $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains at most the j-invariants in the following list:

non- $C M$ j-invariants	$C M$ j-invariants
$-3^{2} \cdot 5^{6} / 2^{3}$	$-2^{18} \cdot 3^{3} \cdot 5^{3}$
$3^{3} \cdot 13 / 2^{2}$	$-2^{15} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3}$
	$-2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} \cdot 29^{3}$

Conversely, $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains $-3^{2} \cdot 5^{6} / 2^{3}$ and $3^{3} \cdot 13 / 2^{2}$.

Restriction to Odd Degree

Theorem (B., Gill, Rouse, Watson, '20)

Let $\mathcal{I}_{\text {odd }}$ denote the set of all isolated points of odd degree on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$. Then $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains at most the j-invariants in the following list:

non-CM j-invariants	$C M$ j-invariants
$-3^{2} \cdot 5^{6} / 2^{3}$	$-2^{18} \cdot 3^{3} \cdot 5^{3}$
$3^{3} \cdot 13 / 2^{2}$	$-2^{15} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3}$
	$-2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} \cdot 29^{3}$

Conversely, $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains $-3^{2} \cdot 5^{6} / 2^{3}$ and $3^{3} \cdot 13 / 2^{2}$.

- Najman, '16: $\exists x \in X_{1}(21)$ of degree 3 with $j(x)=-3^{2} \cdot 5^{6} / 2^{3}$

Restriction to Odd Degree

Theorem (B., Gill, Rouse, Watson, '20)

Let $\mathcal{I}_{\text {odd }}$ denote the set of all isolated points of odd degree on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$. Then $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains at most the j-invariants in the following list:

non-CM j-invariants	$C M$ j-invariants
$-3^{2} \cdot 5^{6} / 2^{3}$	$-2^{18} \cdot 3^{3} \cdot 5^{3}$
$3^{3} \cdot 13 / 2^{2}$	$-2^{15} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3}$
	$-2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} \cdot 29^{3}$

Conversely, $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains $-3^{2} \cdot 5^{6} / 2^{3}$ and $3^{3} \cdot 13 / 2^{2}$.

- Najman, '16: $\exists x \in X_{1}(21)$ of degree 3 with $j(x)=-3^{2} \cdot 5^{6} / 2^{3}$
- $\exists x \in X_{1}(28)$ of degree 9 and $j(x)=3^{3} \cdot 13 / 2^{2}$

Restriction to Odd Degree

Theorem (B., Gill, Rouse, Watson, '20)

Let $\mathcal{I}_{\text {odd }}$ denote the set of all isolated points of odd degree on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$. Then $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains at most the j-invariants in the following list:

non- $C M$ j-invariants	$C M j$-invariants
$-3^{2} \cdot 5^{6} / 2^{3}$	$-2^{18} \cdot 3^{3} \cdot 5^{3}$
$3^{3} \cdot 13 / 2^{2}$	$-2^{15} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3}$
	$-2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} \cdot 29^{3}$

Conversely, $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains $-3^{2} \cdot 5^{6} / 2^{3}$ and $3^{3} \cdot 13 / 2^{2}$.
CM points - are they AV -parametrized?

Restriction to Odd Degree

Theorem (B., Gill, Rouse, Watson, '20)

Let $\mathcal{I}_{\text {odd }}$ denote the set of all isolated points of odd degree on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$. Then $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains at most the j-invariants in the following list:

non- $C M$ j-invariants	$C M j$-invariants
$-3^{2} \cdot 5^{6} / 2^{3}$	$-2^{18} \cdot 3^{3} \cdot 5^{3}$
$3^{3} \cdot 13 / 2^{2}$	$-2^{15} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3}$
	$-2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} \cdot 29^{3}$

Conversely, $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains $-3^{2} \cdot 5^{6} / 2^{3}$ and $3^{3} \cdot 13 / 2^{2}$.
CM points - are they AV -parametrized?

- degree 21 on $X_{1}(43)$, degree 33 on $X_{1}(67)$, and degree 81 on $X_{1}(163)$, respectively

Characterization of Odd Degree Points

Let $x \in X_{1}(n)$ be a point of odd degree with $j(x) \in \mathbb{Q}$.

Characterization of Odd Degree Points

Let $x \in X_{1}(n)$ be a point of odd degree with $j(x) \in \mathbb{Q}$.

- Suppose $j(x) \neq 3^{3} \cdot 5 \cdot 7^{5} / 2^{7}$.
- Suppose $j(x) \neq j(z)$ for all $z \in X_{0}(21)(\mathbb{Q})$.

Characterization of Odd Degree Points

Let $x \in X_{1}(n)$ be a point of odd degree with $j(x) \in \mathbb{Q}$.

- Suppose $j(x) \neq 3^{3} \cdot 5 \cdot 7^{5} / 2^{7}$.
- Suppose $j(x) \neq j(z)$ for all $z \in X_{0}(21)(\mathbb{Q})$.

Theorem (B., Gill, Rouse, Watson, '20)

If p is an odd prime dividing n, then there exists $y \in X_{0}(p)(\mathbb{Q})$ with $j(x)=j(y)$. Moreover,

$$
n=2^{a} p^{b}
$$

for $p \in\{3,5,7,11,13,19,43,67,163\}$ and nonnegative integers a, b with $a \leq 3$. If $b>0$, then $a \leq 2$.

E / \mathbb{Q} with isogenies

For a fixed prime p, let m be the maximum integer such that an elliptic curve E / \mathbb{Q} possesses a \mathbb{Q}-rational cyclic p^{m}-isogeny.

E / \mathbb{Q} with isogenies

For a fixed prime p, let m be the maximum integer such that an elliptic curve E / \mathbb{Q} possesses a \mathbb{Q}-rational cyclic p^{m}-isogeny.

Theorem (Greenberg, '12 \& Greenberg, Rubin, Silverberg, Stoll, '14)

If E / \mathbb{Q} is a non-CM elliptic curve with a rational p-isogeny for some prime $p \geq 5$, then $\operatorname{im} \rho_{E, p^{\infty}}$ is the complete pre-image of im $\rho_{E, p^{m}}$ in $\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$.

E / \mathbb{Q} with isogenies

For a fixed prime p, let m be the maximum integer such that an elliptic curve E / \mathbb{Q} possesses a \mathbb{Q}-rational cyclic p^{m}-isogeny.

Theorem (Greenberg, '12 \& Greenberg, Rubin, Silverberg, Stoll, '14)

If E / \mathbb{Q} is a non-CM elliptic curve with a rational p-isogeny for some prime $p \geq 5$, then $\operatorname{im} \rho_{E, p^{\infty}}$ is the complete pre-image of im $\rho_{E, p^{m}}$ in $\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$.

Theorem (BELOV, '19)

Let $f: C \rightarrow D$ be a finite map of curves and let $x \in C$ be an isolated point. If $\operatorname{deg}(x)=\operatorname{deg}(f(x)) \cdot \operatorname{deg}(f)$, then $f(x)$ is an isolated point of D.

Proof Outline: Nice Cases

Proof Outline: Nice Cases

Let $x \in X_{1}(N)$ be an isolated point of odd degree with $j(x) \in \mathbb{Q}$.

Proof Outline: Nice Cases

Let $x \in X_{1}(N)$ be an isolated point of odd degree with $j(x) \in \mathbb{Q}$.

- No E / \mathbb{Q} with rational 21-isogeny and $j(E)=j(x)$
$\Longrightarrow N=2^{a} p^{b}$ with $a \leq 2$.

Proof Outline: Nice Cases

Let $x \in X_{1}(N)$ be an isolated point of odd degree with $j(x) \in \mathbb{Q}$.

- No E / \mathbb{Q} with rational 21-isogeny and $j(E)=j(x)$
$\Longrightarrow N=2^{a} p^{b}$ with $a \leq 2$.
- If $p>5$, then Greenberg, Rubin, Silverberg, Stoll + BELOV $\Longrightarrow f(x) \in X_{1}\left(2^{a} p\right)$ is isolated, with finite exceptions.

Proof Outline: Nice Cases

Let $x \in X_{1}(N)$ be an isolated point of odd degree with $j(x) \in \mathbb{Q}$.

- No E / \mathbb{Q} with rational 21-isogeny and $j(E)=j(x)$
$\Longrightarrow N=2^{a} p^{b}$ with $a \leq 2$.
- If $p>5$, then Greenberg, Rubin, Silverberg, Stoll + BELOV $\Longrightarrow f(x) \in X_{1}\left(2^{a} p\right)$ is isolated, with finite exceptions.
- Demonstrate $f(x)$ is isolated, or argue no such isolated point can exist.

What about rational cyclic 21-isogenies?

What about rational cyclic 21-isogenies?

Let $x \in X_{1}(N)$ be an isolated point of odd degree with $j(x) \in \mathbb{Q}$.
Suppose $j(x)=j(E)$ for some E / \mathbb{Q} with rational cyclic 21-isogeny.

- $N=2^{a} 3^{b} 7^{c}$

What about rational cyclic 21-isogenies?

Let $x \in X_{1}(N)$ be an isolated point of odd degree with $j(x) \in \mathbb{Q}$. Suppose $j(x)=j(E)$ for some E / \mathbb{Q} with rational cyclic 21-isogeny.

- $N=2^{a} 3^{b} 7^{c}$
- $\mathbb{Q}\left(\zeta_{9}\right)^{+} \subseteq \mathbb{Q}(E[7]) \cap \mathbb{Q}(E[9])$ - "entanglement" occurs

What about rational cyclic 21-isogenies?

Let $x \in X_{1}(N)$ be an isolated point of odd degree with $j(x) \in \mathbb{Q}$.
Suppose $j(x)=j(E)$ for some E / \mathbb{Q} with rational cyclic 21-isogeny.

- $N=2^{a} 3^{b} 7^{c}$
- $\mathbb{Q}\left(\zeta_{9}\right)^{+} \subseteq \mathbb{Q}(E[7]) \cap \mathbb{Q}(E[9])$ - "entanglement" occurs

For fixed m, BELOV ('19) gives explicit (uniform) bound on level of m-adic Galois representation.

What about rational cyclic 21-isogenies?

Let $x \in X_{1}(N)$ be an isolated point of odd degree with $j(x) \in \mathbb{Q}$. Suppose $j(x)=j(E)$ for some E / \mathbb{Q} with rational cyclic 21-isogeny.

- $N=2^{a} 3^{b} 7^{c}$
- $\mathbb{Q}\left(\zeta_{9}\right)^{+} \subseteq \mathbb{Q}(E[7]) \cap \mathbb{Q}(E[9])$ - "entanglement" occurs

For fixed m, BELOV ('19) gives explicit (uniform) bound on level of m-adic Galois representation.

These bounds can be improved when entanglement occurs!

What about $p=3$?

What about $p=3 ?$

The case of possible isolated points $x \in X_{1}\left(2^{a} 3^{b}\right)$ is difficult to analyze because possible entanglement is much harder to control.

What about $p=3 ?$

The case of possible isolated points $x \in X_{1}\left(2^{a} 3^{b}\right)$ is difficult to analyze because possible entanglement is much harder to control.

Proposition (B., Gill, Rouse, Watson, '20)

There are no odd degree isolated points on $X_{1}(54)$ or $X_{1}(162)$ associated to a non-CM elliptic curve E with $j(E) \in \mathbb{Q}$.

What about $p=3 ?$

The case of possible isolated points $x \in X_{1}\left(2^{a} 3^{b}\right)$ is difficult to analyze because possible entanglement is much harder to control.

Proposition (B., Gill, Rouse, Watson, '20)

There are no odd degree isolated points on $X_{1}(54)$ or $X_{1}(162)$ associated to a non-CM elliptic curve E with $j(E) \in \mathbb{Q}$.

For example:

- Any elliptic curve E / \mathbb{Q} for which $\mathbb{Q}(E[2]) \cap \mathbb{Q}(E[27])$ is an S_{3}-extension gives a rational point on an explicit curve C / \mathbb{Q}.

What about $p=3 ?$

The case of possible isolated points $x \in X_{1}\left(2^{a} 3^{b}\right)$ is difficult to analyze because possible entanglement is much harder to control.

Proposition (B., Gill, Rouse, Watson, '20)

There are no odd degree isolated points on $X_{1}(54)$ or $X_{1}(162)$ associated to a non-CM elliptic curve E with $j(E) \in \mathbb{Q}$.

For example:

- Any elliptic curve E / \mathbb{Q} for which $\mathbb{Q}(E[2]) \cap \mathbb{Q}(E[27])$ is an S_{3}-extension gives a rational point on an explicit curve C / \mathbb{Q}.
- Can reduce to case of a single C / \mathbb{Q} of genus 4 .

What about $p=3 ?$

The case of possible isolated points $x \in X_{1}\left(2^{a} 3^{b}\right)$ is difficult to analyze because possible entanglement is much harder to control.

Proposition (B., Gill, Rouse, Watson, '20)

There are no odd degree isolated points on $X_{1}(54)$ or $X_{1}(162)$ associated to a non-CM elliptic curve E with $j(E) \in \mathbb{Q}$.

For example:

- Any elliptic curve E / \mathbb{Q} for which $\mathbb{Q}(E[2]) \cap \mathbb{Q}(E[27])$ is an S_{3}-extension gives a rational point on an explicit curve C / \mathbb{Q}.
- Can reduce to case of a single C / \mathbb{Q} of genus 4 .
- Since C maps to a genus 1 curve, can show has no non-cuspidal points.

Main Theorem

Theorem (B., Gill, Rouse, Watson, '20)

Let $\mathcal{I}_{\text {odd }}$ denote the set of all isolated points of odd degree on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$. Then $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains at most the j-invariants in the following list:

non-CM j-invariants	$C M$ j-invariants
$-3^{2} \cdot 5^{6} / 2^{3}$	$-2^{18} \cdot 3^{3} \cdot 5^{3}$
$3^{3} \cdot 13 / 2^{2}$	$-2^{15} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3}$
	$-2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} \cdot 29^{3}$

Conversely, $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains $-3^{2} \cdot 5^{6} / 2^{3}$ and $3^{3} \cdot 13 / 2^{2}$.

Thank you!

