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Computational Complexity Theory

Poorly understood issue: Why are do some decision problems
have fast algorithms and others seem to need costly search?

Some complexity classes:

I NP: LP (∃x ≥ 0, Ax=b?)

I coNP: Primes

I P: LP and Primes!

I NP-complete: Graph coloring

Famous theoretical computer science problems:

I P
?
= NP

I NP
?
= coNP

I NP ∩ coNP
?
= P
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Polynomials

In algebraic combinatorics and combinatorial representation theory
we often study:

F� =
∑
α

cα,�x
α =

∑
s∈S

wt(s) ∈ Z[x1, . . . , xn]

Example 1: � = λ =⇒ F� = sλ (Schur), cα,G = Kostka coeff.

Example 2: � = G = (V ,E ) =⇒ F� = χG (Stanley’s chromatic
symmetric polynomial), cα,G = #proper colorings of G with
αi -many colors i

Example 3: � = w ∈ S∞ =⇒ F� = Sw (Schubert polynomial).
More later.
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Nonvanishing

Nonvanishing: What is the complexity of deciding cα,� 6= 0 as
measured in the length of the input (α, �) assuming arithmetic
takes constant time?

I In general undecidable: Gödel incompleteness ’31, Turing’s
halting problem ’36.

I Our cases of interest have combinatorial positivity:
∃ rule for cα,� ∈ Z≥0 =⇒ Nonvanishing(F�) ∈ NP.
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Newton polytopes

Evidently, nonvanishing concerns the Newton polytope,

Newton(F�) = conv{α : cα,� 6= 0} ⊆ Rn.

I Monical-Tokcan-Y. ’17: F� has saturated Newton polytope
(SNP) if β ∈ Newton(F�) ⇐⇒ cβ,� 6= 0

I Many polynomials have this property.

Importance of SNP property:

Observation 1: SNP ⇒ nonvanishing(F�) is equivalent to
checking membership of a lattice point in Newton(F�).

Observation 1’: SNP + “efficient” halfspace description of
Newton(F�) =⇒ nonvanishing(F�) ∈ coNP.

∴ in many cases nonvanishing(F�) ∈ NP ∩ coNP.
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Nonvanishing and NP

Example 1’: sλ has SNP. Newton(sλ) = Pλ (the permutahedron).
Nonvanishing(sλ) ∈ P by dominance order (Rado’s theorem).

Example 2’: χG does not have SNP.

coloring ∈ NP−complete =⇒ Nonvanishing(χG ) ∈ NP−complete.

∴ nonvanishing hits the extremes of NP.

Question: What about the nonextremes?

I Many problems suspected of being NP-intermediate: e.g.,
graph isomorphism, factorization

I Ladner’s theorem: P 6= NP =⇒ NP − intermediate 6= ∅
I NP ∩ coNP is important to this discussion:

coNP ∩ NP − complete 6= ∅ =⇒ NP = coNP!

I This is why factorization is not expected to be NP-complete.
I Most public key cryptography relies on NP ∩ coNP 6= P.
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Possible application of algebraic combinatorics to TCS?

Conjecture 1: [Stanley ’95] If G is claw-free (i.e., it contains no
induced K1,3 subgraph), then χG is Schur positive.

Conjecture 2: [C. Monical ’18] If χG is Schur positive, then it is
SNP.

Conjecture 1+2: If G is claw-free then χG is SNP.

Theorem: (Holyer ’81) Coloring of claw-free G is NP-complete.

Corollary: nonvanishing(χclaw-freeG ) ∈ NP-complete.

∴ Conjecture 1+2 and a halfspace description of
Newton(χclawfreeG ) =⇒ NP = coNP

Suggests a new complexity-theoretic rationale for the study of χG .

Alexander Yong University of Illinois at Urbana-Champaign
Complexity, Combinatorial Positivity, and Newton Polytopes



An algebraic combinatorics paradigm for complexity

In many cases of algebraic combinatorics, {F�} has combinatorial
positivity and SNP. If one also has an efficient halfspace description
of Newton(F�), then nonvanishing(F�) ∈ NP ∩ coNP.

Four possible outcomes of such a study:

(I) Unknown: it is an open problem to find additional problems
that are in NP ∩ coNP that are not known to be in P.

(II) P: Give an algorithm. It will likely illuminate some special
structure, of independent combinatorial interest.

(III) NP-complete: proof solves NP
?
= coNP with “=”.

(IV) NP-intermediate: proof solves NP-intermediate
?
= ∅ with

“ 6=”, i.e., P 6= NP.

Next: do this for Schubert polynomials (outcomes (I) and (II)).
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Schubert polynomials

B acts on GLn/B with finitely many orbits, the Schubert cells,
whose closures Xw , w ∈ Sn are the Schubert varieties.

Lascoux and Schützenberger’s (1982) main idea in type A (after
Bernstein-Gelfand-Gelfand):

I Pick Sw0 = xn−1
1 xn−2

2 · · · xn−1 as an especially nice
representative of the class of a point

I Apply Newton’s divided difference operator

∂i f =
f − f si

xi − xi+1
,

to recursively define all other Sw using weak Bruhat order.

This starts the theory of Schubert polynomials.
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Complexity results

There are many combinatorial rules that establish that cα,w ∈ Z≥0.

However, none of these prove nonvanishing(Sw ) ∈ P since they
involve exponential search.

Theorem A: (Adve-Robichaux-Y. ’18) cα,w is #P-complete.

∴ no polynomial time algorithm to compute cα,w exists unless
P = NP.

Counting is hard, nonvanishing is easy:

Theorem B: (Adve-Robichaux-Y. ’18) nonvanishing(Sw ) ∈ P

Analogy: Computing the permanent of a 0, 1-matrix is
#P-complete but nonzeroness is easy (Edmonds-Karp matching
algorithm).
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A tableau rule for nonvanishing

Fillings of the Rothe diagram of 31524:

1 1

2 2

1 1

2 1

1 1

3 1

1 1

2 3

1 1

3 2

1 1

3 3

Theorem C: (Adve-Robichaux-Y. ’18)
cα,w 6= 0 ⇐⇒ Tab(w , α) 6= ∅.
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Proofs

I The Schubitope SD was introduced by Monical-Tokcan-Y. ’17
for any D ⊆ [n]2.

I We give a generalization of tableau of Theorem C to any D.

I Then introduce a new polytope TD whose integer points biject
with tableaux.

I Integer linear programming is hard but TD is totally
unimodular. Now use LPfeasibility ∈ P.

I Link to Schubert polynomials: For D = D(w),
Monical-Tokcan-Y. ’17 conjectured SD = Newton(Sw ).
Proved by Fink-Mészáros-St. Dizier ’18.

I First proved that nonvanishing(Sw ) ∈ NP ∩ coNP
hinting ∈ P.

I NP and #P proof via transition.
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Conclusions and summary

I In this talk we described an algebraic combinatorics paradigm
for complexity on theoretical computer science.

I Conversely, complexity gives some new perspectives on
algebraic combinatorics.

I In our main example, we obtain new results about Schubert
polynomials and the Schubitope.

Alexander Yong University of Illinois at Urbana-Champaign
Complexity, Combinatorial Positivity, and Newton Polytopes


