Asymptotic of multiplicities and of character distributions for large tensor products of representations of simple Lie algebras

Olga Postnova
PDMI RAS (Saint Petersburg)
joint work
with N.Reshetikhin, V. Serganova (UC Berkeley)

March 12, 2019

Notations

- Let \mathfrak{g} be a simple finite dimensional Lie algebra.
- \mathfrak{h} Cartan subalgebra
- $\alpha_{a} \in \mathfrak{h}^{*}, a=1, \ldots, r=\operatorname{rank}(\mathfrak{g})$ are simple roots
- The Killing form (.,.) on \mathfrak{g} defines scalar products on \mathfrak{h} and therefore on \mathfrak{h}^{*}. Symmetrized Cartan matrix $\mathrm{B}_{\mathrm{ab}}=\mathrm{d}_{\mathrm{a}} \mathrm{C}_{\mathrm{ab}}=\left(\alpha_{a}, \alpha_{b}\right)$. In the basis of simple roots $(x, y)=\sum_{a, b} x_{a} B_{a b} y_{b}$.
- Linear isomorphisms $\mathfrak{g} \simeq \mathfrak{g}^{*}$ and $\mathfrak{h} \simeq \mathfrak{h}^{*}$ are fixed by the Killing form.

Multiplicities

- $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}}$ be finite dimensional representations, $\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{m}}$ be positive integers.

$$
\otimes_{i=1}^{m} V_{i}^{\otimes N_{i}} \simeq \oplus_{\lambda} V_{\lambda}^{\oplus m_{\lambda}}(\mathrm{N})
$$

Here $m_{\lambda}(N)$ is the multiplicity of V_{λ} in the tensor product.
Formulae for multiplicities. Asymptotic for large N_{i} ?

Character probability distribution

- Let W -finite dimensional \mathfrak{g}-module

$$
W \simeq \oplus_{\lambda \in D_{N}} V_{\lambda}^{\oplus m_{\lambda}}
$$

Here D_{N} is the set of irreducible components of V .

- Let $t \in \mathfrak{h}_{\mathbb{R}}, V$ be a finite dimensional \mathfrak{g}-module and $\chi_{V}\left(e^{\mathrm{t}}\right)=\operatorname{tr}_{V}\left(\pi\left(e^{\mathrm{t}}\right)\right)$ be the character of V evaluated on e^{t}.
Character probability measure on D_{N} :

$$
\operatorname{Prob}(\lambda)=\frac{m_{\lambda} \chi_{V_{\lambda}}\left(e^{t}\right)}{\chi_{W}\left(e^{t}\right)}
$$

- Plancherel measure corresponds to $t=0$

$$
\operatorname{Prob}(\lambda)=\frac{m_{\lambda} \operatorname{dim}\left(V_{\lambda}\right)}{\operatorname{dim}(W)}
$$

Problem 1: Find the asymptotic of $m_{\lambda}(N)$ is the limit when $\mathrm{N}_{\mathrm{i}}=\tau_{i} / \epsilon, \lambda=\xi / \epsilon, \epsilon \rightarrow 0$ and $\tau_{i}>0$ and $\xi \in \mathfrak{h}_{>0}^{*}$ are fixed.

- When $m=1$, and ξ is inside (not on a wall) of the positive Weyl chamber, the asymptotic was computed in
T.Tate, S. Zelditch, Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers, J. Funct. Anal. 217 (2004), no. 2, 402-447. arXiv:math/0305251.
- For general m the proof is very similar, we will outline it.
O. Postnova, N. Reshetikhin, On multiplicities of irreducibles in large tensor product of representations of simple Lie algebras.
- Particular case $s l_{n+1}$, powers of \mathbb{C}^{n+1}, immediately follows from the hook formula for dimensions of irreducible representations of S_{N}. and from the Stirling formula.

Example: The multiplicity function in $s l_{n+1}$ case The multiplicity function $m_{\lambda}^{(N)}$ is determined by the hook length formula:

$$
m_{\lambda}^{(N)}=N!\frac{\prod_{i<j}\left(l_{i}-l_{j}-i+j\right)}{\prod_{i=1}^{n+1}\left(l_{i}+n+1-i\right)!} .
$$

The Stirling formula:

$$
\mathrm{N}!=\sqrt{2 \pi \mathrm{~N}} \mathrm{e}^{\mathrm{N} \ln \mathrm{~N}-\mathrm{N}}\left(1+\mathrm{O}\left(\frac{1}{\mathrm{~N}}\right)\right)
$$

The asymptotic for multiplicities for large N and l_{i} :

$$
m_{\lambda}^{(N)}=\frac{\sqrt{2 \pi N} e^{N \ln N-N} \prod_{i<j}\left(l_{i}-l_{j}\right)}{(\sqrt{2 \pi})^{n+1} \prod_{i=1}^{n+1} l_{i}^{n+1-i+1 / 2} e^{l_{i} \ln l_{i}-l_{i}}}\left(1+O\left(\frac{1}{N}\right)\right) .
$$

Assume $N=\tau / \epsilon, \quad l_{i}=\sigma_{i} / \epsilon$ and $\sum_{i=1}^{n+1} \sigma_{i}=\tau$ and when $\epsilon \rightarrow 0$:

$$
\begin{gathered}
m_{\lambda}^{(N)}=\left(\frac{\epsilon}{2 \pi}\right)^{\frac{n}{2}} \tau^{\frac{1}{2}} \prod_{i<j}\left(\sigma_{i}-\sigma_{j}\right) \prod_{i=1}^{n+1} \sigma_{i}^{-n+i-3 / 2} e^{\frac{1}{\epsilon} S(\tau, \sigma)}(1+O(\epsilon)), \\
\text { where } S(\tau, \sigma)=\tau \ln \tau-\sum_{i=1}^{n+1} \sigma_{i} \ln \sigma_{i \rightarrow p}
\end{gathered}
$$

Problem 2: Find the asymptotic of the character probability measure in the limit $\epsilon \rightarrow 0$ (when t is fixed)

As we will see the asymptotical distribution depends on the stabilizer of t in the Weyl group.

- When t is inside the positive Weyl chamber, the stabilizer is trivial, the asymptotic distribution is Gaussian.
O. Postnova, N. Reshetikhin On multiplicities of irreducibles in large tensor product of representations of simple Lie algebras.
- When $\mathrm{t}=0$ (Plancherel), the stabilizer is W , the asymptotic distribution is proportional to the product of Gaussian distribution and polynomial.
$\mathfrak{g}=s l_{n+1}$: S. Kerov, On asymptotic distribution of symmetry types of high rank tensors, Zapiski Nauchnykh Seminarov POMI, 155, 1986.

$$
p(a)=\left(\frac{1}{2 \pi}\right)^{\frac{n}{2}} \frac{(n+1)^{\frac{(n+1)^{2}}{2}}}{1!\cdot 2!\cdot \ldots n!} \prod_{i<j}\left(a_{i}-a_{j}\right)^{2} e^{-\frac{1}{2} \frac{n+1}{\tau} \sum_{i+1}^{n+1} a_{i}^{2}}
$$

where $a_{k}=\frac{t_{k}-\frac{N}{n+1}}{\sqrt{N}}, k=1 \ldots n+1, l_{k}$ - lengths of rows of Young diagram.

Dimensions of $s l_{n+1}$-modules are given by the Weyl formula

$$
\operatorname{dim}\left(V_{\lambda}\right)=\frac{\prod_{i \leqslant j}\left(l_{i}-l_{j}\right)}{\prod_{k=1}^{n} k!} \simeq \epsilon^{\frac{(n+1)^{2}-n-1}{2}} \frac{\prod_{i \leqslant j}\left(\sigma_{i}-\sigma_{j}\right)}{\prod_{k=1}^{n} k!}
$$

The pointwise asymptotic of $\operatorname{Prob}(\lambda)$
$p_{\lambda} \simeq\left(\frac{\epsilon}{2 \pi}\right)^{\frac{n^{2}+2 n}{2}} \frac{\prod_{i<j}\left(\sigma_{i}-\sigma_{j}\right)^{2}}{\prod_{k=1}^{n} k!} \prod_{i=1}^{n+1} \sigma_{i}^{-n+i-3 / 2} e^{\frac{1}{\epsilon}(S(\tau, \sigma)-\tau \ln (n+1))}$.
$S(\tau, \sigma)=\tau \ln \tau-\sum_{i=1}^{\mathfrak{n}+1} \sigma_{i} \ln \sigma_{i}$ has the critical point $\sigma_{i}=\frac{\tau}{n+1}$.
In the vicinity of this critical point rescaling random variables σ_{i} as:

$$
\begin{gathered}
\sigma_{i}=\frac{\tau}{n+1}+\sqrt{\epsilon} a_{i} \\
S(\tau, \sigma)=S(\tau, \tau /(n+1))-\frac{n+1}{\tau} \sum_{i=1}^{n+1} \frac{\epsilon a_{i}^{2}}{2}+O\left(\epsilon^{3 / 2}\right) .
\end{gathered}
$$

In the vicinity of critical point the Plancherel probability distribution
$p_{\lambda}^{(N)} \simeq\left(\frac{\epsilon}{2 \pi}\right)^{\frac{n}{2}} \frac{1}{1!\cdot 2!\cdot \ldots n!} \tau^{\frac{-(n+1)^{2}+1}{2}}(n+1)^{\frac{(n+1)^{2}}{2}} \prod_{i<j}\left(a_{i}-a_{j}\right)^{2} e^{-\frac{1}{2} \frac{n+1}{\tau} \sum_{i+1}^{n+1} a_{i}^{2}}$

Nazarov, A.A., Postnova, O.V.,The limit shape of a probability measure on a tensor product of modules of Bn algebra,Zapiski Nauchnykh Seminarov POMI, vol.468, 82-97, 2018

$$
\phi\left(\left\{x_{i}\right\}\right)=\frac{2^{2 n} n!}{(\sqrt{2 \pi})^{n}(2 n)!(2 n-2)!\ldots 2!} \prod_{i<j}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{l=1}^{n} x_{l}^{2} \exp \left(-\frac{1}{2} \sum_{k_{\overline{\underline{\underline{z}}}}} x_{k}^{2}\right) .
$$

Weak convergence of probability measures

We say that the sequence of probability measures $\left(p_{N}\right)_{N \in \mathbb{N}}$ converges weakly to $p\left(\left(p_{N}\right) \Rightarrow p\right)$ if for any bounded continuous function $f \in C(X)$

$$
\lim _{N \rightarrow \infty} \int f(x) d p_{N}(x)=\int f(x) d p(x)
$$

Criterion: Let \mathcal{E} be the class of open sets in metric space X , which is closed under finite intersection, and every open set can be represented as countable or finite union of sets from \mathcal{E}. Let $\mathrm{p}_{\mathrm{N}}, \mathrm{p}$ be probability Borel measures such that $p_{N}(E) \longrightarrow p(E)$ for all $E \in \mathcal{E}$. Then the sequence p_{N} converges weakly to p.
X is the n -dimensional random vector be distributed according to p_{N}

$$
p_{N}(\lambda)=\mathbf{P}\{X=\lambda\}=\mathbf{P}\left\{X \in \mathrm{U}_{a}\right\}=\mathbf{P}\left\{\frac{1}{\sqrt{N}} X \in \mathrm{U}_{a}(\mathbf{N})\right\} .
$$

- Prove for $\mathrm{U}_{\mathrm{a}}(\mathrm{N})$ as $\mathrm{N} \rightarrow \infty$

$$
\left|p_{N}(\lambda) \cdot\left(\frac{\sqrt{N}}{2}\right)^{n}-\phi\left(\left\{\frac{1}{\sqrt{N}} a_{i}\right\}\right)\right| \longrightarrow 0
$$

- Prove for every n -orthotope $\mathrm{H}_{\mathrm{n}}=\left\{\mathrm{c}_{1}, \mathrm{~d}_{1}\right\} \times\left\{\mathrm{c}_{2}, \mathrm{~d}_{2}\right\} \times \cdots \times\left\{\mathrm{c}_{\mathrm{n}}, \mathrm{d}_{\mathrm{n}}\right\}$ where all $\left\{\mathrm{c}_{\mathrm{i}}\right\}<\left\{\mathrm{d}_{i}\right\}$ are fixed real numbers.

$$
\lim _{N \rightarrow \infty} P\left\{c_{i} \leqslant \frac{1}{\sqrt{N}} X_{i}<d_{i}\right\}=\int_{H_{n}} \phi\left(\left\{x_{i}\right\}\right) d x_{1} \ldots d x_{n}
$$

- Use the criterion .

General case
Ph. Biane, Miniscual weights and random walks on lattices, Quant. Prob. Rel. Topics, v. 7 (1992), 51-65.
T.Tate, S. Zelditch, Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers, J. Funct. Anal. 217 (2004), no. 2, 402-447. arXiv:math/0305251.

- When t is a wall of the positive Weyl chamber, the distribution is intermediate, the product measure. We describe it later.
O. Postnova, N. Reshetikhin, V. Serganova, The asymptotic of the character distribution on irreducible component of large tensor products.

The asymptotic of multiplicities

Definitions of important functions:

- Define

$$
f(\tau, t)=\sum_{k} \tau_{k} \ln \left(\chi_{v_{k}}\left(e^{t}\right)\right)
$$

Strictly convex in t .

- Define

$$
S(\tau, \xi)=\min _{y}(f(\tau, y)-(y, \xi))=f(\tau, x)-(x, \xi),
$$

(y, ξ) is the Killing form: in the basis of simple roots
$(y, \xi)=\sum_{a b} y_{a} B_{a b} \xi_{b}$. Here x and ξ are Legendre images of each other:

$$
\frac{\partial}{\partial x_{a}} f(\tau, x)=\sum_{b} B_{a b} \xi_{b}
$$

- Define

$$
K_{a b}(\xi)=-\frac{\partial^{2} S(\tau, \xi)}{\partial \xi_{a} \partial \xi_{b}}
$$

Theorem
If $\xi=\epsilon \lambda$ remain finite and regular (inside the positive Weyl chamber) as $\epsilon \rightarrow 0$ the asymptotic of the multiplicity of V_{λ} in $\otimes_{i=1}^{m} V_{i}^{\otimes N_{i}}$ has the following form

$$
\mathfrak{m}_{\lambda}\left(\left\{\mathrm{V}_{\mathrm{k}}\right\},\left\{\mathrm{N}_{\mathrm{k}}\right\}\right)=\epsilon^{\frac{r}{2}} \frac{\sqrt{\operatorname{det} \mathrm{~K}(\xi)}}{(2 \pi)^{\frac{r}{2}}} \Delta(x) e^{-(\rho, x)} e^{\frac{1}{\varepsilon} S(\tau, \xi)}(1+\mathrm{O}(\epsilon))
$$

Here $x \in \mathfrak{h}$ is the Legendre image of $\xi \in \mathfrak{h}^{*}$, the functions S and the matrix K are as above and $\Delta(\mathrm{x})$ is the denominator in the Weyl formula for characters:

$$
\Delta(x)=\prod_{\alpha \in \Delta_{+}}\left(e^{\frac{(x, \alpha)}{2}}-e^{-\frac{(x, \alpha)}{2}}\right)
$$

The idea of the proof:

- Let dg be the Haar measure on the simply connected compact Lie group G with the Lie algebra \mathfrak{g}. Then

$$
m_{\lambda}\left(\left\{V_{k}\right\},\left\{N_{k}\right\}\right)=\int_{G} \prod_{i=1}^{m} \chi_{v_{i}}(g)^{N_{i}} \overline{\chi_{\lambda}(g)} d g
$$

From here by the steepest descent we see $m_{\lambda} \simeq \exp \left(\frac{S}{\epsilon}\right)$

- Substitute this asymptotic into the identity

$$
\prod_{i=1}^{m} \chi v_{i}\left(e^{x}\right)^{N_{i}}=\sum_{\lambda \subset D_{N}} m_{\lambda}\left(\left\{V_{k}\right\},\left\{N_{k}\right\}\right) x_{\lambda}\left(e^{x}\right)
$$

where $x \in \mathfrak{h}_{\mathbb{R}}$ and replace the sum by the integral

$$
\begin{equation*}
e^{\frac{f(\tau, x)}{\varepsilon}}=\sum_{\lambda} m_{\lambda}^{N} \chi_{\lambda}\left(e^{\chi}\right) \simeq \epsilon^{-r} \int_{D} e^{\frac{1}{\varepsilon} S(\tau, \xi)} \mu(\tau, \xi) \chi_{\frac{\xi}{\epsilon}}\left(e^{\chi}\right) d \xi \tag{1}
\end{equation*}
$$

From the Weyl character formula:

$$
\chi_{\frac{\varepsilon}{e}}\left(e^{x}\right)=\frac{e^{\frac{(x, \xi)}{e}+(\rho, x)}}{\Delta(x)}(1+o(1))
$$

- Let η be the maximum of the function $S(\tau, \xi)+(x, \xi)$, assume that it is extremum. Taking the integral over a neighborhood of η we obtain:

$$
\begin{equation*}
e^{\frac{f(\tau, x)}{\epsilon}}=e^{\frac{1}{e}(S(\tau, \eta)+(x, \eta))} \mu(\tau, \eta) \epsilon^{-r} \frac{e^{(\rho, x)}}{\Delta(t)} \epsilon^{\frac{r}{2}}(2 \pi)^{r / 2} \frac{1}{\sqrt{\operatorname{det} K(\eta)}} \tag{2}
\end{equation*}
$$

- From here most singular factors give

$$
f(\tau, x)=\max _{\xi}(S(\tau, \xi)+(x, \xi))
$$

thus, S is the Legendre transfrom of f and η is the Legendre image of x.

- Next order factors give

$$
\mu(\tau, \eta)=\epsilon^{r / 2} \frac{\sqrt{\operatorname{det} K(\eta)}}{(2 \pi)^{r / 2}} \Delta(x) e^{-(\rho, x)}
$$

- This gives the desired formula

The asymptotic of characters

Assume that t is on a wall of the positive Weyl chamber. Denote

- $W_{t} \subset W$ - the stabilizer of t in the Weyl group of \mathfrak{g},
- $\mathfrak{g}_{\mathrm{t}}$ be the Lie subalgebra with roots which vanish on t,
- r_{t} - the rank of $\mathfrak{g}_{\mathrm{t}}$.

The asymptotic of the character of V_{λ} evaluated on e^{t} :

$$
\operatorname{ch}_{\frac{\xi}{e}}\left(e^{\mathrm{t}}\right)=\epsilon^{-r_{\mathrm{t}}} e^{\frac{(\xi, \mathrm{t})}{e}+(\rho, \mathrm{t})} \prod_{\alpha \in \Delta_{+}^{t}} \frac{(\xi, \alpha)}{\left(\rho_{\mathrm{t}}, \alpha\right)} \prod_{\alpha \in \Delta_{+} \backslash \Delta_{+}^{t}} \frac{1}{e^{\frac{(\mathrm{t}, \alpha)}{2}}-e^{-\frac{(\mathrm{t}, \alpha)}{2}}}
$$

Here $\Delta_{+}^{\mathrm{t}} \subset \Delta$ are positive roots of $\mathfrak{g}^{\mathrm{t}}$. Let

$$
\xi=\eta+\sqrt{\epsilon x} a+\sqrt{\epsilon} b,
$$

where $(\alpha, a)=0$ for $\alpha \in \Delta \backslash \Delta^{\mathrm{t}},(\alpha, b)=0$ for $\alpha \in \Delta^{\mathrm{t}}$, and

$$
x=\sum_{\nu} \frac{\tau_{\nu}}{\operatorname{dim}\left(\mathfrak{g}^{\mathrm{t}}\right)} \frac{\sum_{\mu} \operatorname{tr}_{W_{\mu}}\left(e^{\mathrm{t}}\right) \mathrm{c}_{2}^{\mathrm{t}}(\mu) \operatorname{dim}\left(\mathrm{V}_{\mu}^{\mathrm{t}}\right)}{\sum_{\mu} \operatorname{tr}_{W_{\mu}}\left(e^{\mathrm{t}}\right) \operatorname{dim}\left(\mathrm{V}_{\mu}^{\mathrm{t}}\right)}
$$

Here we used the decomposition $V_{\nu} \simeq \oplus_{\mu} W_{\mu}^{v} \otimes V_{\mu}^{t}$ into irreps. for $\mathfrak{g}_{\underline{\underline{ٍ}}}^{t}$
and we assumed that factors V_{i} are irreducible with highest weight v_{i}.

Theorem (PRS)

Let $\mathrm{t} \in \mathfrak{h}_{\mathbb{R}}$ as above and $\mathrm{p}_{\lambda}^{(\mathrm{N})}(\mathrm{t})$ be the character measure. As $\epsilon \rightarrow 0$ it weakly converges to the probability distribution on $\mathbb{R}_{\geqslant 0}^{r^{t}} \times \mathbb{R}^{r-r^{t}}$

$$
p(a, b)=\frac{\sqrt{\operatorname{det} K^{(t)}}}{(2 \pi)^{\frac{r-r_{t}}{2}}} e^{-\frac{1}{2}\left(b, K^{(t)} b\right)} \frac{\sqrt{\operatorname{det} B^{t}}}{(2 \pi)^{\frac{r_{t}}{2}}} \prod_{\alpha \in \Delta_{+}^{t}} \frac{(a, \alpha)^{2}}{\left(\rho^{t}, \alpha\right)} e^{-\frac{1}{2}(a, a)_{t}}
$$

Here $\mathrm{K}^{(\mathrm{t})}=\mathrm{S}^{(2)}$ restricted to the b -subspace, B^{t} is the Cartan matrix of $\mathfrak{g}^{\mathrm{t}}$.

Further studies

- truncated tensor products
$\mathrm{U}_{\mathrm{q}}\left(\mathrm{sl}_{2}(\mathrm{C})\right)$ - a q -deformation of universal enveloping algebra, $q=\frac{2 \pi i}{r}$. Irreducible modules $V_{l},(l+1)$-dimensional, $l=0,1, \ldots, r-2$. Problem: find the asymptotic of the multiplicities in $\mathrm{V}_{\mathrm{l}}^{\mathrm{N}}$ when $\mathrm{r} \rightarrow \infty, \mathrm{N} / \mathrm{r}, \mathrm{l} / \mathrm{r}$ are finite.
- superalgebras
- multiplicities of irreducible components in large tensor products of integrable modules over affine Lie algebras

