Boundaries of branching graphs from 80s till present

Vadim Gorin MIT (Cambridge) and IITP (Moscow)

March 2019

Large Unitary groups

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{pmatrix} \qquad u \in U(3), \quad u^*u = I$$

Large Unitary groups

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{pmatrix} \qquad u \in U(3), \quad u^*u = I$$

 $\begin{pmatrix} u_{11} & u_{12} & \dots & 0 \\ u_{21} & u_{22} & & & \\ \vdots & & \ddots & 0 \\ 0 & & 0 & 1 & 0 \\ & & & & 0 & \ddots \end{pmatrix}$

$$u \in U(\infty) = \bigcup_{n=1}^{\infty} U(N).$$

Large Unitary groups

What is the representation theory of $U(\infty)$?

- The group is not locally compact.
- Too many possible actions in vector spaces.

Representations through characters For finite or compact group G:

Representations
$$\pi: G \mapsto GL(V)$$

 \uparrow
Normalized characters $\chi(g) = \frac{\operatorname{Trace}(\pi(g))}{\dim(\pi)}$

Representations through characters For finite or compact group G:

Representations
$$\pi : G \mapsto GL(V)$$

 \uparrow
Normalized characters $\chi(g) = \frac{\operatorname{Trace}(\pi(g))}{\dim(\pi)}$

Example:

Representations of U(N) with highest weight $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N \in \mathbb{Z}$ \uparrow Normalized Schur polynomials $\frac{s_{\lambda}(x_1,...,x_N)}{s_{\lambda}(1,...,1)}$, $\{x_i\}$ — eigenvalues of $u \in U(N)$.

Reminder:

$$s_{\lambda}(x_1,\ldots,x_N) = rac{\det[x_i^{\lambda_j+N-j}]_{i,j=1}^N}{\prod_{i< j}(x_i-x_j)}$$

Definition. Character of $U(\infty)$ is a continuous $\chi: U(\infty) \to \mathbb{C}$

• $\chi(gug^{-1}) = \chi(u)$ (central) • $\sum_{i,j=1}^{n} z_i \overline{z}_j \chi(u_i u_j^{-1}) \ge 0$ (positive-definite) • $\chi(I) = 1$ (normalized)

Like a **trace**, but without actual representation.

Definition. Character of $U(\infty)$ is a continuous $\chi: U(\infty) \to \mathbb{C}$

• $\chi(gug^{-1}) = \chi(u)$ (central) • $\sum_{i,j=1}^{n} z_i \overline{z}_j \chi(u_i u_j^{-1}) \ge 0$ (positive-definite) • $\chi(I) = 1$ (normalized)

Like a trace, but without actual representation.

Irreducible representation \updownarrow Extreme character = extreme point of the convex set.

Theorem. (Voiculescu-1977; Edrei-1953) The extreme characters of $U(\infty)$ are parameterized by the points ω of domain

$$\Omega \subset \mathbb{R}^{4\infty+2} = \mathbb{R}^\infty \times \mathbb{R}^\infty \times \mathbb{R}^\infty \times \mathbb{R}^\infty \times \mathbb{R} \times \mathbb{R},$$

where Ω is the set of sextuples

$$\omega = (\alpha^+, \alpha^-, \beta^+, \beta^-; \delta^+, \delta^-)$$

such that

$$egin{aligned} lpha^{\pm} &= (lpha_1^{\pm} \geq lpha_2^{\pm} \geq \cdots \geq 0) \in \mathbb{R}^{\infty}, \quad eta^{\pm} &= (eta_1^{\pm} \geq eta_2^{\pm} \geq \cdots \geq 0) \in \mathbb{R}^{\infty}, \ &\sum_{i=1}^{\infty} (lpha_i^{\pm} + eta_i^{\pm}) \leq \delta^{\pm}, \quad eta_1^{+} + eta_1^{-} \leq 1. \end{aligned}$$

$$\chi^{(\omega)}(U) = \prod_{u \in \text{Spec}(U)} e^{\gamma^+(u-1)+\gamma^-(u^{-1}-1)} \prod_{i=1}^{\infty} \frac{1+\beta_i^+(u-1)}{1-\alpha_i^+(u-1)} \cdot \frac{1+\beta_i^-(u^{-1}-1)}{1-\alpha_i^-(u^{-1}-1)},$$

$$\gamma^{\pm} = \delta^{\pm} - \sum (\alpha_i^{\pm} + \beta_i^{\pm}).$$

Proposition.(Vershik–Kerov, 70s) Extreme characters χ of $U(\infty)$ are $N \to \infty$ limits of restrictions on U(k) of characters of U(N)

$$\chi(x_1,\ldots,x_k,1,\ldots)=\lim_{N\to\infty}\frac{s_{\lambda(N)}(x_1,\ldots,x_k,1^{N-k})}{s_{\lambda(N)}(1^N)},$$

where $(x_1, \ldots, x_k, 1, \ldots)$ are eigenvalues of $u \in U(\infty)$.

Approximation of characters of $U(\infty)$ Theorem. (Vershik–Kerov-1982) The sequence of signatures $\lambda(N)$ with the following properties **approximates** the character of $U(\infty)$ with parameters $(\alpha^+, \alpha^-, \beta^+, \beta^-; \delta^+, \delta^-)$.

$$\chi(x_1,\ldots,x_k,1,\ldots) = \lim_{N \to \infty} rac{s_{\lambda(N)}(x_1,\ldots,x_k,1^{N-k})}{s_{\lambda(N)}(1^N)},$$

How to study such limits?

$$\chi(x_1,\ldots,x_k,1,\ldots) = \lim_{N \to \infty} \frac{s_{\lambda(N)}(x_1,\ldots,x_k,1^{N-k})}{s_{\lambda(N)}(1^N)},$$

1. Binomial theorem (Lascoux, Macdonald, Okounkov–Olshanski) $\frac{s_{\lambda}(1+x_1,\ldots,1+x_k,1^{N-k})}{s_{\lambda}(1^N)} = \sum_{\mu} \frac{s_{\mu}^*(\lambda_1,\ldots,\lambda_N) s_{\mu}(x_1,\ldots,x_k,0^{N-k})}{c(N;\mu)}$

$$\chi(x_1,\ldots,x_k,1,\ldots) = \lim_{N \to \infty} \frac{s_{\lambda(N)}(x_1,\ldots,x_k,1^{N-k})}{s_{\lambda(N)}(1^N)},$$

1. Binomial theorem (Lascoux, Macdonald, Okounkov–Olshanski) $\frac{s_{\lambda}(1+x_1,\ldots,1+x_k,1^{N-k})}{s_{\lambda}(1^N)} = \sum_{\mu} \frac{s_{\mu}^*(\lambda_1,\ldots,\lambda_N) s_{\mu}(x_1,\ldots,x_k,0^{N-k})}{c(N;\mu)}$

2. Normalized skew-dimensions (Borodin–Olshanski, Petrov)

$$\frac{s_{\lambda}(x_1, \dots, x_k, 1^{N-k})}{s_{\lambda}(1^N)} = \sum_{\mu} \frac{s_{\mu}(x_1, \dots, x_k)}{s_{\mu}(1^k)} \cdot D_{\lambda/\mu},$$
$$D_{\lambda/\mu} = \mathsf{det}[\cdot]_{i,j=1}^k$$

$$\chi(x_1,\ldots,x_k,1,\ldots) = \lim_{N \to \infty} rac{s_{\lambda(N)}(x_1,\ldots,x_k,1^{N-k})}{s_{\lambda(N)}(1^N)},$$

1. Binomial theorem (Lascoux, Macdonald, Okounkov–Olshanski) $\frac{s_{\lambda}(1+x_1,\ldots,1+x_k,1^{N-k})}{s_{\lambda}(1^N)} = \sum_{\mu} \frac{s_{\mu}^*(\lambda_1,\ldots,\lambda_N) s_{\mu}(x_1,\ldots,x_k,0^{N-k})}{c(N;\mu)}$

2. Normalized skew-dimensions (Borodin–Olshanski, Petrov)

$$\frac{s_{\lambda}(x_1, \dots, x_k, 1^{N-k})}{s_{\lambda}(1^N)} = \sum_{\mu} \frac{s_{\mu}(x_1, \dots, x_k)}{s_{\mu}(1^k)} \cdot \mathbf{D}_{\lambda/\mu},$$
$$\mathbf{D}_{\lambda/\mu} = \mathsf{det}[\cdot]_{i,j=1}^k$$

3. Contour integrals (G.–Panova)

$$\frac{s_{\lambda}(x,1^{N-1})}{s_{\lambda}(1^{N})} = \frac{(N-1)!}{(x-1)^{N-1}} \frac{1}{2\pi \mathbf{i}} \oint_{\infty} \frac{x^{z}}{\prod_{i=1}^{N} (z - (\lambda_{i} + N - i))} \mathrm{d}z$$

Characters of $U(\infty)$ via combinatorial probability

Gelfand–Tsetlin graph

l evel 0 Ø Level 1 λ_1 Level 2 $\mu_1 \geq \mu_2$ Level 3 $\nu_1 \geq \nu_2 \geq \nu_3$ Level 4 $\kappa_1 > \kappa_2 \ge \kappa_3 \ge \kappa_4$ $\nu_1 \ge \mu_1 \ge \nu_2 \ge \mu_2 \ge \nu_3$. Level 5 . . .

Integral coordinates Edges = interlacing $\mu \prec \nu$ if

Characters of $U(\infty)$ via combinatorial probability

Gelfand–Tsetlin graph

- - Dimension of T_λ of U(N) = s_λ(1^N) =#SSYT of shape λ = number of directed paths from Ø to λ at level N.
 - Skew dimension = s_{λ/μ}(1^{N-k}) =#skew SSYT of shape λ/μ = number of directed paths from μ at level k to λ at level N.

Example of a branching graph.

Chara	cters of $U(\infty)$ via	combinatorial probability		
Gelfand–Tsetlin graph				
Level 0	Ø			
Level 1	λ_1	Integral coordinates		
Level 2	$\mu_1 \ge \mu_2$	Edges = interlacing		
Level 3	$\nu_1 \ge \nu_2 \ge \nu_3$	$\mu \prec u$ if		
Level 4	$\kappa_1 \ge \kappa_2 \ge \kappa_3 \ge \kappa_4$	$\nu_1 \ge \mu_1 \ge \nu_2 \ge \mu_2 \ge \nu_3.$		
Level 5				
	<u> </u>	d		

 \mathcal{T} — directed paths from \emptyset towards infinity.

 $\begin{array}{c} \mathsf{Character}\ \chi\ \mathsf{on}\ U(\infty) \\ \updownarrow \\ \mathbf{Gibbs}\ \mathsf{probability}\ \mathsf{measure}\ \mathbb{P}\ \mathsf{on}\ \mathcal{T} \end{array}$

Gibbs property of $\emptyset \prec \lambda \prec \mu \prec \nu \prec \kappa \prec \dots$ Level 3 example: Conditionally on ν , the distribution of $\emptyset \prec \lambda \prec \mu$ is uniform.

Charao	cters of $U(\infty)$ via \cdot	combinatorial probability		
Gelfand–Tsetlin graph				
Level 0	Ø			
Level 1	λ_1	Integral coordinates		
Level 2	$\mu_1 \ge \mu_2$	Edges = interlacing		
Level 3	$\nu_1 \ge \nu_2 \ge \nu_3$	$\mu \prec u$ if		
Level 4	$\kappa_1 \ge \kappa_2 \ge \kappa_3 \ge \kappa_4$	$\nu_1 \ge \mu_1 \ge \nu_2 \ge \mu_2 \ge \nu_3.$		
Level 5				

 \mathcal{T} — directed paths from \emptyset towards infinity.

 $\begin{array}{c} \mathsf{Character} \ \chi \ \mathsf{on} \ \ \mathcal{U}(\infty) \\ \updownarrow \\ \mathbf{Gibbs} \ \mathsf{probability} \ \mathsf{measure} \ \mathbb{P} \ \mathsf{on} \ \mathcal{T} \end{array}$

Gibbs property of $\emptyset \prec \lambda \prec \mu \prec \nu \prec \kappa \prec \dots$ Level 3 example: Conditionally on ν , the distribution of $\emptyset \prec \lambda \prec \mu$ is uniform.

 $\chi\big|_{U(N)} = \sum_{\lambda} \frac{s_{\lambda}(x_1, \dots, x_N)}{s_{\lambda}(1^N)} \mathbb{P}(\text{random path passes through } \lambda)$

Characters of $U(\infty)$ via combinatorial probability

Gelfand–Tsetlin graph

Level 0	Ø	
Level 1	λ_1	Integral coordinates
Level 2	$\mu_1 \ge \mu_2$	Edges = interlacing
Level 3	$\nu_1 \ge \nu_2 \ge \nu_3$	$\mu \prec u$ if
Level 4	$\kappa_1 \ge \kappa_2 \ge \kappa_3 \ge \kappa_4$	$\nu_1 \ge \mu_1 \ge \nu_2 \ge \mu_2 \ge \nu_3.$
Level 5		

 \mathcal{T} — directed paths from \emptyset towards infinity.

Classification of characters of $U(\infty)$ \uparrow Classification of **Gibbs** probability measures on \mathcal{T} \uparrow (Markov or minimal) **boundary** of Gelfand–Tsetlin graph

Quantum groups $U_q(\mathfrak{u}_N)$

Representation theory of U(N) admits a *q*-deformation.

A quantization of the universal enveloping algebra of U(N) $U_q(\mathfrak{u}_N)$ given by generators and relations. Another approach: quantization of $\mathbb{C}[U(N)]$.

- A class of representations is parallel to U(N)−theory. Still parameterized by λ₁ ≥ · · · ≥ λ_N, same dimensions.
- $\operatorname{Trace}(g) \longrightarrow \operatorname{Trace}(q^{2\rho}g)$ quantum trace.
- Dimension \longrightarrow quantum dimension

$$\operatorname{Dim}(\lambda) = s_{\lambda}(1^{N}) = \prod_{i < j} \frac{\lambda_{i} - i - (\lambda_{j} - j)}{j - i}$$

$$\operatorname{Dim}_{\mathrm{q}}(\lambda) = s_{\lambda}(q^{1-N}, q^{3-N}, \dots, q^{N-3}, q^{N-1}) = \dots$$

Quantum groups $U_q(\mathfrak{u}_N)$

Representation theory of U(N) admits a *q*-deformation.

A quantization of the universal enveloping algebra of U(N) $U_q(\mathfrak{u}_N)$ given by generators and relations. Another approach: quantization of $\mathbb{C}[U(N)]$.

- A class of representations is parallel to U(N)−theory. Still parameterized by λ₁ ≥ · · · ≥ λ_N, same dimensions.
- $\operatorname{Trace}(g) \longrightarrow \operatorname{Trace}(q^{2\rho}g)$ quantum trace.
- Dimension quantum dimension

$$\operatorname{Dim}(\lambda) = s_{\lambda}(1^N) = \prod_{i < j} \frac{\lambda_i - i - (\lambda_j - j)}{j - i}$$

$$\operatorname{Dim}_{\mathbf{q}}(\lambda) = s_{\lambda}(q^{1-N}, q^{3-N}, \dots, q^{N-3}, q^{N-1}) = \dots$$

Question: q-deformation of $U(\infty)$ characters/representations?

q-Chara	acters of $U(\infty)$ via	combinatorial probability			
Gelfand–Tsetlin graph					
Level 0	Ø	2			
Level 1	λ_1	1 3			
Level 2	$\mu_1 \ge \mu_2$	1 1 4			
Level 3	$\nu_1 \ge \nu_2 \ge \nu_3$	$\begin{vmatrix} 3 & 3 & 2 \end{vmatrix}$ 1			
Level 4	$\kappa_1 \ge \kappa_2 \ge \kappa_3 \ge \kappa_4$	2			
Level 5		1			

$$\mathcal{T} \longrightarrow \mathsf{paths} \ \emptyset \to \infty.$$

q-Gibbs property of $\emptyset \prec \lambda \prec \mu \prec \nu \prec \kappa \prec \dots$

Level 4 example: Conditionally on κ , the distribution of $\emptyset \prec \lambda \prec \mu \prec \nu$ is $\sim q^{\text{volume}} = q^{\lambda_1 + (\mu_1 + \mu_2) + (\nu_1 + \nu_2 + \nu_3)}$

Definition of (G.-10) for *q*-characters of $U(\infty)$ \uparrow They are *q*-**Gibbs** probability measures on \mathcal{T}

q-Characters of $U(\infty)$ via combinatorial probability

Gelfand–Tsetlin graph

Level 0	Ø			2		
Level 1	λ_1	_	1		3	
Level 2	$\mu_1 \ge \mu_2$	1		1		4
Level 3	$ u_1 \ge \nu_2 \ge \nu_3 $	3	3	2	1	7
Level 4	$\kappa_1 \ge \kappa_2 \ge \kappa_3 \ge \kappa_4$	2			-	_
Level 5		1	1			

Extreme q-**Gibbs** probability measures on \mathcal{T} \uparrow All possible limits $\lim_{N \to \infty} \frac{s_{\lambda(N)}(x_1, \dots, x_k, q^{1-k}, \dots, q^{1-N})}{s_{\lambda(N)}(1, q^{-1}, \dots, q^{1-N})}$

$$\lim_{N\to\infty}\frac{s_\lambda(x_1,\ldots,x_k,q^{1-k},\ldots,q^{1-N})}{s_\lambda(1,q^{-1},\ldots,q^{1-N})}?$$

Theorem. (G.-10) For 0 < q < 1 the limit exists if and only if $\lambda_{N-j+1} \rightarrow \nu_j$ for every *j*. The limit is parameterized by

$$\nu_1 \leq \nu_2 \leq \nu_3 \leq \cdots \in \mathbb{Z}^{\infty}.$$

- Continuous parameters at q = 1
- Discrete parameters for 0 < q < 1

$$\lim_{N\to\infty}\frac{s_\lambda(x_1,\ldots,x_k,q^{1-k},\ldots,q^{1-N})}{s_\lambda(1,q^{-1},\ldots,q^{1-N})}?$$

Theorem. (G.-10) For 0 < q < 1 the limit exists if and only if $\lambda_{N-j+1} \rightarrow \nu_j$ for every *j*. The limit is parameterized by

$$\nu_1 \leq \nu_2 \leq \nu_3 \leq \cdots \in \mathbb{Z}^{\infty}.$$

- Continuous parameters at q = 1
- Discrete parameters for 0 < q < 1
- No explicit construction for corresponding representations so far. Some progress in (Sato-18)

$$\lim_{N\to\infty}\frac{s_{\lambda}(x_1,\ldots,x_k,q^{1-k},\ldots,q^{1-N})}{s_{\lambda}(1,q^{-1},\ldots,q^{1-N})}$$

Most methods were eventually generalized

$$\lim_{N\to\infty}\frac{s_\lambda(x_1,\ldots,x_k,q^{1-k},\ldots,q^{1-N})}{s_\lambda(1,q^{-1},\ldots,q^{1-N})}$$

1. q-Binomial theorem (Okounkov, G.)

$$\frac{s_{\lambda}(x_{1},\ldots,x_{k},q^{1-k},\ldots,q^{1-N})}{s_{\lambda}(1,q^{-1},\ldots,q^{1-N})} = \sum_{\ell(\mu) \le k} \frac{s_{\mu}^{*}(q^{\lambda-\delta};q)}{s_{\mu}^{*}(q^{\mu-\delta};q)} \frac{s_{\mu}^{*}(x_{1},\ldots,x_{k},q^{1-k},\ldots,q^{1-N};q)}{s_{\mu}(1,q^{-1},\ldots,q^{1-N})}$$

$$\lim_{N\to\infty}\frac{s_\lambda(x_1,\ldots,x_k,q^{1-k},\ldots,q^{1-N})}{s_\lambda(1,q^{-1},\ldots,q^{1-N})}$$

1. q-Binomial theorem (Okounkov, G.)

$$\frac{s_{\lambda}(x_{1}, \dots, x_{k}, q^{1-k}, \dots, q^{1-N})}{s_{\lambda}(1, q^{-1}, \dots, q^{1-N})} = \sum_{\ell(\mu) \le k} \frac{s_{\mu}^{*}(q^{\lambda-\delta}; q)}{s_{\mu}^{*}(q^{\mu-\delta}; q)} \frac{s_{\mu}^{*}(x_{1}, \dots, x_{k}, q^{1-k}, \dots, q^{1-N}; q)}{s_{\mu}(1, q^{-1}, \dots, q^{1-N})}$$

2. Normalized q-skew-dimensions (Petrov)

$$\frac{s_{\lambda}(x_1,\ldots,x_k,q^{1-k},\ldots,q^{1-N})}{s_{\lambda}(1,q^{-1},\ldots,q^{1-N})} = \sum_{\mu} \frac{s_{\mu}(x_1,\ldots,x_k)}{s_{\mu}(1,q^{-1},\ldots,q^{1-k})} \cdot \mathbf{D}_{\lambda/\mu}^q,$$
$$\mathbf{D}_{\lambda/\mu}^q = \mathsf{det}[\cdot]_{i,j=1}^k$$

Limits of *q*-specialized Schur polynomials **1.** *q*-Binomial theorem (Okounkov, G.)

$$\frac{s_{\lambda}(x_{1}, \dots, x_{k}, q^{1-k}, \dots, q^{1-N})}{s_{\lambda}(1, q^{-1}, \dots, q^{1-N})} = \sum_{\ell(\mu) \le k} \frac{s_{\mu}^{*}(q^{\lambda-\delta}; q)}{s_{\mu}^{*}(q^{\mu-\delta}; q)} \frac{s_{\mu}^{*}(x_{1}, \dots, x_{k}, q^{1-k}, \dots, q^{1-N}; q)}{s_{\mu}(1, q^{-1}, \dots, q^{1-N})}$$

2. Normalized q-skew-dimensions (Petrov)

$$\frac{s_{\lambda}(x_1, \dots, x_k, q^{1-k}, \dots, q^{1-N})}{s_{\lambda}(1, q^{-1}, \dots, q^{1-N})} = \sum_{\mu} \frac{s_{\mu}(x_1, \dots, x_k)}{s_{\mu}(1, q^{-1}, \dots, q^{1-k})} \cdot D_{\lambda/\mu}^q,$$

$$\mathbf{D}_{\lambda/\mu}^{\boldsymbol{q}} = \mathsf{det}\big[\cdot\big]_{i,j=1}^{k}$$

3. Contour integrals (G.–Panova)

$$\frac{s_{\lambda}(x, q^{-1}, \dots, q^{1-N})}{s_{\lambda}(1, q^{-1}, \dots, q^{1-N})} = \prod_{i=1}^{N-1} \frac{1-q^{i}}{1-xq^{i}} \frac{\ln(q)}{2\pi \mathbf{i}} \oint \frac{x^{z} \, \mathrm{d}z}{\prod_{i=1}^{N} (1-q^{-z}q^{\lambda_{i}+N-i})}$$

Latest *q*-deformation question

$$\lim_{N\to\infty}\frac{s_{\lambda(N)}(x_1,\ldots,x_k,q^{1-k},\ldots,q^{1-N})}{s_{\lambda(N)}(1,q^{-1},\ldots,q^{1-N})}$$

- (G.-Cuenca-18) There is q ↔ q⁻¹ symmetry in the definition of U_q(u_N). Can we restore the symmetry in the limit?
- (G.-Cuenca-18) Is *q*-deformation an artifact of *A_N*-type, or does it generalize to **orthogonal and symplectic** groups?
- (G.-Olshanski-14) Is there an N = ∞ q-version of the harmonic analysis? Decomposition of "natural"' representations into irreducibles?

$$\lim_{N \to \infty} \frac{s_{\lambda(N)}(q^{-N}, q^{1-N}, \dots, q^{-k-1}, x_{-k}, \dots, x_k, q^{k+1}, \dots, q^N)}{s_{\lambda(N)}(q^{-N}, q^{1-N}, \dots, q^{N-1}, q^N)}$$

 $\lambda(N)$ has 2N + 1 rows: $\lambda(N)_{-N} \ge \lambda(N)_{1-N} \ge \cdots \ge \lambda(N)_N$

- Symmetric setup does not distinguish between q and q^{-1} .
- For orthogonal and symplectic groups only symmetric setup is possible, as eigenvalues of matrices come in pairs z, z⁻¹.

$$\lim_{N \to \infty} \frac{s_{\lambda(N)}(q^{-N}, q^{1-N}, \dots, q^{-k-1}, x_{-k}, \dots, x_k, q^{k+1}, \dots, q^N)}{s_{\lambda(N)}(q^{-N}, q^{1-N}, \dots, q^{N-1}, q^N)}$$

 $\lambda(N)$ has 2N + 1 rows: $\lambda(N)_{-N} \ge \lambda(N)_{1-N} \ge \cdots \ge \lambda(N)_N$

- Symmetric setup does not distinguish between q and q^{-1} .
- For orthogonal and symplectic groups only symmetric setup is possible, as eigenvalues of matrices come in pairs z, z⁻¹.

Theorem.(G.-Cuenca-18) The limit exists if and only if for every j $\lim_{N\to\infty} \lambda(N)_j = \nu_j$. Parameterized by **two-sided sequence**:

$$\dots \ge \nu_{-2} \ge \nu_{-1} \ge \nu_0 \ge \nu_1 \ge \nu_2 \ge \dots \in \mathbb{Z}^\infty$$

How to analyze?

$$\frac{s_{\lambda}(q^{-N}, q^{1-N}, \dots, q^{-k-1}, x_{-k}, \dots, x_k, q^{k+1}, \dots, q^N)}{s_{\lambda}(q^{-N}, q^{1-N}, \dots, q^{N-1}, q^N)}$$

So far, none of the previous methods generalize directly.

How to analyze?

$$\frac{s_{\lambda}(q^{-N},q^{1-N},\ldots,q^{-k-1},x_{-k},\ldots,x_{k},q^{k+1},\ldots,q^{N})}{s_{\lambda}(q^{-N},q^{1-N},\ldots,q^{N-1},q^{N})}$$

So far, none of the previous methods generalize directly. However,

Proposition. (G.-Sun-18, G.-Cuenca-18) Double contour integral

$$\frac{s_{\lambda}(q^{-N}, \dots, q^{-1}, q^{\times}, q^{1}, \dots, q^{N})}{s_{\lambda}(q^{-N}, q^{1-N}, \dots, q^{N-1}, q^{N})} = \prod_{i=1}^{N} \frac{(1-q^{i})^{2}}{(q^{\times}-q^{i})(1-q^{\times}q^{i})}$$
$$\times \oint_{\{q^{\lambda_{i}+N-i}\}} \frac{\mathrm{d}z}{2\pi \mathbf{i}} \oint_{\infty} \frac{\mathrm{d}w}{2\pi \mathbf{i}} \frac{z^{\times+b}w^{-b-1}}{z-w} \prod_{i=-N}^{N} \frac{w-q^{\lambda_{i}+N-i}}{z-q^{\lambda_{i}+N-i}}$$

How to analyze?

$$\frac{s_{\lambda}(q^{-N},q^{1-N},\ldots,q^{-k-1},x_{-k},\ldots,x_{k},q^{k+1},\ldots,q^{N})}{s_{\lambda}(q^{-N},q^{1-N},\ldots,q^{N-1},q^{N})}$$

So far, none of the previous methods generalize directly. However,

Proposition. (G.-Sun-18, G.-Cuenca-18) Double contour integral

$$\frac{s_{\lambda}(q^{-N}, \dots, q^{-1}, q^{\times}, q^{1}, \dots, q^{N})}{s_{\lambda}(q^{-N}, q^{1-N}, \dots, q^{N-1}, q^{N})} = \prod_{i=1}^{N} \frac{(1-q^{i})^{2}}{(q^{\times} - q^{i})(1-q^{\times}q^{i})}$$
$$\times \oint_{\{q^{\lambda_{i}+N-i}\}} \frac{\mathrm{d}z}{2\pi \mathbf{i}} \oint_{\infty} \frac{\mathrm{d}w}{2\pi \mathbf{i}} \frac{z^{\times+b}w^{-b-1}}{z-w} \prod_{i=-N}^{N} \frac{w-q^{\lambda_{i}+N-i}}{z-q^{\lambda_{i}+N-i}}$$

Similar formulas exist and lead to asymptotic analysis for *q*-characters of **orthogonal and symplectic** groups.

Harmonic analysis

Harmonic analysis

Decomposition of a representation into irreducibles Decomposition of a character into a combination of extremes Decomposition of a Gibbs measure into an integral of extremes (ergodic decomposition)

What are the natural objects to decompose?

 $U(\infty)$ does not have a Haar measure for a regular representation.

Harmonic analysis

Decomposition of a representation into irreducibles Decomposition of a character into a combination of extremes Decomposition of a Gibbs measure into an integral of extremes (ergodic decomposition)

What are the natural objects to decompose?

 $U(\infty)$ does not have a Haar measure for a regular representation.

One can define representations in **projective limit** of $L_2(U(N))$. (Borodin–Olshanski): branching graphs \rightarrow decompositions

Harmonic analysis: (z, w)-measures

- Level 0 \emptyset Level 1 λ_1
- Level 2 $\mu_1 \ge \mu_2$
- Level 3 $\nu_1 \ge \nu_2 \ge \nu_3$
- Level 4 $\kappa_1 \ge \kappa_2 \ge \kappa_3 \ge \kappa_4$

. . .

Level 5

- A measure is determined by
 - Projection to each level *and*
 - Gibbs property

Harmonic analysis: (z, w)-measures

- Level 0 \emptyset Level 1 λ_1 Level 2 $\mu_1 \ge \mu_2$
- Level 3 $\nu_1 \ge \nu_2 \ge \nu_3$
- Level 4 $\kappa_1 \ge \kappa_2 \ge \kappa_3 \ge \kappa_4$ Level 5 ...

A measure is determined by

- Projection to each level *and*
- Gibbs property

 $q = 1: (z, w) - \text{measures of (Borodin-Olshanski) with } \ell_i = \lambda_i - i.$ $\frac{1}{Z} \prod_{i < j} (\ell_i - \ell_j)^2 \prod_{i=1}^N \frac{1}{\Gamma(z - \ell_i)\Gamma(z' - \ell_i)\Gamma(w + N + \ell_i)\Gamma(w' + N + \ell_i)}$

Harmonic analysis: (z, w)-measures

- Level 0 \emptyset A Level 1 λ_1 Level 2 $\mu_1 \ge \mu_2$ Level 3 $\nu_1 \ge \nu_2 \ge \nu_3$ Level 4 $\kappa_1 \ge \kappa_2 \ge \kappa_3 \ge \kappa_4$
- Level 4 $\kappa_1 \ge \kappa_2 \ge \kappa_3 \ge \kappa_4$ Level 5 ...

A measure is determined by

- Projection to each level *and*
- Gibbs property

q = 1: (z, w)-measures of (Borodin–Olshanski) with $\ell_i = \lambda_i - i$.

$$\frac{1}{Z}\prod_{i< j}(\ell_i-\ell_j)^2\prod_{i=1}^{N}\frac{1}{\Gamma(z-\ell_i)\Gamma(z'-\ell_i)\Gamma(w+N+\ell_i)\Gamma(w'+N+\ell_i)}$$

0 < q < 1: q-(z, w) measures of (G.–Olshanski) on double lattice

- Like orthogonality sets for q-Hypergeometric polynomials.
- Representation-theoretic meaning unclear.

Review

- Character theory for $U(\infty)$ is very rich.
- Language 1: limits of symmetric polynomials as $N \to \infty$.
- Language 2: Gibbs measures on Gelfand–Tsetlin graph.
- *q*-deformations lead to very different results.
- q-deformations for B C D series lack some tools.
- **Representation-theoretic** meanings of *q*-deformations are not yet properly understood.

