Complexity, Combinatorial Positivity, and Newton Polytopes

Alexander Yong
University of Illinois at Urbana-Champaign

Joint work with:
Anshul Adve (University of California at Los Angeles)
Colleen Robichaux (University of Illinois at Urbana-Champaign)

Computational Complexity Theory

Poorly understood issue: Why are do some decision problems have fast algorithms and others seem to need costly search?

Some complexity classes:

- NP: LP $(\exists x \geq 0, \mathrm{Ax}=\mathrm{b}$? $)$
- coNP: Primes
- P: LP and Primes!
- NP-complete: Graph coloring

Famous theoretical computer science problems:

- $P \stackrel{?}{=} N P$
- NP $\stackrel{?}{=} \mathrm{coNP}$
- $N P \cap \operatorname{coNP} \stackrel{?}{=} P$

Polynomials

In algebraic combinatorics and combinatorial representation theory we often study:

$$
F_{\diamond}=\sum_{\alpha} c_{\alpha, \diamond} x^{\alpha}=\sum_{s \in S} w t(s) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]
$$

Example 1: $\diamond=\lambda \Longrightarrow F_{\diamond}=s_{\lambda}$ (Schur), $c_{\alpha, G}=$ Kostka coeff.
Example 2: $\diamond=G=(V, E) \Longrightarrow F_{\diamond}=\chi_{G}$ (Stanley's chromatic symmetric polynomial), $c_{\alpha, G}=\#$ proper colorings of G with α_{i}-many colors i
Example 3: $\diamond=w \in S_{\infty} \Longrightarrow F_{\diamond}=\mathfrak{S}_{w}$ (Schubert polynomial). More later.

Nonvanishing

Nonvanishing: What is the complexity of deciding $\underline{c_{\alpha, \diamond} \neq 0}$ as measured in the length of the input (α, \diamond) assuming arithmetic takes constant time?

- In general undecidable: Gödel incompleteness '31, Turing's halting problem '36.
- Our cases of interest have combinatorial positivity: \exists rule for $c_{\alpha, \diamond} \in \mathbb{Z}_{\geq 0} \Longrightarrow$ Nonvanishing $\left(F_{\diamond}\right) \in N$.

Newton polytopes

Evidently, nonvanishing concerns the Newton polytope,

$$
\operatorname{Newton}\left(F_{\diamond}\right)=\operatorname{conv}\left\{\alpha: c_{\alpha, \diamond} \neq 0\right\} \subseteq \mathbb{R}^{n}
$$

- Monical-Tokcan-Y. '17: F_{\diamond} has saturated Newton polytope (SNP) if $\beta \in \operatorname{Newton}\left(F_{\diamond}\right) \Longleftrightarrow c_{\beta, \diamond} \neq 0$
- Many polynomials have this property.

Importance of SNP property:
Observation 1: SNP \Rightarrow nonvanishing $\left(F_{\diamond}\right)$ is equivalent to checking membership of a lattice point in Newton $\left(F_{\diamond}\right)$.
Observation 1': SNP + "efficient" halfspace description of $\operatorname{Newton}\left(F_{\diamond}\right) \Longrightarrow$ nonvanishing $\left(F_{\diamond}\right) \in$ coNP.
\therefore in many cases nonvanishing $\left(F_{\diamond}\right) \in \mathrm{NP} \cap$ coNP.

Nonvanishing and NP

Example 1': s_{λ} has SNP. Newton $\left(s_{\lambda}\right)=\mathcal{P}_{\lambda}$ (the permutahedron). Nonvanishing $\left(s_{\lambda}\right) \in \mathrm{P}$ by dominance order (Rado's theorem).

Example 2': χ_{G} does not have SNP. coloring $\in N P$-complete \Longrightarrow Nonvanishing $\left(\chi_{G}\right) \in N P$-complete.
\therefore nonvanishing hits the extremes of NP.
Question: What about the nonextremes?

- Many problems suspected of being NP-intermediate: e.g., graph isomorphism, factorization
- Ladner's theorem: $\mathrm{P} \neq \mathrm{NP} \Longrightarrow \mathrm{NP}$ - intermediate $\neq \emptyset$
- $\mathrm{NP} \cap$ coNP is important to this discussion:

$$
\text { coNP } \cap N P-\text { complete } \neq \emptyset \Longrightarrow N P=\text { coNP! }
$$

- This is why factorization is not expected to be NP-complete.
- Most public key cryptography relies on NP \cap coNP $\neq P$.

Possible application of algebraic combinatorics to TCS?

Conjecture 1: [Stanley '95] If G is claw-free (i.e., it contains no induced $K_{1,3}$ subgraph), then χ_{G} is Schur positive.

Conjecture 2: [C. Monical '18] If χ_{G} is Schur positive, then it is SNP.

Conjecture 1+2: If G is claw-free then χ_{G} is SNP.
Theorem: (Holyer '81) Coloring of claw-free G is NP-complete.
Corollary: nonvanishing $\left(\chi_{\text {claw-free }}\right) \in$ NP-complete.
\therefore Conjecture $1+2$ and a halfspace description of
Newton $\left(\chi_{\text {clawfree }}\right) \Longrightarrow N P=\operatorname{coNP}$
Suggests a new complexity-theoretic rationale for the study of χ_{G}.

An algebraic combinatorics paradigm for complexity

In many cases of algebraic combinatorics, $\left\{F_{\diamond}\right\}$ has combinatorial positivity and SNP. If one also has an efficient halfspace description of Newton $\left(F_{\diamond}\right)$, then nonvanishing $\left(F_{\diamond}\right) \in N P \cap \operatorname{coNP}$.

Four possible outcomes of such a study:
(I) Unknown: it is an open problem to find additional problems that are in NP \cap coNP that are not known to be in P .
(II) P: Give an algorithm. It will likely illuminate some special structure, of independent combinatorial interest.
(III) NP-complete: proof solves NP $\stackrel{?}{=}$ coNP with " $=$ ".
(IV) NP-intermediate: proof solves NP-intermediate $\stackrel{?}{=} \emptyset$ with " \neq ", i.e., $P \neq N P$.

Next: do this for Schubert polynomials (outcomes (I) and (II)).

Schubert polynomials

B acts on $G L_{n} / B$ with finitely many orbits, the Schubert cells, whose closures $X_{w}, w \in S_{n}$ are the Schubert varieties.

Lascoux and Schützenberger's (1982) main idea in type A (after Bernstein-Gelfand-Gelfand):

- Pick $\mathfrak{S}_{w_{0}}=x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1}$ as an especially nice representative of the class of a point
- Apply Newton's divided difference operator

$$
\partial_{i} f=\frac{f-f^{s_{i}}}{x_{i}-x_{i+1}}
$$

to recursively define all other \mathfrak{S}_{w} using weak Bruhat order.
This starts the theory of Schubert polynomials.

Complexity results

There are many combinatorial rules that establish that $c_{\alpha, w} \in \mathbb{Z}_{\geq 0}$. However, none of these prove nonvanishing $\left(\mathfrak{S}_{w}\right) \in P$ since they involve exponential search.

Theorem A: (Adve-Robichaux-Y. '18) $c_{\alpha, w}$ is \#P-complete.
\therefore no polynomial time algorithm to compute $c_{\alpha, w}$ exists unless
$\mathrm{P}=\mathrm{NP}$.
Counting is hard, nonvanishing is easy:
Theorem B: (Adve-Robichaux-Y. '18) nonvanishing $\left(\mathfrak{S}_{w}\right) \in \mathrm{P}$
Analogy: Computing the permanent of a 0,1-matrix is \#P-complete but nonzeroness is easy (Edmonds-Karp matching algorithm).

A tableau rule for nonvanishing

Fillings of the Rothe diagram of 31524:

Theorem C: (Adve-Robichaux-Y. '18)
$c_{\alpha, w} \neq 0 \Longleftrightarrow \operatorname{Tab}(w, \alpha) \neq \emptyset$.

Proofs

- The Schubitope \mathcal{S}_{D} was introduced by Monical-Tokcan-Y. '17 for any $D \subseteq[n]^{2}$.
- We give a generalization of tableau of Theorem C to any D.
- Then introduce a new polytope \mathcal{T}_{D} whose integer points biject with tableaux.
- Integer linear programming is hard but \mathcal{T}_{D} is totally unimodular. Now use LPfeasibility $\in P$.
- Link to Schubert polynomials: For $D=D(w)$, Monical-Tokcan-Y. '17 conjectured $\mathcal{S}_{D}=\operatorname{Newton}\left(\mathfrak{S}_{w}\right)$. Proved by Fink-Mészáros-St. Dizier '18.
- First proved that nonvanishing $\left(\mathfrak{S}_{w}\right) \in N P \cap \operatorname{coNP}$ hinting $\in P$.
- NP and \#P proof via transition.

Conclusions and summary

- In this talk we described an algebraic combinatorics paradigm for complexity on theoretical computer science.
- Conversely, complexity gives some new perspectives on algebraic combinatorics.
- In our main example, we obtain new results about Schubert polynomials and the Schubitope.

