A general S-unit equation solver and tables of elliptic curves over number fields

Benjamin Matschke

Boston University

Modern Breakthroughs in Diophantine Problems

BIRS, 2020

Carl Ludwig Siegel

Kurt Mahler

S-UNIT EQUATIONS

S-unit equations

S-UNIT EQUATIONS

Let

- K be a number field,
- S a finite set of primes of K,
- \mathcal{O}_{K} the ring of integers of K,
- $\mathcal{O}_{K, S}=\mathcal{O}_{K}[1 / S]$ the ring of S-integers of K,
- $\mathcal{O}_{K, S}^{\times}$the group of S-units of K.

Let $a, b \in K^{\times}$. S-unit equation:

$$
a x+b y=1, \quad x, y \in \mathcal{O}_{K, S}^{\times}
$$

[Siegel], [Mahler]: Finiteness of solution set.

S-UNIT EQUATIONS

Relevance:

- abc-conjecture [Masser, Oesterlé]
- many diophantine equations reduce to S-unit equations: Thue-, Thue-Mahler-, Mordell-, generalized Ramanujan-Nagell- equations, index form equations; Siegel method for superelliptic equations
- asymptotic Fermat over number fields [Freitas, Kraus, Özman, Şengün, Siksek]
- tables of (hyper-)elliptic curves over number fields [Parshin, Shafarevich, Smart, Koutsianas]

Classical Approaches

Classical algorithms:
$-/ \mathcal{O}_{\mathbb{Q}, S}^{\times}$[de Weger]

- $/ \mathcal{O}_{K}^{\times} \quad$ [Wildanger]
- $/ \mathcal{O}_{K, S}^{\times}$[Smart]

1. Initial height bound: $h(x), h(y) \leq H_{0}$ (via bounds in linear forms in logarithms [Baker], [Yu])
2. Reduction of local height bounds "via LLL".
3. Sieving.
4. Enumeration of tiny solutions.

New ideas

1. Efficient estimates (e.g. no unnecessary norm conversions).
2. Refined sieve [von Känel-M.]/ \mathbb{Q} : Sieve with respect to several places. \rightsquigarrow Can be extended/K.
3. Fast enumeration [von Känel-M.]/ \mathbb{Q}. \rightsquigarrow Can be extended/K!
4. Separate search spaces for $a x, 1-a x, 1 /(1-a x)$, $1-1 /(1-a x), 1-1 / a x, 1 / a x$.
5. Optimize ellipsoids (extending on Khachiyan's ellipsoid method).
6. Constraints (e.g. Galois symmetries, if possible).
7. More efficient handling of torsion.
8. Timeouts.
9. Generic code, suitable for extensions.

Difficulty: Balancing.

COMPARISON OF S-UNIT EQUATION SOLVERS

Comparison with

- [von Känel-M.]: $x+y=1$ over \mathbb{Q}.
- [Alvarado-Koutsianas-Malmskog-Rasmussen-Vincent-West]: $x+y=1$ over K.

Comparison for $x+y=1$ over \mathbb{Q} :

Solver	$\{2\}$	$\{2,3\}$	$\{2,3,5\}$	$\{2,3,5,7\}$	$\{2,3,5,7,11\}$
[vKM]	0.01 s	0.03 s	0.12 s	0.3 s	1.0 s
[AKMRVW]	0.1 s	23 min	>30 days (7.2 GB)		
[M.]	1.8 s	3.0 s	6.2 s	15.4 s	47 s

Comparison for $x+y=1$ over $S=\{$ primes above 2,3$\}$:

Solver	$K=\mathbb{Q}[x] /\left(x^{6}-3 x^{3}+3\right)$
[AKMRVW]	$3.6 \cdot 10^{17}$ candidates left
[M.]	29 s

ELLIPTIC CURVES OVER NUMBER FIELDS

Elliptic curves over number fields

ELLIPTIC CURVES OVER NUMBER FIELDS

Goal: Compute all elliptic curves/ K with good reduction outside of S.

Approach: [Parshin, Shafarevich, Elkies, Koutsianas]

- Write $E: y^{2}=x(x-1)(x-\lambda) \quad$ (Legendre form).
- $\lambda+(1-\lambda)=1 \quad(\widetilde{S}$-unit equation over $L=K(E[2]))$
- Set of possible $K(E[2])$ is finite, computable via Kummer theory.
[Koutsianas]:
- $K=\mathbb{Q}$ and $S=\{2,3,23\}$
- $K=\mathbb{Q}(i)$ and $S=\{$ prime above 2$\}$

ELLIPTIC CURVES OVER NUMBER FIELDS

Disclaimer: $*$ will refer to:

- assuming GRH
- modulo a bug in UnitGroup (Sage 9.0/9.1, using Pari 2.11.2), which I detected only through heuristics. Fixed in Pari 2.11.4, soon in Sage 9.2.
- modulo computations in Magma (proprietary, closed-source).

Elliptic curves/ \mathbb{Q}

All elliptic curves $/ \mathbb{Q}$ with good reduction outside the first n primes:

- $n=0$: attributed to Tate by [Ogg]
- $n=1:[\mathrm{Ogg}]$
- $n=2$: [Coghlan], [Stephens]
- $n=3,4,5$: [von Känel-M.], recomputed by [Bennett-Gherga-Rechnitzer]
- $n=6$: [Best-M.] (heuristically)
- $n=7,8:[\mathrm{M} .]^{*}$

Number of curves: 217, 923, 072.
Maximal conductor: $N=162,577,127,974,060,800$.

ELLIPTIC CURVES OVER NUMBER FIELDS

Same over number fields:
All* elliptic curves/K with good reduction outside S [M.]:

- $K=\mathbb{Q}(i), S=\{$ primes above $2,3,5,7,11\}$.
- $K=\mathbb{Q}(\sqrt{3}), S=\{$ primes above $2,3,5,7,11\}$.
- Many fields $K, S=\{$ primes above 2$\}$, including one of $\operatorname{deg} K=12$.

Corollary ([M.])
All* elliptic curves/K with everywhere good reduction for all K with

$$
|\operatorname{disc}(K)| \leq 20000
$$

ELLIPTIC CURVES / Q

$$
N \leq 500,000
$$

[von Känel-M.]: $\quad \operatorname{radical}(N) \leq 1,000$.
[M.]:*

$$
\operatorname{radical}(2 N) \leq 1,000,000
$$

Comparison:

- Cremona's table \subset [M.].
- $\operatorname{radical}(2 N) \leq 30$ requires curves with $N=1,555,200$.
- Maximal conductor: $N=1,727,923,968,836,352$.

Alternative approach to compute elliptic curves via Thue-Mahler equations [Bennett-Gherga-Rechnitzer].
Together with Gherga, von Känel, Siksek, we are working on a new Thue-Mahler solver; one goal is to extend Cremona's DB.

CONJECTURES

$a b c-c o n j e c t u r e:$

$$
\limsup _{g c d(a, b)=1} \frac{\log \max (a, b, a+b)}{\log \operatorname{radical}(a b(a+b))} \leq 1 .
$$

Szpiro's conjecture:

$$
\limsup _{E / \mathbb{Q}} \frac{\log \left|\Delta_{E}\right|}{\log N} \leq 6
$$

Conjecture 1: (updated)

$$
\limsup _{\substack{j \in \mathbb{Q}}} \inf _{\substack{E / \mathbb{Q}: \\ j(E)=j}} \frac{\log \left|\Delta_{E}\right|}{\log \text { radical }(N)} \leq 6
$$

Thank you

OMISSIONS

S-unit equations:

- Height bounds via linear forms in logarithms: [Baker], [Yu], [Győry-Yu]
- Height bounds via modularity: [von Känel], [Murty-Pasten], [von Känel-M.], [Pasten]
- Number of solutions: [Győry], [Evertse],
- Algorithms: [Tzanakis-de Weger],
- Finiteness (+ algorithms?): [Faltings], [Kim], [Corwin-Dan-Cohen], [Lawrence-Venkatesh]

Elliptic curve tables:

- [Setzer], [Stroeker], [Agrawal-Coates-Hunt-van der Poorten], [Takeshi], [Kida], [Stein-Watkins], [Cremona-Lingham], [Cremona], [Bennett-Gherga-Rechnitzer], [LMFDB], ...
- Frey-Hellegouarch curves: Reduce S-unit equations to elliptic curve tables.

