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1 Exercise 1: Capacity for the Curie-Weiss model

In this exercise you will use potential theory to compute the relevant capacity for metastability in the
Curie-Weiss model.

1.1 Notation and setting

We recall the mean-field Curie-Weiss (CW) model and the notation you saw in Lecture 2 (we refer
to Bovier and den Hollander [1, Section 13] for more details). Let [N ] = {1, ..., N}, N ∈ N, be the
set of vertices and σ = {σi : i ∈ [N ]} ∈ SN the spin configuration, with SN = {−1,+1}N the state
space. The Hamiltonian of the CW model depends on σ only through the empirical magnetisation
m : SN → ΓN , defined as

m(σ) =
1

N

N∑
i=1

σi ∈ ΓN =
{
−1,−1 + 2

N , ..., 1−
2
N , 1

}
, (1.1)

namely,
HN (σ) = −N

[
1
2m(σ)2 + hm(σ)

]
≡ NE(m(σ)), (1.2)

where h > 0 is the magnetic field. The associated Gibbs measure is

µβ,N (σ) =
e−βNE(m(σ))

Zβ,N
, σ ∈ SN , (1.3)

where β ∈ (0,∞) is the inverse temperature and Zβ,N is the normalising partition function. The law
of m(σ) is the image Gibbs measure

Qβ,N = µβ,N ◦m−1, (1.4)

which is given by

Qβ,N (m) =
e−βNE(m)

Zβ,N

∑
σ∈SN

1{m(σ)=m} =
e−βNE(m)

Zβ,N

(
N

1+m
2 N

)
=

e−βNfβ,N (m)

Zβ,N
, (1.5)

where
fβ,N (m) = − 1

2m
2 − hm+ β−1IN (m) (1.6)

is the finite-volume free energy, and the entropy is given by the combinatorial coefficient

IN (m) = − 1

N
log

(
N

1+m
2 N

)
. (1.7)

As N →∞,

IN (m)→ I(m) ≡ 1−m
2

log

(
1−m

2

)
+

1 +m

2
log

(
1 +m

2

)
(1.8)
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(which differs by a constant − log 2 from the formula in the slides) and

fβ,N (m)→ fβ(m) ≡ − 1
2m

2 − hm+ β−1I(m). (1.9)

In fact,

IN (m)− I(m) =
1

2N
log

(
1−m2

4

)
+

logN + log(2π)

2N
+O

(
1

N2

)
. (1.10)

We consider the discrete-time Markov chain {σ(t)}t≥0 given by the Glauber dynamics on SN with
Metropolis transition probabilities:

pN (σ, σ′) =


1
N exp(−β[HN (σ′)−HN (σ)]+), if σ ∼ σ′,
1−

∑
η 6=σ p(σ, η), if σ = σ′,

0, else,

(1.11)

where σ ∼ σ′ means that ‖σ − σ′‖ = 2 with ‖ · ‖ the `1-norm on SN . A particular feature of this
dynamics is that the image m(t) ≡ m(σ(t)) of σ(t) under the map m again is a Markov process on ΓN ,
with transition probabilities

rN (m,m′) =

{
exp(−βN [E(m′)− E(m)]+) (1−m)

2 , if m′ = m+ 2
N ,

exp(−βN [E(m′)− E(m)]+) (1+m)
2 , if m′ = m− 2

N .
(1.12)

This mapping is called lumping in the theory of Markov chains, see e.g. Bovier and den Hollander [1,
Section 9.3].

The equilibrium CW model displays a phase transition. Namely, there is a critical value of the
inverse temperature βc = 1 such that, in the regime where β > βc and h > 0 is small, the free energy
fβ(m) is a double-well function with local minimisers m−,m+ and saddle point m∗. These are the
solutions of the equation

m = tanh[β(m+ h)]. (1.13)

Let m−(N),m∗(N),m+(N) be the points in ΓN closest to m−,m
∗,m+ respectively. Then the pair

(m−(N),m+(N)) forms a metastable set (see the slides of Lecture 2).

1.2 One-dimensional nearest-neighbour random walks

Consider a Markov process with state space S ⊆ Z for which transitions are allowed between nearest-
neighbour sites only. We denote the transition rates by p(x, y), y = x± 1, and denote by µ the strictly
positive reversible invariant measure: µ(x)p(x, y) = µ(y)p(y, x). We state the following well-known
result in the form of a lemma (see e.g. Bovier and den Hollander [1, Section 7.1.4] for more details).

Lemma 1.1. For every a, b ∈ S with a < b,

cap(a, b) =

(
b∑

y=a+1

1

µ(y)

1

p(y, y − 1)

)−1

. (1.14)

1.3 Exercise

(i) For m ∈ ΓN , the set of configurations with magnetisation m is denoted by SN [m]. Prove that
the capacity for the Curie-Weiss model has the following asymptotics as N →∞:

capCW
(
SN [m−(N)],SN [m+(N)]

)
=

1

Zβ,N
e−βNfβ(m∗)

√
β(−f ′′β (m∗))

πN

√
1 +m∗

1−m∗
[1 + o(1)].

(1.15)
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(ii) Find the following expression for the harmonic sum

∑
m∈ΓN

Qβ,N (m)hm−(N),m+(N)(m) = e−βN fβ(m−)

(
Zβ,N

√
(1−m2

−)βf ′′β (m−)

)−1

[1 + o(1)]

(1.16)

1.4 Guidelines for solving the exercise

• Step 1: Start from the variational representation for the capacity (see the slides of the Intro-
duction) by writing out the Dirichlet principle, i.e.,

capCW
(
SN [m−(N)],SN [m+(N)]

)
= min

φ∈Φ

∑
σ,σ′∈SN

µβ,N (σ)pN (σ, σ′) [φ(σ)− φ(σ′)]2, (1.17)

where

Φ := ΦSN [m−(N)],SN [m+(N)] =
{
φ : SN → [0, 1] : φ|SN [m−(N)] = 1, φ|SN [m+(N)] = 0

}
. (1.18)

Prove that in the space ΓN the capacity can be written as

capCW
(
SN [m−(N)],SN [m+(N)]

)
= min
ψ∈Ψ

∑
m,m′∈ΓN

Qβ,N (m)rN (m,m′) [ψ(m)− ψ(m′)]2, (1.19)

and identify Ψ.

• Step 2: Explain why the Markov chain (m(t))t∈N0 is a one-dimensional nearest-neighbour ran-
dom walk on ΓN that is reversible with respect to the image measure Qβ,N . Use this fact and
Lemma 1.1 to prove that

capCW(SN [m−(N)],SN [m+(N)]) =

[
Zβ,N

∑
m−≤m<m+

F (m)

]−1

, (1.20)

where

F (x) = eβNfβ,N (x) exp(2β[− 1
N − (x+ h)]+)
(1−x)

2

. (1.21)

• Step 3: Prove the identity

exp

(
2β

[
− 1

N
− (m∗ + h)

]
+

)
=

1−m∗

1 +m∗
[1 + o(1)] (1.22)

for N large enough. [Hint: Use the fact that m∗ is a solution of (1.13).]

• Step 4: Multiply and divide by F (m∗) inside the parenthesis in the right-hand side of (1.20).
Prove that the sum can be restricted to |m−m∗| ≤ ε for ε > 0 small enough such that m+h < 0.

• Step 5: Prove that

e−βNfβ,N (m) = e−βNfβ(m)

√
2

πN(1−m2)
[1 + o(1)] (1.23)

and use this inside the sum in (1.20).

• Step 6: Compute the sum by applying the Laplace method of steepest descent. Take the limit
ε→ 0, and use again the expansion in (1.23) to conclude the computation of the capacity.

• Step 7: In order to estimate the sum in the left-hand side of (1.16), use the mean hitting time
formula for the Curie–Weiss model in Lecture 2 (see slide 10) and formula (1.8) in the exercise
set “Introduction: Exercises”.
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2 Exercise 2: Flow for the Curie-Weiss model

In this exercise you will find a unit flow for the Curie-Weiss model.

2.1 Notation and Thomson principle

We consider the same model as in Exercise 1 and recall a key tool for the potential-theoretic approach to
metastability, i.e., Thomson principle. We start with the definition of unit flow (for more background,
see Bovier and den Hollander [1, Chapters 7–8]).

Definition 2.1. Let G = (V,E) be a graph and let A,B be disjoint subsets of V . A map u : E → R
is called a unit flow from A to B if it satisfies the following properties:

1. Kirchhoff’s law: The flows into and out of vertices in V \ (A ∪B) are the same, i.e.,∑
y∈V :

(y,x)∈E

u(y, x) =
∑
w∈V :

(x,w)∈E

u(x,w), ∀x ∈ V \ (A ∪B). (2.1)

2. The total flow out of A and into B is 1, i.e.,∑
a∈A

∑
y∈V :

(a,y)∈E

u(a, y) = 1 =
∑
b∈B

∑
y∈V :

(y,b)∈E

u(y, b). (2.2)

For Markov processes with countable state space S, take the graph to be (S, E), where the edge
set is induced by the transition probabilities p(x, y) of the dynamics (i.e., an edge between two states
is present if and only if the Markov chain has a positive probability to go from one to the other in a
single step).

We are now ready to recall the following formulation of the Thomson principle in terms of flows
(see e.g. Bovier and den Hollander [1, Section 7.3.2]). Let UAB be the space of all unit flows from A
to B as in Definition 2.1. Then the Thomson principle states that

cap(A,B) = sup
u∈UAB

1

D(u)
(2.3)

with

D(u) =
∑

(x,y)∈E

u(x, y)2

µ(x)p(x, y)
, (2.4)

where E is the set of pairs (x, y) such that p(x, y) 6= 0 with x, y ∈ S and µ is the equilibrium measure.
The supremum in (2.3) is uniquely attained at

uhAB (x, y) =
µ(x)p(x, y)[hAB(y)− hAB(x)]+

cap(A,B)
, (2.5)

i.e., the harmonic unit flow. This variational principle is a powerful tool for asymptotic computations
of capacities. In fact, by guessing a good test flow we can easily get a lower bound for the capacity.

We saw in the previous exercise that the CW model is perfectly lumpable, meaning that we can
compute the mean metastable crossover time by exploiting the fact that in the space of magnetisations
the model behaves like a random walk. In this exercise, instead, you will see how to choose a good
unit flow for the CW model.
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2.2 Exercise

Define the flow uN : SN × SN → R by putting

uN (σ, σ′) = vN (m(σ),m(σ′)) σ, σ′ ∈ SN , (2.6)

where, for m,m1,m2 ∈ ΓN ,

vN (m,m′) =


[

(1−m)N
2 e−NIN (m)

]−1

, if m1 ≤ m ≤ m2 − 2
N and m′ = m+ 2

N ,

0, otherwise.

(2.7)

Prove that the flow uN is a unit flow from SN [m1] to SN [m2].

2.3 Guidelines for solving the exercise

• Step 1: First prove that the Kirchhoff law holds, i.e., for all σ̄ ∈ SN \ (SN [m1] ∪ SN [m2]),∑
σ∈SN :σ∼σ̄

uN (σ, σ̄) =
∑

σ′∈SN :σ̄∼σ′
uN (σ̄, σ′). (2.8)

• Step 2: Then show that the total flow out of SN [m1] and into SN [m2] is equal to 1, i.e.,∑
a∈SN [m1]

∑
σ′∈SN :a∼σ

uN (a, σ′) = 1 =
∑

b∈SN [m2]

∑
σ∈SN :σ∼b

uN (σ, b). (2.9)
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