Complexity, Combinatorial Positivity, and Newton Polytopes

Alexander Yong University of Illinois at Urbana-Champaign

Joint work with:

Anshul Adve (University of California at Los Angeles) Colleen Robichaux (University of Illinois at Urbana-Champaign)

Alexander Yong University of Illinois at Urbana-Champaign

Poorly understood issue: Why are do some decision problems have fast algorithms and others seem to need costly search?

Some complexity classes:

▶ NP: LP
$$(\exists x \ge 0, Ax=b?)$$

- coNP: Primes
- P: LP and Primes!
- NP-complete: Graph coloring

Famous theoretical computer science problems:

▶
$$P \stackrel{?}{=} NP$$

▶ $NP \stackrel{?}{=} coNP$
▶ $NP \cap coNP \stackrel{?}{=} P$

In algebraic combinatorics and combinatorial representation theory we often study:

$$F_\diamond = \sum_lpha c_{lpha,\diamond} x^lpha = \sum_{s \in S} \operatorname{wt}(s) \in \mathbb{Z}[x_1, \dots, x_n]$$

Example 1: $\diamond = \lambda \implies F_{\diamond} = s_{\lambda}$ (Schur), $c_{\alpha,G} =$ Kostka coeff.

Example 2: $\diamond = G = (V, E) \implies F_{\diamond} = \chi_G$ (Stanley's chromatic symmetric polynomial), $c_{\alpha,G} = \#$ proper colorings of G with α_i -many colors i

Example 3: $\diamond = w \in S_{\infty} \implies F_{\diamond} = \mathfrak{S}_{w}$ (Schubert polynomial). More later.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」 のへの

Nonvanishing: What is the complexity of deciding $\underline{c_{\alpha,\diamond} \neq 0}$ as measured in the length of the input (α, \diamond) assuming arithmetic takes constant time?

- In general <u>undecidable</u>: Gödel incompleteness '31, Turing's halting problem '36.
- ▶ Our cases of interest have combinatorial positivity: \exists rule for $c_{\alpha,\diamond} \in \mathbb{Z}_{\geq 0} \implies \overline{\text{Nonvanishing}(F_{\diamond}) \in \text{NP}}.$

Evidently, nonvanishing concerns the Newton polytope,

Newton $(F_{\diamond}) = \operatorname{conv}\{\alpha : c_{\alpha,\diamond} \neq 0\} \subseteq \mathbb{R}^n$.

- Monical-Tokcan-Y. '17: F_◊ has saturated Newton polytope (SNP) if β ∈ Newton(F_◊) ⇐⇒ c_{β,◊} ≠ 0
- Many polynomials have this property.

Importance of SNP property:

Observation 1: SNP \Rightarrow nonvanishing(F_{\diamond}) is equivalent to checking membership of a lattice point in Newton(F_{\diamond}).

Observation 1': SNP + "efficient" halfspace description of Newton(F_{\diamond}) \implies nonvanishing(F_{\diamond}) \in coNP.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 目 → のへの

: in many cases nonvanishing $(F_{\diamond}) \in NP \cap coNP$.

Nonvanishing and NP

Example 1': s_{λ} has SNP. Newton $(s_{\lambda}) = \mathcal{P}_{\lambda}$ (the permutahedron). Nonvanishing $(s_{\lambda}) \in \mathsf{P}$ by dominance order (Rado's theorem).

Example 2': χ_G does not have SNP.

 $\mathsf{coloring} \in \mathsf{NP}\mathsf{-}\mathsf{complete} \implies \mathsf{Nonvanishing}(\chi_{\mathcal{G}}) \in \mathsf{NP}\mathsf{-}\mathsf{complete}.$

 \therefore nonvanishing hits the extremes of NP.

Question: What about the nonextremes?

- Many problems *suspected* of being NP-intermediate: e.g., graph isomorphism, factorization
- ▶ Ladner's theorem: $P \neq NP \implies NP intermediate \neq \emptyset$
- NP \cap coNP is important to this discussion:

 $\mathsf{coNP} \cap \mathsf{NP} - \mathsf{complete} \neq \emptyset \implies \mathsf{NP} = \mathsf{coNP}!$

- This is why factorization is <u>not</u> expected to be NP-complete.
- ▶ Most public key cryptography relies on NP \cap coNP \neq P.

Conjecture 1: [Stanley '95] If G is claw-free (i.e., it contains no induced $K_{1,3}$ subgraph), then χ_G is Schur positive.

Conjecture 2: [C. Monical '18] If χ_G is Schur positive, then it is SNP.

Conjecture 1+2: If G is claw-free then χ_G is SNP.

Theorem: (Holyer '81) Coloring of claw-free G is NP-complete.

 $\textbf{Corollary:} \text{ nonvanishing}(\chi_{\mathsf{claw-free}\mathcal{G}}) \in \mathsf{NP-complete}.$

 $\therefore \text{ Conjecture } 1+2 \text{ and a halfspace description of } \\ \text{Newton}(\chi_{\text{clawfree} \mathcal{G}}) \implies \text{NP} = \text{coNP} \\ \end{cases}$

Suggests a new complexity-theoretic rationale for the study of χ_G .

→ 週 ▶ ★ 差 ▶ ★ 差 ▶ ● 9 00

In many cases of algebraic combinatorics, $\{F_{\diamond}\}$ has combinatorial positivity and SNP. If one also has an efficient halfspace description of Newton (F_{\diamond}) , then nonvanishing $(F_{\diamond}) \in NP \cap \overline{coNP}$.

Four possible outcomes of such a study:

(I) **Unknown**: it is an open problem to find additional problems that are in NP \cap coNP that are not *known* to be in P.

(II) **P**: Give an algorithm. It will likely illuminate some special structure, of independent combinatorial interest.

(III) **NP-complete**: proof solves NP $\stackrel{?}{=}$ coNP with "=".

(IV) **NP-intermediate**: proof solves NP-intermediate $\stackrel{?}{=} \emptyset$ with " \neq ", i.e., P \neq NP.

Next: do this for Schubert polynomials (outcomes (I) and (II)).

回 とう ヨン うちょう ほう

B acts on GL_n/B with *finitely many orbits*, the Schubert cells, whose closures X_w , $w \in S_n$ are the **Schubert varieties**.

Lascoux and Schützenberger's (1982) main idea in type A (after Bernstein-Gelfand-Gelfand):

- ▶ Pick 𝔅_{w0} = x₁ⁿ⁻¹x₂ⁿ⁻² ··· x_{n-1} as an especially nice representative of the class of a point
- Apply Newton's divided difference operator

$$\partial_i f = \frac{f - f^{s_i}}{x_i - x_{i+1}},$$

▲御★ ▲ 御★ ▲ 御★

to recursively define all other \mathfrak{S}_w using weak Bruhat order. This starts the theory of *Schubert polynomials*. There are many combinatorial rules that establish that $c_{\alpha,w} \in \mathbb{Z}_{\geq 0}$.

However, none of these prove nonvanishing $(\mathfrak{S}_w) \in \mathsf{P}$ since they involve exponential search.

Theorem A: (Adve-Robichaux-Y. '18) $c_{\alpha,w}$ is #P-complete.

 \therefore no polynomial time algorithm to compute $c_{\alpha,w}$ exists unless P = NP.

Counting is hard, nonvanishing is easy:

Theorem B: (Adve-Robichaux-Y. '18) nonvanishing(\mathfrak{S}_w) $\in \mathsf{P}$

Analogy: Computing the permanent of a 0, 1-matrix is #P-complete but nonzeroness is easy (Edmonds-Karp matching algorithm).

* 圖 * * ヨ * * ヨ * … ヨ

Fillings of the Rothe diagram of 31524:

Theorem C: (Adve-Robichaux-Y. '18) $c_{\alpha,w} \neq 0 \iff \operatorname{Tab}(w, \alpha) \neq \emptyset.$

Proofs

- ▶ The Schubitope S_D was introduced by Monical-Tokcan-Y. '17 for any $D \subseteq [n]^2$.
- ▶ We give a generalization of tableau of Theorem C to any D.
- Then introduce a new polytope T_D whose integer points biject with tableaux.

回 と く ヨ と く ヨ と …

臣

- ▶ Integer linear programming is hard but T_D is totally unimodular. Now use LPfeasibility \in P.
- ► Link to Schubert polynomials: For D = D(w), Monical-Tokcan-Y. '17 conjectured S_D = Newton(𝔅_w). Proved by Fink-Mészáros-St. Dizier '18.
- First proved that nonvanishing(𝔅_w) ∈ NP ∩ coNP hinting ∈ P.
- NP and #P proof via transition.

- In this talk we described an algebraic combinatorics paradigm for complexity on theoretical computer *science*.
- Conversely, complexity gives some new perspectives on algebraic combinatorics.
- In our main example, we obtain new results about Schubert polynomials and the Schubitope.