Asymptotics of skew standard Young tableaux

Jehanne Dousse (joint work with Valentin Féray)

CNRS and Université Lyon 1

BIRS workshop "Asymptotic algebraic combinatorics" Banff, March 11, 2019

Outline

2) Skew standard Young tableaux

Basic definitions

- A partition λ = (λ₁,..., λ_ℓ) of n is a nonincreasing list of nonnegative integers of sum |λ| = n.
- It is identified with its Young diagram, formed by left-aligned row of boxes, with λ_1 boxes in the 1st row, λ_2 in the second, etc.

$$\lambda = (3,3,2,1)$$

Basic definitions

- A partition λ = (λ₁,..., λ_ℓ) of n is a nonincreasing list of nonnegative integers of sum |λ| = n.
- It is identified with its Young diagram, formed by left-aligned row of boxes, with λ₁ boxes in the 1st row, λ₂ in the second, etc.
- A standard Young tableau (SYT) of shape λ is a filling of λ with integers from 1 to |λ| with increasing rows and columns.
- Let f^{λ} denote the number of SYT of shape λ .

 $\lambda = (3,3,2,1)$

a SYT of shape λ

Hook length formula

Theorem (Hook length formula, Frame-Robinson-Thrall 1954)

For a straight shape λ ,

$$f^{\lambda} = n! \prod_{\Box \in \lambda} h(\Box)^{-1}$$

Hook length formula

Theorem (Hook length formula, Frame-Robinson-Thrall 1954)

For a straight shape λ ,

$$f^{\lambda} = n! \prod_{\Box \in \lambda} h(\Box)^{-1}$$

Asymptotics: Let λ be a diagram with at most $L\sqrt{n}$ rows and columns (called *balanced*). Most hook-lengths are of order $\Theta(\sqrt{n})$.

$$\log(f^{\lambda}) = \log(n!) - \frac{1}{2}n\log(n) - \sum_{\Box \in \lambda} \log\left(\frac{h(\Box)}{\sqrt{n}}\right)$$
$$= \frac{1}{2}n\log(n) + \mathcal{O}(n).$$

The \mathcal{O} term can be written as an integral over the "limit shape" of λ .

Motivation from discrete probability theory

Plancherel measure on the set of Young diagrams of size n:

$$\mathbb{P}(\lambda) = \frac{(f^{\lambda})^2}{n!}$$

(Vershik-Kerov, Logan-Shepp, 1977) The limit shape is the one that maximizes the O(n) term in the previous slide.

Motivation from discrete probability theory

Plancherel measure on the set of Young diagrams of size n:

$$\mathbb{P}(\lambda) = \frac{(f^{\lambda})^2}{n!}$$

(Vershik-Kerov, Logan-Shepp, 1977) The limit shape is the one that maximizes the O(n) term in the previous slide.

Fix a straight shape λ and consider a uniform standard tableau T of shape λ (Romik-Pittel, Biane, Śniady, Sun, ...). Let $T^{(k)}$ be the diagram formed by boxes with entries at most k in T. Then

$$\mathbb{P}(T^{(k)} = \mu) = rac{f^{\lambda/\mu} f^{\mu}}{f^{\lambda}}.$$

 \rightarrow we need the asymptotics of $f^{\lambda/\mu}$.

Outline

Skew standard Young tableaux

Basic definitions

 The skew diagram λ/μ is obtained by removing the Young diagram of μ from the top-left corner of the Young diagram of λ. Notation: n := |λ|, k := |μ|

Basic definitions

- The skew diagram λ/μ is obtained by removing the Young diagram of μ from the top-left corner of the Young diagram of λ. Notation: n := |λ|, k := |μ|
- A skew standard Young tableau (skew SYT) of shape λ/μ is a filling of λ/μ with integers from 1 to |λ/μ| with increasing rows and columns.
- Let $f^{\lambda/\mu}$ denote the number of SYT of shape λ/μ .

$$\lambda/\mu = (4, 4, 3, 1)/(2, 2, 1)$$

a skew SYT of shape λ/μ

Asymptotics for $|f^{\lambda/\mu}|$: previous results

• (Kerov, Stanley independently): asymptotic formula for μ fixed, $\frac{\lambda_i}{n} \rightarrow \alpha_i, \ \frac{\lambda'_i}{n} \rightarrow \beta_i.$

In particular, when $\alpha_i = \beta_i = 0$ for all *i* (no rows or columns of size $\Theta(n)$), we have

 $f^{\lambda/\mu} \sim \frac{f^{\lambda} f^{\mu}}{|\mu|!}.$

Asymptotics for $|f^{\lambda/\mu}|$: previous results

• (Kerov, Stanley independently): asymptotic formula for μ fixed, $\frac{\lambda_i}{n} \rightarrow \alpha_i, \ \frac{\lambda'_i}{n} \rightarrow \beta_i.$

In particular, when $\alpha_i = \beta_i = 0$ for all *i* (no rows or columns of size $\Theta(n)$), we have $f^{\lambda/\mu} \sim \frac{f^{\lambda}f^{\mu}}{|\mu|!}.$

Consequence: for a uniform random Young tableau T of shape λ :

$$\mathbb{P}(T^{(k)} = \mu) \sim \frac{(f^{\mu})^2}{|\mu|!}.$$

In other words, fixed size truncations are asymptotically Plancherel distributed.

Asymptotics for $|f^{\lambda/\mu}|$: previous results

• (Morales-Pak-Panova-Tassy): asymptotics for several families of shapes where $k, n - k = \Theta(n)$, all of the form

$$\log(f^{\lambda/\mu}) = \frac{1}{2}|\lambda/\mu|\log(|\lambda/\mu|) + \mathcal{O}(n),$$

with description of the \mathcal{O} term.

Asymptotics for $|f^{\lambda/\mu}|$: our results

For simplicity, we assume λ and μ balanced. We set $A_{\lambda/\mu} := k! \frac{f^{\lambda/\mu}}{f^{\lambda} f^{\mu}}$.

Asymptotics for $|f^{\lambda/\mu}|$: our results

For simplicity, we assume λ and μ balanced. We set $A_{\lambda/\mu} := k! \frac{f^{\lambda/\mu}}{f^{\lambda} f^{\mu}}$.

Theorem (D.-Féray 2017)

$$if k = o(n^{1/3}), then A_{\lambda/\mu} = \sum_{\substack{\sigma \in S_k, \\ |\sigma| \le r}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} + \mathcal{O}\left(\left(k^{\frac{3}{2}}n^{-\frac{1}{2}}\right)^{r+1}\right).$$

2) if
$$k = o(n^{1/2})$$
, then $A_{\lambda/\mu} \le \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}\right)\right]$.

3 if
$$k \ge Cn^{1/2}$$
, then $A_{\lambda/\mu} \le \exp\left[k\log\frac{k^2}{n} + \mathcal{O}(k)\right]$.

Here, r is a fixed integer and $|\sigma|$ denotes the absolute length of the permutation σ , i.e. the number of transpositions needed to factorize it.

Jehanne Dousse (CNRS)

Examples

If
$$k = o(n^{1/3})$$
, then $A_{\lambda/\mu} = \sum_{\substack{\sigma \in S_k, \\ |\sigma| \leq r}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} + \mathcal{O}\left(\left(k^{\frac{3}{2}}n^{-\frac{1}{2}}\right)^{r+1}\right).$

• For r = 0, the only permutation σ such that $|\sigma| \le 0$ is Id, and $\chi^{\lambda}(Id) = f^{\lambda}$, so

$$A_{\lambda/\mu} = 1 + O(k^{3/2}n^{-1/2}).$$

This generalises Kerov's and Stanley's results for fixed μ .

Examples

If
$$k = o(n^{1/3})$$
, then $A_{\lambda/\mu} = \sum_{\substack{\sigma \in S_k, \\ |\sigma| \le r}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} + \mathcal{O}\left(\left(k^{\frac{3}{2}}n^{-\frac{1}{2}}\right)^{r+1}\right).$

• For r = 0, the only permutation σ such that $|\sigma| \leq 0$ is Id, and $\chi^{\lambda}(Id) = f^{\lambda}$, so

$$A_{\lambda/\mu}=1+\mathcal{O}\Big(k^{3/2}n^{-1/2}\Big).$$

This generalises Kerov's and Stanley's results for fixed μ .

• For
$$r = 1$$
, denote $b(\lambda) = \sum_{i \ge 1} (i-1)\lambda_i$, we have for a transposition τ
$$\frac{\chi^{\lambda}(\tau)}{f^{\lambda}} = \frac{2}{n(n-1)}(b(\lambda') - b(\lambda)).$$

Thus

$$A_{\lambda/\mu} = 1 + \frac{2}{n(n-1)} (b(\lambda') - b(\lambda)) (b(\mu') - b(\mu)) + \mathcal{O}(k^3 n^{-1}).$$

Jehanne Dousse (CNRS)

How to get asymptotics for $f^{\lambda/\mu}$?

• No multiplicative formula in general;

For some family of skew-shapes, $f^{\lambda/\mu}$ admits a product formula \rightarrow convenient to see if a bound is sharp/make conjectures, but not to prove bounds...

How to get asymptotics for $f^{\lambda/\mu}$?

• No multiplicative formula in general;

For some family of skew-shapes, $f^{\lambda/\mu}$ admits a product formula \rightarrow convenient to see if a bound is sharp/make conjectures, but not to prove bounds...

• Recent "additive" hook formula for skew shapes (Naruse), used in this context by Morales-Pak-Panova-Tassy.

How to get asymptotics for $f^{\lambda/\mu}$?

• No multiplicative formula in general;

For some family of skew-shapes, $f^{\lambda/\mu}$ admits a product formula \rightarrow convenient to see if a bound is sharp/make conjectures, but not to prove bounds...

- Recent "additive" hook formula for skew shapes (Naruse), used in this context by Morales-Pak-Panova-Tassy.
- We will use representation theory instead (as Kerov-Stanley).

Outline

Skew standard Young tableaux

Branching rule and $f^{\lambda/\mu}$

• Young diagrams $\lambda \vdash n$ index irreducible representations of the symmetric groups $\rho_{\lambda} : S_n \to GL(V_{\lambda})$.

Branching rule and $f^{\lambda/\mu}$

- Young diagrams λ ⊢ n index irreducible representations of the symmetric groups ρ_λ : S_n → GL(V_λ).
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_n$ we get:

$$\rho_{\lambda}/S_{n-1}\simeq\bigoplus_{\nu:\nu\nearrow\lambda}\rho_{\nu}.$$

$$u \nearrow \lambda \text{ means } \nu \subseteq \lambda \text{ and } |\nu| = |\lambda| - 1.$$

Branching rule and $f^{\lambda/\mu}$

- Young diagrams λ ⊢ n index irreducible representations of the symmetric groups ρ_λ : S_n → GL(V_λ).
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_n$ we get:

$$\rho_{\lambda}/S_{n-1}\simeq\bigoplus_{\nu:\nu\nearrow\lambda}\rho_{\nu}.$$

Iterating the branching rule r = n - k times gives:

$$\rho_{\lambda} / S_{k} \simeq \bigoplus_{\nu^{(0)}, \dots, \nu^{(r-1)} \atop \nu^{(0)} \not\prec \dots \not\prec \lambda} \rho_{\nu^{(0)}}$$

Sequences $\mu = \nu^{(0)} \nearrow \cdots \nearrow \nu^{(r)} = \lambda$ correspond to SYT of shape λ/μ .

Branching rule and $f^{\lambda/\mu}$

- Young diagrams λ ⊢ n index irreducible representations of the symmetric groups ρ_λ : S_n → GL(V_λ).
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_n$ we get:

$$\rho_{\lambda}/S_{n-1}\simeq\bigoplus_{\nu:\nu\nearrow\lambda}\rho_{\nu}.$$

Iterating the branching rule r = n - k times gives:

$$\rho_{\lambda}/S_{k} \simeq \bigoplus_{\nu(0),\ldots,\nu(r-1)\atop \nu(0)\not\prec\ldots\not\prec\lambda} \rho_{\nu(0)} = \bigoplus_{\mu: |\mu|=k} f^{\lambda/\mu} \rho_{\mu}.$$

i.e. $f^{\lambda/\mu}$ is the multiplicity of ρ_{μ} in the restriction ρ_{λ}/S_k .

Branching rule and $f^{\lambda/\mu}$

- Young diagrams λ ⊢ n index irreducible representations of the symmetric groups ρ_λ : S_n → GL(V_λ).
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_n$ we get:

$$\rho_{\lambda}/S_{n-1}\simeq\bigoplus_{\nu:\nu\nearrow\lambda}\rho_{\nu}.$$

Iterating the branching rule r = n - k times gives:

$$\rho_{\lambda}/S_{k} \simeq \bigoplus_{\nu(0),\dots,\nu(r-1)\atop \nu(0) \not\prec\dots\not\prec\lambda} \rho_{\nu(0)} = \bigoplus_{\mu: |\mu|=k} f^{\lambda/\mu} \rho_{\mu}.$$

i.e. $f^{\lambda/\mu}$ is the multiplicity of ρ_{μ} in the restriction ρ_{λ}/S_k . Corollary (Stanley 2001): $f^{\lambda/\mu} = \frac{1}{k!} \sum_{\sigma \in S_k} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma)$. χ^{λ} : character (=trace) of the representation ρ_{λ} .

Branching rule and $f^{\lambda/\mu}$

- Young diagrams $\lambda \vdash n$ index irreducible representations of the symmetric groups $\rho_{\lambda} : S_n \to GL(V_{\lambda})$.
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_n$ we get:

$$\rho_{\lambda}/S_{n-1}\simeq\bigoplus_{\nu:\nu\nearrow\lambda}\rho_{\nu}.$$

Iterating the branching rule r = n - k times gives:

$$\rho_{\lambda}/S_{k} \simeq \bigoplus_{\nu(0),\dots,\nu(r-1)\atop \nu(0) \not\prec\dots\not\prec\lambda} \rho_{\nu(0)} = \bigoplus_{\mu: |\mu|=k} f^{\lambda/\mu} \rho_{\mu}.$$

i.e. $f^{\lambda/\mu}$ is the multiplicity of ρ_{μ} in the restriction ρ_{λ}/S_k . Corollary (Stanley 2001): $f^{\lambda/\mu} = \frac{1}{k!} \sum_{\sigma \in S_k} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma)$. \rightarrow use asymptotic results for character values to get asymptotics for $f^{\lambda/\mu}$.

Bounds on symmetric group characters

Let $r(\nu)$, $c(\nu)$ denote the number of rows and columns of ν , respectively.

Theorem (Féray-Śniady, 2011)

There exists a constant a > 1, such that for every partition $\nu \vdash m$ and every permutation $\sigma \in S_m$,

$$\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right| \leq \left[a \max\left(\frac{r(\nu)}{m}, \frac{c(\nu)}{m}, \frac{|\sigma|}{m}\right)\right]^{|\sigma|}.$$

Bounds on symmetric group characters

Let $r(\nu)$, $c(\nu)$ denote the number of rows and columns of ν , respectively.

Theorem (Féray-Śniady, 2011)

There exists a constant a > 1, such that for every partition $\nu \vdash m$ and every permutation $\sigma \in S_m$,

$$\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right| \leq \left[a \max\left(\frac{r(\nu)}{m}, \frac{c(\nu)}{m}, \frac{|\sigma|}{m}\right)\right]^{|\sigma|}$$

When ν is balanced (i.e. $r(\nu), c(\nu) \leq L\sqrt{m}$ for some L), there are two regimes:

Bounds on symmetric group characters

Let $r(\nu)$, $c(\nu)$ denote the number of rows and columns of ν , respectively.

Theorem (Féray-Śniady, 2011)

There exists a constant a > 1, such that for every partition $\nu \vdash m$ and every permutation $\sigma \in S_m$,

$$\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right| \leq \left[a \max\left(\frac{r(\nu)}{m}, \frac{c(\nu)}{m}, \frac{|\sigma|}{m}\right)\right]^{|\sigma|}.$$

- For fixed $|\sigma|$, the bound is optimal up to a multiplicative constant.
- For large |σ|, it's very bad: LHS is known to be at most 1, while the RHS grows exponentially in m.

Proof of the asymptotic expansion of $A_{\lambda/\mu}$ for $k = o(n^{1/3})$

Proof of the asymptotic expansion of $A_{\lambda/\mu}$ for $k = o(n^{1/3})$

We start from

$$A_{\lambda/\mu} = k! \frac{f^{\lambda/\mu}}{f^{\lambda} f^{\mu}} = \sum_{\sigma \in S_k} \left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \right) \left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}} \right)$$

and want to apply the previous bound on characters.

Proof of the asymptotic expansion of $A_{\lambda/\mu}$ for $k = o(n^{1/3})$

We start from

$$A_{\lambda/\mu} = k! \frac{f^{\lambda/\mu}}{f^{\lambda} f^{\mu}} = \sum_{\sigma \in S_k} \left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \right) \left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}} \right)$$

and want to apply the previous bound on characters.

• We have $|\sigma| \le k = o(n^{1/3})$, so we always have $\left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\right) \le \left(\frac{aL}{\sqrt{n}}\right)^{|\sigma|}$; • For $\left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}}\right)$, it will depend on whether $|\sigma| \le L\sqrt{k}$ or not.

Proof of the asymptotic expansion of $A_{\lambda/\mu}$ for $k = o(n^{1/3})$

We start from

$$A_{\lambda/\mu} = k! \frac{f^{\lambda/\mu}}{f^{\lambda} f^{\mu}} = \sum_{\sigma \in S_k} \left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \right) \left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}} \right)$$

and want to apply the previous bound on characters.

• We have $|\sigma| \le k = o(n^{1/3})$, so we always have $\left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\right) \le \left(\frac{aL}{\sqrt{n}}\right)^{|\sigma|}$; • For $\left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}}\right)$, it will depend on whether $|\sigma| \le L\sqrt{k}$ or not. $A_{\lambda/\mu} = \sum_{i=0}^{r} \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} + S_1 + S_2,$

where

$$S_1 = \sum_{\substack{i=r+1 \ \sigma \in S_k, \\ |\sigma|=i}}^{L\sqrt{k}} \sum_{\substack{\sigma \in S_k, \\ \sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}, \qquad S_2 = \sum_{\substack{i=L\sqrt{k}+1 \ \sigma \in S_k, \\ |\sigma|=i}}^k \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}.$$

Jehanne Dousse (CNRS)

Asymptotics of skew SYT

Proof of the asymptotic expansion of $A_{\lambda/\mu}$ for $k = o(n^{1/3})$

Lemma (Féray-Śniady 2011) For all $k, i \in \mathbb{N}$, we have

$$\#\left\{\sigma\in S_k: |\sigma|=i\right\}\leq \frac{k^{2i}}{i!}.$$

Proof:

Every permutation in S_k appears exactly once in the product

$$[1 + (12)][1 + (13) + (23)] \cdots [1 + (1k) + \cdots + ((k-1)k)]$$

thus

$$\# \{ \sigma \in S_k : |\sigma| = i \} = [x^i](1+x)(1+2x)\cdots(1+(k-1)x) \\ \leq [x^i](1+kx)^k = \binom{k}{i}k^i \leq \frac{k^{2i}}{i!}. \quad \Box$$

Proof of the asymptotic expansion of $A_{\lambda/\mu}$ for $k = o(n^{1/3})$

We can now bound S_1 .

$$\begin{split} S_{1} &= \sum_{i=r+1}^{L\sqrt{k}} \sum_{\substack{\sigma \in S_{k}, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\ &\leq \sum_{i=r+1}^{L\sqrt{k}} \frac{k^{2i}}{i!} \left(\frac{aL}{\sqrt{n}}\right)^{i} \left(\frac{aL}{\sqrt{k}}\right)^{i} \\ &\leq \sum_{i=r+1}^{\infty} \frac{\left(a^{2}L^{2}k^{3/2}n^{-1/2}\right)^{i}}{i!} \\ &= \mathcal{O}\left(\left(k^{3/2}n^{-1/2}\right)^{r+1}\right), \end{split}$$

where the last bound is obtained as the tail of an exponential series.

Jehanne Dousse (CNRS)

Proof of the asymptotic expansion of $A_{\lambda/\mu}$ for $k = o(n^{1/3})$

We can now bound S_1 .

$$S_{1} = \sum_{i=r+1}^{L\sqrt{k}} \sum_{\substack{\sigma \in S_{k}, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}$$
$$\leq \sum_{i=r+1}^{L\sqrt{k}} \frac{k^{2i}}{i!} \left(\frac{aL}{\sqrt{n}}\right)^{i} \left(\frac{aL}{\sqrt{k}}\right)^{i}$$
$$\leq \sum_{i=r+1}^{\infty} \frac{\left(a^{2}L^{2}k^{3/2}n^{-1/2}\right)^{i}}{i!}$$
$$= \mathcal{O}\left(\left(k^{3/2}n^{-1/2}\right)^{r+1}\right),$$

where the last bound is obtained as the tail of an exponential series. This is the error bound in our asymptotic expansion.

Jehanne Dousse (CNRS)

Asymptotics of skew SYT

Proof of the asymptotic expansion of $A_{\lambda/\mu}$ for $k = o(n^{1/3})$

We can also bound S_2 .

$$\begin{split} S_2 &= \sum_{i=L\sqrt{k}+1}^k \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\ &\leq \sum_{i=L\sqrt{k}+1}^k \frac{k^{2i}}{i!} \left(\frac{aL}{\sqrt{n}}\right)^i \left(\frac{ai}{k}\right)^i \\ &\leq \sum_{i=L\sqrt{k}+1}^k \left(a^2 Lekn^{-1/2}\right)^i \qquad \text{by } i! \geq \frac{i^i}{e^i} \\ &\leq \left(a^2 Lekn^{-1/2}\right)^{L\sqrt{k}+1} \frac{1}{1-a^2 Lekn^{-1/2}}. \end{split}$$

where the last bound comes from the convergent geometric series.

Proof of the asymptotic expansion of $A_{\lambda/\mu}$ for $k = o(n^{1/3})$

We can also bound S_2 .

$$\begin{split} S_2 &= \sum_{i=L\sqrt{k}+1}^k \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\ &\leq \sum_{i=L\sqrt{k}+1}^k \frac{k^{2i}}{i!} \left(\frac{aL}{\sqrt{n}}\right)^i \left(\frac{ai}{k}\right)^i \\ &\leq \sum_{i=L\sqrt{k}+1}^k \left(a^2 Lekn^{-1/2}\right)^i \qquad \text{by } i! \geq \frac{i^i}{e^i} \\ &\leq \left(a^2 Lekn^{-1/2}\right)^{L\sqrt{k}+1} \frac{1}{1-a^2 Lekn^{-1/2}}. \end{split}$$

where the last bound comes from the convergent geometric series. This is negligible compared to the bound for S_1 . \Box

Jehanne Dousse (CNRS)

Asymptotics of skew SYT

Proof that
$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}
ight)
ight]$$
 for $k = o(n^{1/2})$

Proof that
$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}\right)
ight]$$
 for $k = o(n^{1/2})$

Recall that

$$A_{\lambda/\mu} = k! \frac{f^{\lambda/\mu}}{f^{\lambda} f^{\mu}} = \sum_{\sigma \in S_k} \left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \right) \left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}} \right).$$

We now write

$$A_{\lambda/\mu}=S_1'+S_2,$$

$$S_{1}' = \sum_{i=0}^{L\sqrt{k}} \sum_{\substack{\sigma \in S_{k}, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}},$$
$$S_{2} = \sum_{\substack{i=L\sqrt{k}+1 \\ |\sigma|=i}}^{k} \sum_{\substack{\sigma \in S_{k}, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}.$$

Proof that
$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}\right)\right]$$
 for $k = o(n^{1/2})$

We bound S'_1 .

$$S_{1}' = \sum_{i=0}^{L\sqrt{k}} \sum_{\substack{\sigma \in S_{k}, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}$$
$$\leq \sum_{i=0}^{L\sqrt{k}} \frac{k^{2i}}{i!} \left(\frac{aL}{\sqrt{n}}\right)^{i} \left(\frac{aL}{\sqrt{k}}\right)^{i}$$
$$\leq \sum_{i=0}^{\infty} \frac{\left(a^{2}L^{2}k^{3/2}n^{-1/2}\right)^{i}}{i!}$$
$$\leq \exp\left(a^{2}L^{2}k^{3/2}n^{-1/2}\right).$$

Jehanne Dousse (CNRS)

Proof that
$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}\right)\right]$$
 for $k = o(n^{1/2})$

We bound S'_1 .

$$S_{1}' = \sum_{i=0}^{L\sqrt{k}} \sum_{\substack{\sigma \in S_{k}, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}$$
$$\leq \sum_{i=0}^{L\sqrt{k}} \frac{k^{2i}}{i!} \left(\frac{aL}{\sqrt{n}}\right)^{i} \left(\frac{aL}{\sqrt{k}}\right)$$
$$\leq \sum_{i=0}^{\infty} \frac{\left(a^{2}L^{2}k^{3/2}n^{-1/2}\right)^{i}}{i!}$$
$$\leq \exp\left(a^{2}L^{2}k^{3/2}n^{-1/2}\right).$$

i

 S_2 is the same as before, and therefore negligible in front of S_1 .

Jehanne Dousse (CNRS)

Asymptotics of skew SYT

Proof that $A_{\lambda/\mu} \leq \exp\left[k\lograc{k^2}{n} + \mathcal{O}(k) ight]$ for $k \geq Cn^{1/2}$

Proof that $A_{\lambda/\mu} \leq \exp\left[k\log\frac{k^2}{n} + \mathcal{O}(k)\right]$ for $k \geq Cn^{1/2}$

We now write

$$A_{\lambda/\mu}=S_1'+S_2'+S_3,$$

Proof that $A_{\lambda/\mu} \leq \exp\left[k\log\frac{k^2}{n} + \mathcal{O}(k)\right]$ for $k \geq Cn^{1/2}$

We now write

$$A_{\lambda/\mu}=S_1'+S_2'+S_3,$$

Proof that $A_{\lambda/\mu} \leq \exp\left[k\lograc{k^2}{n} + \mathcal{O}(k) ight]$ for $k \geq Cn^{1/2}$

We now write

$$A_{\lambda/\mu}=S_1'+S_2'+S_3,$$

$$\begin{split} S_1' &= \sum_{i=0}^{L\sqrt{k}} \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} &\leq \exp\left(a^2 L^2 k^{3/2} n^{-1/2}\right), \\ S_2' &= \sum_{i=L\sqrt{k}+1}^{L\sqrt{n}} \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} &\leq \exp\left[\sqrt{n} \left(\log\frac{k}{\sqrt{n}} + \mathcal{O}(1)\right)\right], \\ S_3 &= \sum_{i=L\sqrt{n}+1}^k \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} &\leq \exp\left[\sqrt{n} \left(\log\frac{k}{\sqrt{n}} + \mathcal{O}(1)\right)\right], \end{split}$$

Proof that $A_{\lambda/\mu} \leq \exp\left[k\lograc{k^2}{n} + \mathcal{O}(k) ight]$ for $k \geq Cn^{1/2}$

We now write

$$A_{\lambda/\mu}=S_1'+S_2'+S_3,$$

$$\begin{split} S_1' &= \sum_{i=0}^{L\sqrt{k}} \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} &\leq \exp\left(a^2 L^2 k^{3/2} n^{-1/2}\right), \\ S_2' &= \sum_{i=L\sqrt{k}+1}^{L\sqrt{n}} \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} &\leq \exp\left[\sqrt{n} \left(\log\frac{k}{\sqrt{n}} + \mathcal{O}(1)\right)\right], \\ S_3 &= \sum_{i=L\sqrt{n+1}}^k \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} &\leq \exp\left[k \log\frac{k^2}{n} + \mathcal{O}(k)\right]. \end{split}$$

Proof that $A_{\lambda/\mu} \leq \exp\left[k\lograc{k^2}{n} + \mathcal{O}(k) ight]$ for $k \geq Cn^{1/2}$

We now write

$$A_{\lambda/\mu}=S_1'+S_2'+S_3,$$

where

$$\begin{split} S_1' &= \sum_{i=0}^{L\sqrt{k}} \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} &\leq \exp\left(a^2 L^2 k^{3/2} n^{-1/2}\right), \\ S_2' &= \sum_{i=L\sqrt{k}+1}^{L\sqrt{n}} \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} &\leq \exp\left[\sqrt{n} \left(\log\frac{k}{\sqrt{n}} + \mathcal{O}(1)\right)\right], \\ S_3 &= \sum_{i=L\sqrt{n}+1}^k \sum_{\substack{\sigma \in S_k, \\ |\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} &\leq \exp\left[k \log\frac{k^2}{n} + \mathcal{O}(k)\right]. \end{split}$$

 S_3 gives the dominant term.

Jehanne Dousse (CNRS)

Asymptotics of skew SYT

March 11, 2019 19 / 22

Improving the bounds?

• We proved: when $k = o(n^{1/2})$,

$$A_{\lambda/\mu} \leq \exp{\left[\mathcal{O}\left(k^{3/2}n^{-1/2}
ight)
ight]}.$$

Moreover, we can find families of shapes λ/μ with $k = n^{\alpha}$, (for various $\alpha \in (0, 1/2)$) for which $\log(A_{\lambda/\mu})$ is of order $\Theta(k^{3/2}n^{-1/2})$. \rightarrow This bound is "sharp".

Improving the bounds?

• We proved: when $k = o(n^{1/2})$,

$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}
ight)
ight].$$

Moreover, we can find families of shapes λ/μ with $k = n^{\alpha}$, (for various $\alpha \in (0, 1/2)$) for which $\log(A_{\lambda/\mu})$ is of order $\Theta(k^{3/2}n^{-1/2})$. \rightarrow This bound is "sharp".

• When $k \ge Cn^{1/2}$, we proved $A_{\lambda/\mu} \le \exp\left[k \log \frac{k^2}{n} + \mathcal{O}(k)\right]$. Experimentally, $\log(A_{\lambda/\mu})$ is again at most of order $\Theta(k^{3/2}n^{-1/2})$. \rightarrow This bound is very likely not sharp.

Improving the bounds? Not with current bounds for characters

Assume $k \ge Cn^{1/2}$.

Call $U_{\rm R}(\sigma,\nu)$ (resp. $U_{\rm MSP}(\sigma,\nu)$, $U_{\rm LS}(\sigma,\nu)$ and $U_{\rm FS}(\sigma,\nu)$) the upper bounds of Roichman (resp. Müller–Schlage-Putch, Larsen–Shalev, and Féray–Śniady) for $\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right|$ and set

 $U_{\text{best}}(\sigma,\nu) = \min\left(U_{\text{R}}(\sigma,\nu), U_{\text{MSP}}(\sigma,\nu), U_{\text{LS}}(\sigma,\nu), U_{\text{FS}}(\sigma,\nu)\right),$

i.e. we consider always the best available upper bound.

Improving the bounds? Not with current bounds for characters

Assume $k \ge Cn^{1/2}$.

Call $U_{\rm R}(\sigma,\nu)$ (resp. $U_{\rm MSP}(\sigma,\nu)$, $U_{\rm LS}(\sigma,\nu)$ and $U_{\rm FS}(\sigma,\nu)$) the upper bounds of Roichman (resp. Müller-Schlage-Putch, Larsen-Shalev, and Féray-Śniady) for $\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right|$ and set

$$U_{\mathsf{best}}(\sigma,\nu) = \min \big(U_{\mathsf{R}}(\sigma,\nu), U_{\mathsf{MSP}}(\sigma,\nu), U_{\mathsf{LS}}(\sigma,\nu), U_{\mathsf{FS}}(\sigma,\nu) \big),$$

i.e. we consider always the best available upper bound.

Proposition (D.-Féray, 2017)

$$\sum_{\sigma \in S_k} U_{best}(\sigma, \lambda) U_{best}(\sigma, \mu) \geq \exp\left[k \log \frac{k^2}{n} + \mathcal{O}(k)\right]$$

 \rightarrow Even combining various bounds from the literature does not improve our result.

Jehanne Dousse (CNRS)

Asymptotics of skew SYT

Improving the bounds?

Conjecture (D.–Féray, 2017)

There exists C = C(L) such that for any balanced λ and μ , we have $\exp\left[-C k^{3/2} n^{-1/2}\right] \le A_{\lambda/\mu} \le \exp\left[C k^{3/2} n^{-1/2}\right],$

- For $k = o(n^{1/3})$, this corresponds to our result;
- For $k = o(n^{1/2})$, we only have the upper bound;
- For k ≥ Cn^{1/2}, we only have a weaker upper bound (and no lower bound).

Thank you for your attention!