Asymptotics of skew standard Young tableaux

Jehanne Dousse
(joint work with Valentin Féray)

CNRS and Université Lyon 1
BIRS workshop "Asymptotic algebraic combinatorics" Banff, March 11, 2019

Outline

(1) Standard Young tableaux

(2) Skew standard Young tableaux

Basic definitions

- A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of n is a nonincreasing list of nonnegative integers of sum $|\lambda|=n$.
- It is identified with its Young diagram, formed by left-aligned row of boxes, with λ_{1} boxes in

$\lambda=(3,3,2,1)$ the 1 st row, λ_{2} in the second, etc.

Basic definitions

- A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of n is a nonincreasing list of nonnegative integers of sum $|\lambda|=n$.
- It is identified with its Young diagram, formed by left-aligned row of boxes, with λ_{1} boxes in the 1 st row, λ_{2} in the second, etc.
- A standard Young tableau (SYT) of shape λ is a filling of λ with integers from 1 to $|\lambda|$ with increasing rows and columns.
- Let f^{λ} denote the number of SYT of shape λ.

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline & \\
\hline
\end{array} \\
& \begin{array}{ll}
\\
& =(3,3,2,1)
\end{array} \\
& \begin{array}{|l|l|l}
1 & 2 & 5 \\
\hline 3 & 4 & 7 \\
\hline 6 & 9 & \\
\hline 8 &
\end{array} \\
& \text { a SYT of shape } \lambda
\end{aligned}
$$

Hook length formula

Theorem (Hook length formula, Frame-Robinson-Thrall 1954)
For a straight shape λ,

$$
f^{\lambda}=n!\prod_{\square \in \lambda} h(\square)^{-1}
$$

hook lengths

Hook length formula

Theorem (Hook length formula,
Frame-Robinson-Thrall 1954)
For a straight shape λ,

$$
f^{\lambda}=n!\prod_{\square \in \lambda} h(\square)^{-1}
$$

6	4	3	1
4	2	1	
1			

hook lengths

Asymptotics: Let λ be a diagram with at most $L \sqrt{n}$ rows and columns (called balanced). Most hook-lengths are of order $\Theta(\sqrt{n})$.

$$
\begin{aligned}
\log \left(f^{\lambda}\right) & =\log (n!)-\frac{1}{2} n \log (n)-\sum_{\square \in \lambda} \log \left(\frac{h(\square)}{\sqrt{n}}\right) \\
& =\frac{1}{2} n \log (n)+\mathcal{O}(n) .
\end{aligned}
$$

The \mathcal{O} term can be written as an integral over the "limit shape" of λ.

Motivation from discrete probability theory

Plancherel measure on the set of Young diagrams of size n :

$$
\mathbb{P}(\lambda)=\frac{\left(f^{\lambda}\right)^{2}}{n!}
$$

(Vershik-Kerov, Logan-Shepp, 1977) The limit shape is the one that maximizes the $\mathcal{O}(n)$ term in the previous slide.

Motivation from discrete probability theory

Plancherel measure on the set of Young diagrams of size n :

$$
\mathbb{P}(\lambda)=\frac{\left(f^{\lambda}\right)^{2}}{n!}
$$

(Vershik-Kerov, Logan-Shepp, 1977) The limit shape is the one that maximizes the $\mathcal{O}(n)$ term in the previous slide.

Fix a straight shape λ and consider a uniform standard tableau T of shape λ (Romik-Pittel, Biane, Śniady, Sun, ...). Let $T^{(k)}$ be the diagram formed by boxes with entries at most k in T. Then

$$
\mathbb{P}\left(T^{(k)}=\mu\right)=\frac{f^{\lambda / \mu} f^{\mu}}{f^{\lambda}}
$$

\rightarrow we need the asymptotics of $f^{\lambda / \mu}$.

Outline

(1) Standard Young tableaux

(2) Skew standard Young tableaux

Basic definitions

- The skew diagram λ / μ is obtained by removing the Young diagram of μ from the top-left corner of the Young diagram of λ. Notation: $n:=|\lambda|, k:=|\mu|$

Basic definitions

- The skew diagram λ / μ is obtained by removing the Young diagram of μ from the top-left corner of the Young diagram of λ.
Notation: $n:=|\lambda|, k:=|\mu|$
- A skew standard Young tableau (skew SYT) of shape λ / μ is a filling of λ / μ with integers from 1 to $|\lambda / \mu|$ with increasing rows and columns.
- Let $f^{\lambda / \mu}$ denote the number of SYT of shape λ / μ.

	2	5
	3	7
	1	6
4		

a skew SYT of shape λ / μ

Asymptotics for $\left|f^{\lambda / \mu}\right|$: previous results

- (Kerov, Stanley independently): asymptotic formula for μ fixed, $\frac{\lambda_{i}}{n} \rightarrow \alpha_{i}, \frac{\lambda_{i}^{\prime}}{n} \rightarrow \beta_{i}$.
In particular, when $\alpha_{i}=\beta_{i}=0$ for all i (no rows or columns of size $\Theta(n))$, we have

$$
f^{\lambda / \mu} \sim \frac{f^{\lambda} f^{\mu}}{|\mu|!} .
$$

Asymptotics for $\left|f^{\lambda / \mu}\right|$: previous results

- (Kerov, Stanley independently): asymptotic formula for μ fixed, $\frac{\lambda_{i}}{n} \rightarrow \alpha_{i}, \frac{\lambda_{i}^{\prime}}{n} \rightarrow \beta_{i}$.
In particular, when $\alpha_{i}=\beta_{i}=0$ for all i (no rows or columns of size $\Theta(n))$, we have

$$
f^{\lambda / \mu} \sim \frac{f^{\lambda} f^{\mu}}{|\mu|!} .
$$

Consequence: for a uniform random Young tableau T of shape λ :

$$
\mathbb{P}\left(T^{(k)}=\mu\right) \sim \frac{\left(f^{\mu}\right)^{2}}{|\mu|!} .
$$

In other words, fixed size truncations are asymptotically Plancherel distributed.

Asymptotics for $\left|f^{\lambda / \mu}\right|$: previous results

- (Morales-Pak-Panova-Tassy): asymptotics for several families of shapes where $k, n-k=\Theta(n)$, all of the form

$$
\log \left(f^{\lambda / \mu}\right)=\frac{1}{2}|\lambda / \mu| \log (|\lambda / \mu|)+\mathcal{O}(n)
$$

with description of the \mathcal{O} term.

Asymptotics for $\left|f^{\lambda / \mu}\right|$: our results

For simplicity, we assume λ and μ balanced. We set $A_{\lambda / \mu}:=k!\frac{f^{\lambda / \mu}}{f^{\lambda} f^{\mu}}$.

Asymptotics for $\left|f^{\lambda / \mu}\right|$: our results

For simplicity, we assume λ and μ balanced. We set $A_{\lambda / \mu}:=k!\frac{f^{\lambda / \mu}}{f^{\lambda} f^{\mu}}$.
Theorem (D.-Féray 2017)
(1) if $k=o\left(n^{1 / 3}\right)$, then $A_{\lambda / \mu}=\sum_{\substack{\sigma \in S_{k},|\sigma| \leq r}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}+\mathcal{O}\left(\left(k^{\frac{3}{2}} n^{-\frac{1}{2}}\right)^{r+1}\right)$.
(2) if $k=o\left(n^{1 / 2}\right)$, then $A_{\lambda / \mu} \leq \exp \left[\mathcal{O}\left(k^{3 / 2} n^{-1 / 2}\right)\right]$.
(3) if $k \geq C n^{1 / 2}$, then $A_{\lambda / \mu} \leq \exp \left[k \log \frac{k^{2}}{n}+\mathcal{O}(k)\right]$.

Here, r is a fixed integer and $|\sigma|$ denotes the absolute length of the permutation σ, i.e. the number of transpositions needed to factorize it.

Examples

If $k=o\left(n^{1 / 3}\right)$, then $A_{\lambda / \mu}=\sum_{\substack{\sigma \in S_{k},|\sigma| \leq r}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}+\mathcal{O}\left(\left(k^{\frac{3}{2}} n^{-\frac{1}{2}}\right)^{r+1}\right)$.

- For $r=0$, the only permutation σ such that $|\sigma| \leq 0$ is Id, and $\chi^{\lambda}(I d)=f^{\lambda}$, so

$$
A_{\lambda / \mu}=1+\mathcal{O}\left(k^{3 / 2} n^{-1 / 2}\right) .
$$

This generalises Kerov's and Stanley's results for fixed μ.

Examples

If $k=o\left(n^{1 / 3}\right)$, then $A_{\lambda / \mu}=\sum_{\substack{\sigma \in S_{k},|\sigma| \leq r}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}+\mathcal{O}\left(\left(k^{\frac{3}{2}} n^{-\frac{1}{2}}\right)^{r+1}\right)$.

- For $r=0$, the only permutation σ such that $|\sigma| \leq 0$ is $I d$, and $\chi^{\lambda}(I d)=f^{\lambda}$, so

$$
A_{\lambda / \mu}=1+\mathcal{O}\left(k^{3 / 2} n^{-1 / 2}\right) .
$$

This generalises Kerov's and Stanley's results for fixed μ.

- For $r=1$, denote $b(\lambda)=\sum_{i \geq 1}(i-1) \lambda_{i}$, we have for a transposition τ

$$
\frac{\chi^{\lambda}(\tau)}{f^{\lambda}}=\frac{2}{n(n-1)}\left(b\left(\lambda^{\prime}\right)-b(\lambda)\right)
$$

Thus

$$
A_{\lambda / \mu}=1+\frac{2}{n(n-1)}\left(b\left(\lambda^{\prime}\right)-b(\lambda)\right)\left(b\left(\mu^{\prime}\right)-b(\mu)\right)+\mathcal{O}\left(k^{3} n^{-1}\right)
$$

How to get asymptotics for $f^{\lambda / \mu}$?

- No multiplicative formula in general;

For some family of skew-shapes, $f^{\lambda / \mu}$ admits a product formula \rightarrow convenient to see if a bound is sharp/make conjectures, but not to prove bounds...

How to get asymptotics for $f^{\lambda / \mu}$?

- No multiplicative formula in general; For some family of skew-shapes, $f^{\lambda / \mu}$ admits a product formula \rightarrow convenient to see if a bound is sharp/make conjectures, but not to prove bounds...
- Recent "additive" hook formula for skew shapes (Naruse), used in this context by Morales-Pak-Panova-Tassy.

How to get asymptotics for $f^{\lambda / \mu}$?

- No multiplicative formula in general; For some family of skew-shapes, $f^{\lambda / \mu}$ admits a product formula \rightarrow convenient to see if a bound is sharp/make conjectures, but not to prove bounds...
- Recent "additive" hook formula for skew shapes (Naruse), used in this context by Morales-Pak-Panova-Tassy.
- We will use representation theory instead (as Kerov-Stanley).

Outline

(1) Standard Young tableaux

(2) Skew standard Young tableaux

(3) Proofs

Branching rule and $f^{\lambda / \mu}$

- Young diagrams $\lambda \vdash n$ index irreducible representations of the symmetric groups $\rho_{\lambda}: S_{n} \rightarrow \operatorname{GL}\left(V_{\lambda}\right)$.

Branching rule and $f^{\lambda / \mu}$

- Young diagrams $\lambda \vdash n$ index irreducible representations of the symmetric groups $\rho_{\lambda}: S_{n} \rightarrow \mathrm{GL}\left(V_{\lambda}\right)$.
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_{n}$ we get:

$$
\rho_{\lambda} / S_{n-1} \simeq \bigoplus_{\nu: \nu \nearrow \lambda} \rho_{\nu}
$$

$\nu \nearrow \lambda$ means $\nu \subseteq \lambda$ and $|\nu|=|\lambda|-1$.

Branching rule and $f^{\lambda / \mu}$

- Young diagrams $\lambda \vdash n$ index irreducible representations of the symmetric groups $\rho_{\lambda}: S_{n} \rightarrow \mathrm{GL}\left(V_{\lambda}\right)$.
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_{n}$ we get:

$$
\rho_{\lambda} / S_{n-1} \simeq \bigoplus_{\nu: \nu / \lambda} \rho_{\nu}
$$

Iterating the branching rule $r=n-k$ times gives:

$$
\rho_{\lambda} / S_{k} \simeq \bigoplus_{\substack{\nu^{(0)}, \ldots, \nu^{(r-1)} \\ \nu(0) \not(\ldots) \gamma \lambda}} \rho_{\nu(0)}
$$

Sequences $\mu=\nu^{(0)} \nearrow \cdots \nearrow \nu^{(r)}=\lambda$ correspond to SYT of shape λ / μ.

Branching rule and $f^{\lambda / \mu}$

- Young diagrams $\lambda \vdash n$ index irreducible representations of the symmetric groups $\rho_{\lambda}: S_{n} \rightarrow \mathrm{GL}\left(V_{\lambda}\right)$.
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_{n}$ we get:

$$
\rho_{\lambda} / S_{n-1} \simeq \bigoplus_{\nu: \nu / \lambda} \rho_{\nu}
$$

Iterating the branching rule $r=n-k$ times gives:

$$
\rho_{\lambda} / S_{k} \simeq \bigoplus_{\substack{\nu^{(0)}, \ldots, \nu^{(r-1)} \\ \nu(0) \\(0)} \lambda \lambda} \rho_{\nu(0)}=\bigoplus_{\mu:|\mu|=k} f^{\lambda / \mu} \rho_{\mu} .
$$

i.e. $f^{\lambda / \mu}$ is the multiplicity of ρ_{μ} in the restriction ρ_{λ} / S_{k}.

Branching rule and $f^{\lambda / \mu}$

- Young diagrams $\lambda \vdash n$ index irreducible representations of the symmetric groups $\rho_{\lambda}: S_{n} \rightarrow \mathrm{GL}\left(V_{\lambda}\right)$.
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_{n}$ we get:

$$
\rho_{\lambda} / S_{n-1} \simeq \bigoplus_{\nu: \nu / \lambda} \rho_{\nu}
$$

Iterating the branching rule $r=n-k$ times gives:

$$
\rho_{\lambda} / S_{k} \simeq \bigoplus_{\substack{\nu^{(0)}, \ldots, \nu^{(r-1)} \\ \nu(0) \\ \ldots}} \rho_{\nu \lambda}(0)=\bigoplus_{\mu:|\mu|=k} f^{\lambda / \mu} \rho_{\mu} .
$$

i.e. $f^{\lambda / \mu}$ is the multiplicity of ρ_{μ} in the restriction ρ_{λ} / S_{k}.

Corollary (Stanley 2001): $f^{\lambda / \mu}=\frac{1}{k!} \sum_{\sigma \in S_{k}} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma)$.
χ^{λ} : character (=trace) of the representation ρ_{λ}.

Branching rule and $f^{\lambda / \mu}$

- Young diagrams $\lambda \vdash n$ index irreducible representations of the symmetric groups $\rho_{\lambda}: S_{n} \rightarrow G L\left(V_{\lambda}\right)$.
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_{n}$ we get:

$$
\rho_{\lambda} / S_{n-1} \simeq \bigoplus_{\nu: \nu / \lambda} \rho_{\nu}
$$

Iterating the branching rule $r=n-k$ times gives:

$$
\rho_{\lambda} / S_{k} \simeq \bigoplus_{\substack{\nu^{(0)}, \ldots, \nu^{(r-1)} \\ \nu(0) \\ \ldots}} \rho_{\nu \lambda}(0)=\bigoplus_{\mu:|\mu|=k} f^{\lambda / \mu} \rho_{\mu} .
$$

i.e. $f^{\lambda / \mu}$ is the multiplicity of ρ_{μ} in the restriction ρ_{λ} / S_{k}.

Corollary (Stanley 2001): $f^{\lambda / \mu}=\frac{1}{k!} \sum_{\sigma \in S_{k}} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma)$.
\rightarrow use asymptotic results for character values to get asymptotics for $f^{\lambda / \mu}$.

Bounds on symmetric group characters

Let $r(\nu), c(\nu)$ denote the number of rows and columns of ν, respectively.
Theorem (Féray-Śniady, 2011)
There exists a constant $a>1$, such that for every partition $\nu \vdash m$ and every permutation $\sigma \in S_{m}$,

$$
\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right| \leq\left[\operatorname{amax}\left(\frac{r(\nu)}{m}, \frac{c(\nu)}{m}, \frac{|\sigma|}{m}\right)\right]^{|\sigma|}
$$

Bounds on symmetric group characters

Let $r(\nu), c(\nu)$ denote the number of rows and columns of ν, respectively. Theorem (Féray-Śniady, 2011)
There exists a constant $a>1$, such that for every partition $\nu \vdash m$ and every permutation $\sigma \in S_{m}$,

$$
\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right| \leq\left[\operatorname{amax}\left(\frac{r(\nu)}{m}, \frac{c(\nu)}{m}, \frac{|\sigma|}{m}\right)\right]^{|\sigma|}
$$

When ν is balanced (i.e. $r(\nu), c(\nu) \leq L \sqrt{m}$ for some L), there are two regimes:
(1) if $|\sigma| \leq L \sqrt{m}$, then $\frac{\chi^{\nu}(\sigma)}{f^{\nu}} \leq\left(\frac{a L}{\sqrt{m}}\right)^{|\sigma|}$;
(2) if $|\sigma|>L \sqrt{m}$, then $\frac{\chi^{\nu}(\sigma)}{f^{\nu}} \leq\left(\frac{a|\sigma|}{m}\right)^{|\sigma|}$.

Bounds on symmetric group characters

Let $r(\nu), c(\nu)$ denote the number of rows and columns of ν, respectively. Theorem (Féray-Śniady, 2011)
There exists a constant $a>1$, such that for every partition $\nu \vdash m$ and every permutation $\sigma \in S_{m}$,

$$
\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right| \leq\left[a \max \left(\frac{r(\nu)}{m}, \frac{c(\nu)}{m}, \frac{|\sigma|}{m}\right)\right]^{|\sigma|}
$$

- For fixed $|\sigma|$, the bound is optimal up to a multiplicative constant.
- For large $|\sigma|$, it's very bad: LHS is known to be at most 1 , while the RHS grows exponentially in m.

Proof of the asymptotic expansion of $A_{\lambda / \mu}$ for $k=o\left(n^{1 / 3}\right)$

Proof of the asymptotic expansion of $A_{\lambda / \mu}$ for $k=o\left(n^{1 / 3}\right)$
We start from

$$
A_{\lambda / \mu}=k!\frac{f^{\lambda / \mu}}{f^{\lambda} f^{\mu}}=\sum_{\sigma \in S_{k}}\left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\right)\left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}}\right)
$$

and want to apply the previous bound on characters.

Proof of the asymptotic expansion of $A_{\lambda / \mu}$ for $k=o\left(n^{1 / 3}\right)$

We start from

$$
A_{\lambda / \mu}=k!\frac{f^{\lambda / \mu}}{f^{\lambda} f \mu}=\sum_{\sigma \in S_{k}}\left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\right)\left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}}\right)
$$

and want to apply the previous bound on characters.

- We have $|\sigma| \leq k=o\left(n^{1 / 3}\right)$, so we always have $\left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\right) \leq\left(\frac{a L}{\sqrt{n}}\right)^{|\sigma|}$;
- For $\left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}}\right)$, it will depend on whether $|\sigma| \leq L \sqrt{k}$ or not.

Proof of the asymptotic expansion of $A_{\lambda / \mu}$ for $k=o\left(n^{1 / 3}\right)$

We start from

$$
A_{\lambda / \mu}=k!\frac{f^{\lambda / \mu}}{f^{\lambda} f^{\mu}}=\sum_{\sigma \in S_{k}}\left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\right)\left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}}\right)
$$

and want to apply the previous bound on characters.

- We have $|\sigma| \leq k=o\left(n^{1 / 3}\right)$, so we always have $\left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\right) \leq\left(\frac{a L}{\sqrt{n}}\right)^{|\sigma|}$;
- For $\left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}}\right)$, it will depend on whether $|\sigma| \leq L \sqrt{k}$ or not.

$$
A_{\lambda / \mu}=\sum_{i=0}^{r} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}+S_{1}+S_{2}
$$

where

$$
S_{1}=\sum_{i=r+1}^{L \sqrt{k}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}, \quad S_{2}=\sum_{i=L \sqrt{k}+1}^{k} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}
$$

Proof of the asymptotic expansion of $A_{\lambda / \mu}$ for $k=o\left(n^{1 / 3}\right)$

Lemma (Féray-Śniady 2011)
For all $k, i \in \mathbb{N}$, we have

$$
\#\left\{\sigma \in S_{k}:|\sigma|=i\right\} \leq \frac{k^{2 i}}{i!} .
$$

Proof:

Every permutation in S_{k} appears exactly once in the product

$$
[1+(12)][1+(13)+(23)] \cdots[1+(1 k)+\cdots+((k-1) k)],
$$

thus

$$
\begin{aligned}
\#\left\{\sigma \in S_{k}:|\sigma|=i\right\} & =\left[x^{i}\right](1+x)(1+2 x) \cdots(1+(k-1) x) \\
& \leq\left[x^{i}\right](1+k x)^{k}=\binom{k}{i} k^{i} \leq \frac{k^{2 i}}{i!} . \square
\end{aligned}
$$

Proof of the asymptotic expansion of $A_{\lambda / \mu}$ for $k=o\left(n^{1 / 3}\right)$

We can now bound S_{1}.

$$
\begin{aligned}
S_{1} & =\sum_{i=r+1}^{L \sqrt{k}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\
& \leq \sum_{i=r+1}^{L \sqrt{k}} \frac{k^{2 i}}{i!}\left(\frac{a L}{\sqrt{n}}\right)^{i}\left(\frac{a L}{\sqrt{k}}\right)^{i} \\
& \leq \sum_{i=r+1}^{\infty} \frac{\left(a^{2} L^{2} k^{3 / 2} n^{-1 / 2}\right)^{i}}{i!} \\
& =\mathcal{O}\left(\left(k^{3 / 2} n^{-1 / 2}\right)^{r+1}\right)
\end{aligned}
$$

where the last bound is obtained as the tail of an exponential series.

Proof of the asymptotic expansion of $A_{\lambda / \mu}$ for $k=o\left(n^{1 / 3}\right)$

We can now bound S_{1}.

$$
\begin{aligned}
S_{1} & =\sum_{i=r+1}^{L \sqrt{k}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\
& \leq \sum_{i=r+1}^{L \sqrt{k}} \frac{k^{2 i}}{i!}\left(\frac{a L}{\sqrt{n}}\right)^{i}\left(\frac{a L}{\sqrt{k}}\right)^{i} \\
& \leq \sum_{i=r+1}^{\infty} \frac{\left(a^{2} L^{2} k^{3 / 2} n^{-1 / 2}\right)^{i}}{i!} \\
& =\mathcal{O}\left(\left(k^{3 / 2} n^{-1 / 2}\right)^{r+1}\right)
\end{aligned}
$$

where the last bound is obtained as the tail of an exponential series. This is the error bound in our asymptotic expansion.

Proof of the asymptotic expansion of $A_{\lambda / \mu}$ for $k=o\left(n^{1 / 3}\right)$

We can also bound S_{2}.

$$
\begin{aligned}
S_{2} & =\sum_{\substack{i=L \sqrt{k}+1}}^{k} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\
& \leq \sum_{i=L \sqrt{k}+1}^{k} \frac{k^{2 i}}{i!}\left(\frac{a L}{\sqrt{n}}\right)^{i}\left(\frac{a i}{k}\right)^{i} \\
& \leq \sum_{i=L \sqrt{k}+1}^{k}\left(a^{2} L_{e k n}{ }^{-1 / 2}\right)^{i} \quad \text { by } i!\geq \frac{i^{i}}{e^{i}} \\
& \leq\left(a^{2} L_{e k n}-1 / 2\right)^{L \sqrt{k}+1} \frac{1}{1-a^{2} \text { Lekn }^{-1 / 2}} .
\end{aligned}
$$

where the last bound comes from the convergent geometric series.

Proof of the asymptotic expansion of $A_{\lambda / \mu}$ for $k=o\left(n^{1 / 3}\right)$

We can also bound S_{2}.

$$
\begin{aligned}
S_{2} & =\sum_{\substack{i=L \sqrt{k}+1}}^{k} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\
& \leq \sum_{i=L \sqrt{k}+1}^{k} \frac{k^{2 i}}{i!}\left(\frac{a L}{\sqrt{n}}\right)^{i}\left(\frac{a i}{k}\right)^{i} \\
& \leq \sum_{i=L \sqrt{k}+1}^{k}\left(a^{2} L e k n^{-1 / 2}\right)^{i} \quad \text { by } i!\geq \frac{i^{i}}{e^{i}} \\
& \leq\left(a^{2} L e k n^{-1 / 2}\right)^{L \sqrt{k}+1} \frac{1}{1-a^{2} L e k n^{-1 / 2}} .
\end{aligned}
$$

where the last bound comes from the convergent geometric series.
This is negligible compared to the bound for S_{1}.

Proof that $A_{\lambda / \mu} \leq \exp \left[\mathcal{O}\left(k^{3 / 2} n^{-1 / 2}\right)\right]$ for $k=o\left(n^{1 / 2}\right)$

Proof that $A_{\lambda / \mu} \leq \exp \left[\mathcal{O}\left(k^{3 / 2} n^{-1 / 2}\right)\right]$ for $k=o\left(n^{1 / 2}\right)$
Recall that

$$
A_{\lambda / \mu}=k!\frac{f^{\lambda / \mu}}{f^{\lambda} f^{\mu}}=\sum_{\sigma \in S_{k}}\left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\right)\left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}}\right) .
$$

We now write

$$
A_{\lambda / \mu}=S_{1}^{\prime}+S_{2}
$$

where

$$
\begin{aligned}
& S_{1}^{\prime}=\sum_{i=0}^{L \sqrt{k}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}, \\
& S_{2}=\sum_{i=L \sqrt{k}+1}^{k} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} .
\end{aligned}
$$

Proof that $A_{\lambda / \mu} \leq \exp \left[\mathcal{O}\left(k^{3 / 2} n^{-1 / 2}\right)\right]$ for $k=o\left(n^{1 / 2}\right)$
We bound S_{1}^{\prime}.

$$
\begin{aligned}
S_{1}^{\prime} & =\sum_{i=0}^{L \sqrt{k}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\
& \leq \sum_{i=0}^{L \sqrt{k}} \frac{k^{2 i}}{i!}\left(\frac{a L}{\sqrt{n}}\right)^{i}\left(\frac{a L}{\sqrt{k}}\right)^{i} \\
& \leq \sum_{i=0}^{\infty} \frac{\left(a^{2} L^{2} k^{3 / 2} n^{-1 / 2}\right)^{i}}{i!} \\
& \leq \exp \left(a^{2} L^{2} k^{3 / 2} n^{-1 / 2}\right)
\end{aligned}
$$

Proof that $A_{\lambda / \mu} \leq \exp \left[\mathcal{O}\left(k^{3 / 2} n^{-1 / 2}\right)\right]$ for $k=o\left(n^{1 / 2}\right)$
We bound S_{1}^{\prime}.

$$
\begin{aligned}
S_{1}^{\prime} & =\sum_{i=0}^{L \sqrt{k}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\
& \leq \sum_{i=0}^{L \sqrt{k}} \frac{k^{2 i}}{i!}\left(\frac{a L}{\sqrt{n}}\right)^{i}\left(\frac{a L}{\sqrt{k}}\right)^{i} \\
& \leq \sum_{i=0}^{\infty} \frac{\left(a^{2} L^{2} k^{3 / 2} n^{-1 / 2}\right)^{i}}{i!} \\
& \leq \exp \left(a^{2} L^{2} k^{3 / 2} n^{-1 / 2}\right)
\end{aligned}
$$

S_{2} is the same as before, and therefore negligible in front of S_{1}.

Proof that $A_{\lambda / \mu} \leq \exp \left[k \log \frac{k^{2}}{n}+\mathcal{O}(k)\right]$ for $k \geq C_{n}^{1 / 2}$

Proof that $A_{\lambda / \mu} \leq \exp \left[k \log \frac{k^{2}}{n}+\mathcal{O}(k)\right]$ for $k \geq n_{n}^{1 / 2}$

We now write

$$
A_{\lambda / \mu}=S_{1}^{\prime}+S_{2}^{\prime}+S_{3},
$$

where

$$
\begin{aligned}
& S_{1}^{\prime}=\sum_{i=0}^{L \sqrt{k}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\
& S_{2}^{\prime}=\sum_{i=L \sqrt{k}+1}^{L \sqrt{n}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\
& S_{3}=\sum_{i=L \sqrt{n}+1}^{k} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}
\end{aligned}
$$

Proof that $A_{\lambda / \mu} \leq \exp \left[k \log \frac{k^{2}}{n}+\mathcal{O}(k)\right]$ for $k \geq n^{1 / 2}$

We now write

$$
A_{\lambda / \mu}=S_{1}^{\prime}+S_{2}^{\prime}+S_{3}
$$

where

$$
\begin{aligned}
& S_{1}^{\prime}=\sum_{i=0}^{L \sqrt{k}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\
& S_{2}^{\prime}=\sum_{i=L \sqrt{k}+1}^{L \sqrt{n}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\
& S_{3}=\sum_{i=L \sqrt{n}+1}^{k} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}
\end{aligned}
$$

Proof that $A_{\lambda / \mu} \leq \exp \left[k \log \frac{k^{2}}{n}+\mathcal{O}(k)\right]$ for $k \geq n^{1 / 2}$

We now write

$$
A_{\lambda / \mu}=S_{1}^{\prime}+S_{2}^{\prime}+S_{3},
$$

where

$$
\begin{aligned}
& S_{1}^{\prime}=\sum_{i=0}^{L \sqrt{k}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \\
& S_{2}^{\prime}=\sum_{i=L \sqrt{k}+1}^{L \sqrt{n}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \leq \exp \left(a^{2} L^{2} k^{3 / 2} n^{-1 / 2}\right), \\
& S_{3}=\sum_{i=L \sqrt{n}+1}^{k} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}}
\end{aligned}
$$

Proof that $A_{\lambda / \mu} \leq \exp \left[k \log \frac{k^{2}}{n}+\mathcal{O}(k)\right]$ for $k \geq n^{1 / 2}$

We now write

$$
A_{\lambda / \mu}=S_{1}^{\prime}+S_{2}^{\prime}+S_{3},
$$

where

$$
\begin{array}{ll}
S_{1}^{\prime}=\sum_{i=0}^{L \sqrt{k}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} & \leq \exp \left(a^{2} L^{2} k^{3 / 2} n^{-1 / 2}\right), \\
S_{2}^{\prime}=\sum_{i=L \sqrt{k}+1}^{L \sqrt{n}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \leq \exp \left[\sqrt{n}\left(\log \frac{k}{\sqrt{n}}+\mathcal{O}(1)\right)\right], \\
S_{3}=\sum_{i=L \sqrt{n}+1}^{k} \sum_{\substack{\sigma \in S_{k} \\
|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} & \leq \exp \left[k \log \frac{k^{2}}{n}+\mathcal{O}(k)\right] .
\end{array}
$$

Proof that $A_{\lambda / \mu} \leq \exp \left[k \log \frac{k^{2}}{n}+\mathcal{O}(k)\right]$ for $k \geq C_{n}^{1 / 2}$

We now write

$$
A_{\lambda / \mu}=S_{1}^{\prime}+S_{2}^{\prime}+S_{3},
$$

where

$$
\begin{array}{ll}
S_{1}^{\prime}=\sum_{i=0}^{L \sqrt{k}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} & \leq \exp \left(a^{2} L^{2} k^{3 / 2} n^{-1 / 2}\right), \\
S_{2}^{\prime}=\sum_{i=L \sqrt{k}+1}^{L \sqrt{n}} \sum_{\substack{\sigma \in S_{k},|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} \leq \exp \left[\sqrt{n}\left(\log \frac{k}{\sqrt{n}}+\mathcal{O}(1)\right)\right], \\
S_{3}=\sum_{i=L \sqrt{n}+1}^{k} \sum_{\substack{\sigma \in S_{k} \\
|\sigma|=i}} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \frac{\chi^{\mu}(\sigma)}{f^{\mu}} & \leq \exp \left[k \log \frac{k^{2}}{n}+\mathcal{O}(k)\right] .
\end{array}
$$

S_{3} gives the dominant term.

Improving the bounds?

- We proved: when $k=o\left(n^{1 / 2}\right)$,

$$
A_{\lambda / \mu} \leq \exp \left[\mathcal{O}\left(k^{3 / 2} n^{-1 / 2}\right)\right]
$$

Moreover, we can find families of shapes λ / μ with $k=n^{\alpha}$, (for various $\alpha \in(0,1 / 2))$ for which $\log \left(A_{\lambda / \mu}\right)$ is of order $\Theta\left(k^{3 / 2} n^{-1 / 2}\right)$. \rightarrow This bound is "sharp".

Improving the bounds?

- We proved: when $k=o\left(n^{1 / 2}\right)$,

$$
A_{\lambda / \mu} \leq \exp \left[\mathcal{O}\left(k^{3 / 2} n^{-1 / 2}\right)\right]
$$

Moreover, we can find families of shapes λ / μ with $k=n^{\alpha}$, (for various $\alpha \in(0,1 / 2))$ for which $\log \left(A_{\lambda / \mu}\right)$ is of order $\Theta\left(k^{3 / 2} n^{-1 / 2}\right)$. \rightarrow This bound is "sharp".

- When $k \geq C n^{1 / 2}$, we proved $A_{\lambda / \mu} \leq \exp \left[k \log \frac{k^{2}}{n}+\mathcal{O}(k)\right]$. Experimentally, $\log \left(A_{\lambda / \mu}\right)$ is again at most of order $\Theta\left(k^{3 / 2} n^{-1 / 2}\right)$. \rightarrow This bound is very likely not sharp.

Improving the bounds? Not with current bounds for

 charactersAssume $k \geq \mathrm{Cn}^{1 / 2}$.
Call $U_{\mathrm{R}}(\sigma, \nu)$ (resp. $U_{\mathrm{MSP}}(\sigma, \nu), U_{\mathrm{LS}}(\sigma, \nu)$ and $\left.U_{\mathrm{FS}}(\sigma, \nu)\right)$ the upper bounds of Roichman (resp. Müller-Schlage-Putch, Larsen-Shalev, and Féray-Śniady) for $\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right|$ and set

$$
U_{\text {best }}(\sigma, \nu)=\min \left(U_{\mathrm{R}}(\sigma, \nu), U_{\mathrm{MSP}}(\sigma, \nu), U_{\mathrm{LS}}(\sigma, \nu), U_{\mathrm{F} \dot{S}}(\sigma, \nu)\right) \text {, }
$$

i.e. we consider always the best available upper bound.

Improving the bounds? Not with current bounds for

 charactersAssume $k \geq \mathrm{Cn}^{1 / 2}$.
Call $U_{\mathrm{R}}(\sigma, \nu)$ (resp. $U_{\mathrm{MSP}}(\sigma, \nu), U_{\mathrm{LS}}(\sigma, \nu)$ and $\left.U_{\mathrm{F} \dot{S}}(\sigma, \nu)\right)$ the upper bounds of Roichman (resp. Müller-Schlage-Putch, Larsen-Shalev, and Féray-Śniady) for $\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right|$ and set

$$
U_{\text {best }}(\sigma, \nu)=\min \left(U_{\mathrm{R}}(\sigma, \nu), U_{\mathrm{MSP}}(\sigma, \nu), U_{\mathrm{LS}}(\sigma, \nu), U_{\mathrm{F} \dot{S}}(\sigma, \nu)\right) \text {, }
$$

i.e. we consider always the best available upper bound.

Proposition (D.-Féray, 2017)

$$
\sum_{\sigma \in S_{k}} U_{b e s t}(\sigma, \lambda) U_{b e s t}(\sigma, \mu) \geq \exp \left[k \log \frac{k^{2}}{n}+\mathcal{O}(k)\right]
$$

\rightarrow Even combining various bounds from the literature does not improve our result.

Improving the bounds?

Conjecture (D.-Féray, 2017)
There exists $C=C(L)$ such that for any balanced λ and μ, we have

$$
\exp \left[-C k^{3 / 2} n^{-1 / 2}\right] \leq A_{\lambda / \mu} \leq \exp \left[C k^{3 / 2} n^{-1 / 2}\right]
$$

- For $k=o\left(n^{1 / 3}\right)$, this corresponds to our result;
- For $k=o\left(n^{1 / 2}\right)$, we only have the upper bound;
- For $k \geq \mathrm{Cn}^{1 / 2}$, we only have a weaker upper bound (and no lower bound).

Thank you for your attention!

