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Standard Young tableaux

Basic de�nitions

A partition λ = (λ1, . . . , λ`) of n is a
nonincreasing list of nonnegative integers of
sum |λ| = n.

It is identi�ed with its Young diagram, formed
by left-aligned row of boxes, with λ1 boxes in
the 1st row, λ2 in the second, etc.

A standard Young tableau (SYT) of shape λ is
a �lling of λ with integers from 1 to |λ| with
increasing rows and columns.

Let f λ denote the number of SYT of shape λ.

λ = (3, 3, 2, 1)

1 2 5
3 4 7
6 9
8

a SYT of shape λ
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Standard Young tableaux

Hook length formula

Theorem (Hook length formula,
Frame-Robinson-Thrall 1954)

For a straight shape λ,

f λ = n!
∏
�∈λ

h(�)−1

6 4 3 1

4 2 1

1

hook lengths

Asymptotics: Let λ be a diagram with at most L
√
n rows and columns

(called balanced). Most hook-lengths are of order Θ(
√
n).

log(f λ) = log(n!)− 1
2n log(n)−

∑
�∈λ

log
(
h(�)√

n

)
= 1

2n log(n) +O(n).

The O term can be written as an integral over the �limit shape� of λ.
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Standard Young tableaux

Motivation from discrete probability theory

Plancherel measure on the set of Young diagrams of size n:

P(λ) =
(f λ)2

n!

(Vershik-Kerov, Logan-Shepp, 1977) The limit shape is the one that
maximizes the O(n) term in the previous slide.
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Standard Young tableaux

Motivation from discrete probability theory

Plancherel measure on the set of Young diagrams of size n:

P(λ) =
(f λ)2

n!

(Vershik-Kerov, Logan-Shepp, 1977) The limit shape is the one that
maximizes the O(n) term in the previous slide.

Fix a straight shape λ and consider a uniform standard tableau T of shape
λ (Romik-Pittel, Biane, �niady, Sun, . . . ). Let T (k) be the diagram formed
by boxes with entries at most k in T . Then

P(T (k) = µ) =
f λ/µf µ

f λ
.

→ we need the asymptotics of f λ/µ.
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Skew standard Young tableaux

Basic de�nitions

The skew diagram λ/µ is obtained by removing
the Young diagram of µ from the top-left
corner of the Young diagram of λ.
Notation: n := |λ|, k := |µ|

A skew standard Young tableau (skew SYT) of
shape λ/µ is a �lling of λ/µ with integers from
1 to |λ/µ| with increasing rows and columns.

Let f λ/µ denote the number of SYT of shape
λ/µ.

λ/µ = (4, 4, 3, 1)/(2, 2, 1)

2 5
3 7

1 6
4

a skew SYT of shape
λ/µ
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Skew standard Young tableaux

Asymptotics for |f λ/µ|: previous results

(Kerov, Stanley independently): asymptotic formula for µ �xed,
λi
n → αi ,

λ′i
n → βi .

In particular, when αi = βi = 0 for all i (no rows or columns of size
Θ(n)), we have

f λ/µ ∼ f λf µ

|µ|! .

Consequence: for a uniform random Young tableau T of shape λ:

P(T (k) = µ) ∼ (f µ)2

|µ|! .

In other words, �xed size truncations are asymptotically Plancherel
distributed.
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Skew standard Young tableaux

Asymptotics for |f λ/µ|: previous results

(Morales-Pak-Panova-Tassy): asymptotics for several families of
shapes where k , n − k = Θ(n), all of the form

log(f λ/µ) = 1
2 |λ/µ| log(|λ/µ|) +O(n),

with description of the O term.
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Skew standard Young tableaux

Asymptotics for |f λ/µ|: our results

For simplicity, we assume λ and µ balanced. We set Aλ/µ := k! f
λ/µ

f λf µ
.

Theorem (D.�Féray 2017)

1 if k = o(n1/3), then Aλ/µ =
∑
σ∈Sk ,
|σ|≤r

χλ(σ)

f λ
χµ(σ)

f µ
+O

((
k

3
2 n−

1
2

)r+1
)
.

2 if k = o(n1/2), then Aλ/µ ≤ exp

[
O
(
k3/2n−1/2

)]
.

3 if k ≥ Cn1/2, then Aλ/µ ≤ exp
[
k log k2

n +O(k)
]
.

Here, r is a �xed integer and |σ| denotes the absolute length of the
permutation σ, i.e. the number of transpositions needed to factorize it.
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Skew standard Young tableaux

Examples

If k = o(n1/3), then Aλ/µ =
∑
σ∈Sk ,
|σ|≤r

χλ(σ)

f λ
χµ(σ)

f µ
+O

((
k

3
2 n−

1
2

)r+1
)
.

For r = 0, the only permutation σ such that |σ| ≤ 0 is Id , and
χλ(Id) = f λ, so

Aλ/µ = 1 +O
(
k3/2n−1/2

)
.

This generalises Kerov's and Stanley's results for �xed µ.

For r = 1, denote b(λ) =
∑

i≥1(i − 1)λi , we have for a transposition τ

χλ(τ)

f λ
=

2
n(n − 1)

(b(λ′)− b(λ)).

Thus

Aλ/µ = 1 +
2

n(n − 1)
(b(λ′)− b(λ))(b(µ′)− b(µ)) +O

(
k3n−1

)
.
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Skew standard Young tableaux

How to get asymptotics for f λ/µ?

No multiplicative formula in general;
For some family of skew-shapes, f λ/µ admits a product formula
→ convenient to see if a bound is sharp/make conjectures, but not to
prove bounds. . .

Recent �additive� hook formula for skew shapes (Naruse), used in this
context by Morales-Pak-Panova-Tassy.

We will use representation theory instead (as Kerov-Stanley).
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Proofs

Branching rule and f λ/µ

Young diagrams λ ` n index irreducible representations of the
symmetric groups ρλ : Sn → GL(Vλ).

Branching rule: restricting Vλ to Sn−1 ⊆ Sn we get:

ρλ /Sn−1 '
⊕

ν: ν↗λ
ρν .

ν ↗ λ means ν ⊆ λ and |ν| = |λ| − 1.

ρλ /Sk '
⊕

ν(0),...,ν(r−1)

ν(0)↗···↗λ

ρν(0)

=
⊕

µ: |µ|=k

f λ/µρµ.

Corollary (Stanley 2001): f λ/µ = 1
k!

∑
σ∈Sk χ

λ(σ)χµ(σ).
χλ: character (=trace) of the representation ρλ.
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symmetric groups ρλ : Sn → GL(Vλ).

Branching rule: restricting Vλ to Sn−1 ⊆ Sn we get:

ρλ /Sn−1 '
⊕

ν: ν↗λ
ρν .

Iterating the branching rule r = n − k times gives:

ρλ /Sk '
⊕

ν(0),...,ν(r−1)

ν(0)↗···↗λ

ρν(0)

=
⊕

µ: |µ|=k

f λ/µρµ.

Sequences µ = ν(0) ↗ · · · ↗ ν(r) = λ correspond to SYT of shape λ/µ.

Corollary (Stanley 2001): f λ/µ = 1
k!

∑
σ∈Sk χ

λ(σ)χµ(σ).
χλ: character (=trace) of the representation ρλ.
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σ∈Sk χ
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→ use asymptotic results for character values to get asymptotics for f λ/µ.
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Proofs

Bounds on symmetric group characters

Let r(ν), c(ν) denote the number of rows and columns of ν, respectively.

Theorem (Féray��niady, 2011)

There exists a constant a > 1, such that for every partition ν ` m and

every permutation σ ∈ Sm,∣∣∣∣χν(σ)

f ν

∣∣∣∣ ≤ [amax

(
r(ν)

m
,
c(ν)

m
,
|σ|
m

)]|σ|
.
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f ν

∣∣∣∣ ≤ [amax

(
r(ν)

m
,
c(ν)

m
,
|σ|
m

)]|σ|
.

When ν is balanced (i.e. r(ν), c(ν) ≤ L
√
m for some L) , there are two

regimes:

1 if |σ| ≤ L
√
m, then χν(σ)

f ν ≤
(

aL√
m

)|σ|
;

2 if |σ| > L
√
m, then χν(σ)

f ν ≤
(
a|σ|
m

)|σ|
.
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f ν

∣∣∣∣ ≤ [amax

(
r(ν)

m
,
c(ν)

m
,
|σ|
m

)]|σ|
.

For �xed |σ|, the bound is optimal up to a multiplicative constant.

For large |σ|, it's very bad: LHS is known to be at most 1, while the
RHS grows exponentially in m.
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Proofs

Proof of the asymptotic expansion of Aλ/µ for k = o(n1/3)

We start from

Aλ/µ = k!
f λ/µ

f λf µ
=
∑
σ∈Sk

(
χλ(σ)

f λ

)(
χµ(σ)

f µ

)
and want to apply the previous bound on characters.

We have |σ| ≤ k = o(n1/3), so we always have
(
χλ(σ)
f λ

)
≤
(

aL√
n

)|σ|
;

For
(
χµ(σ)
f µ

)
, it will depend on whether |σ| ≤ L

√
k or not.

Aλ/µ =
r∑

i=0

∑
σ∈Sk ,
|σ|=i

χλ(σ)

f λ
χµ(σ)

f µ
+ S1 + S2,

where

S1 =
L
√
k∑

i=r+1

∑
σ∈Sk ,
|σ|=i

χλ(σ)

f λ
χµ(σ)

f µ
, S2 =

k∑
i=L
√
k+1

∑
σ∈Sk ,
|σ|=i

χλ(σ)

f λ
χµ(σ)

f µ
.
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Proofs

Proof of the asymptotic expansion of Aλ/µ for k = o(n1/3)

Lemma (Féray��niady 2011)

For all k, i ∈ N, we have

# {σ ∈ Sk : |σ| = i} ≤ k2i

i !
.

Proof:
Every permutation in Sk appears exactly once in the product

[1 + (12)][1 + (13) + (23)] · · · [1 + (1k) + · · ·+ ((k − 1)k)],

thus

# {σ ∈ Sk : |σ| = i} = [x i ](1 + x)(1 + 2x) · · · (1 + (k − 1)x)

≤ [x i ](1 + kx)k =

(
k

i

)
k i ≤ k2i

i !
.
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Proofs

Proof of the asymptotic expansion of Aλ/µ for k = o(n1/3)

We can now bound S1.

S1 =
L
√
k∑

i=r+1

∑
σ∈Sk ,
|σ|=i

χλ(σ)

f λ
χµ(σ)

f µ

≤
L
√
k∑

i=r+1

k2i

i !

(
aL√
n

)i ( aL√
k

)i

≤
∞∑

i=r+1

(
a2L2k3/2n−1/2

)i
i !

=O
((

k3/2n−1/2
)r+1

)
,

where the last bound is obtained as the tail of an exponential series.

This is the error bound in our asymptotic expansion.
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Proofs

Proof of the asymptotic expansion of Aλ/µ for k = o(n1/3)

We can also bound S2.

S2 =
k∑

i=L
√
k+1

∑
σ∈Sk ,
|σ|=i

χλ(σ)

f λ
χµ(σ)

f µ

≤
k∑

i=L
√
k+1

k2i

i !

(
aL√
n

)i (ai

k

)i

≤
k∑

i=L
√
k+1

(
a2Lekn−1/2

)i
by i ! ≥ i i

e i

≤
(
a2Lekn−1/2

)L√k+1 1

1− a2Lekn−1/2
.

where the last bound comes from the convergent geometric series.

This is negligible compared to the bound for S1.
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Proofs

Proof that Aλ/µ ≤ exp

[
O
(
k3/2n−1/2

)]
for k = o(n1/2)

Recall that

Aλ/µ = k!
f λ/µ

f λf µ
=
∑
σ∈Sk

(
χλ(σ)

f λ

)(
χµ(σ)

f µ

)
.

We now write
Aλ/µ = S ′1 + S2,

where

S ′1 =
L
√
k∑

i=0

∑
σ∈Sk ,
|σ|=i

χλ(σ)

f λ
χµ(σ)

f µ
,

S2 =
k∑

i=L
√
k+1

∑
σ∈Sk ,
|σ|=i

χλ(σ)

f λ
χµ(σ)

f µ
.
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Proofs

Proof that Aλ/µ ≤ exp

[
O
(
k3/2n−1/2

)]
for k = o(n1/2)

We bound S ′1.

S ′1 =
L
√
k∑

i=0

∑
σ∈Sk ,
|σ|=i

χλ(σ)

f λ
χµ(σ)

f µ

≤
L
√
k∑

i=0

k2i

i !

(
aL√
n

)i ( aL√
k

)i

≤
∞∑
i=0

(
a2L2k3/2n−1/2

)i
i !

≤ exp
(
a2L2k3/2n−1/2

)
.

S2 is the same as before, and therefore negligible in front of S1.
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Proofs

Proof that Aλ/µ ≤ exp
[
k log k2

n +O(k)
]
for k ≥ Cn1/2

We now write
Aλ/µ = S ′1 + S ′2 + S3,

where

S ′1 =
L
√
k∑

i=0

∑
σ∈Sk ,
|σ|=i

χλ(σ)

f λ
χµ(σ)

f µ

≤ exp
(
a2L2k3/2n−1/2

)
,

S ′2 =

L
√
n∑

i=L
√
k+1

∑
σ∈Sk ,
|σ|=i

χλ(σ)

f λ
χµ(σ)

f µ

≤ exp
[√

n

(
log

k√
n

+O(1)

)]
,

S3 =
k∑

i=L
√
n+1

∑
σ∈Sk ,
|σ|=i

χλ(σ)

f λ
χµ(σ)

f µ

≤ exp
[
k log k2

n +O(k)
]
.

S3 gives the dominant term.
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Proofs

Improving the bounds?

We proved: when k = o(n1/2),

Aλ/µ ≤ exp

[
O
(
k3/2n−1/2

)]
.

Moreover, we can �nd families of shapes λ/µ with k = nα, (for
various α ∈ (0, 1/2)) for which log(Aλ/µ) is of order Θ(k3/2n−1/2).
→ This bound is �sharp�.

When k ≥ Cn1/2, we proved Aλ/µ ≤ exp
[
k log k2

n +O(k)
]
.

Experimentally, log(Aλ/µ) is again at most of order Θ(k3/2n−1/2).
→ This bound is very likely not sharp.
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Proofs

Improving the bounds? Not with current bounds for

characters

Assume k ≥ Cn1/2.

Call UR(σ, ν) (resp. UMSP(σ, ν), ULS(σ, ν) and UF�(σ, ν)) the upper
bounds of Roichman (resp. Müller�Schlage-Putch, Larsen�Shalev, and

Féray��niady) for
∣∣∣χν(σ)f ν

∣∣∣ and set

Ubest(σ, ν) = min
(
UR(σ, ν),UMSP(σ, ν),ULS(σ, ν),UF�(σ, ν)

)
,

i.e. we consider always the best available upper bound.

Proposition (D.�Féray, 2017)∑
σ∈Sk

Ubest(σ, λ)Ubest(σ, µ) ≥ exp
[
k log k2

n +O(k)
]

→ Even combining various bounds from the literature does not improve our
result.
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Proofs

Improving the bounds?

Conjecture (D.�Féray, 2017)

There exists C = C (L) such that for any balanced λ and µ, we have

exp
[
− C k3/2n−1/2

]
≤ Aλ/µ ≤ exp

[
C k3/2n−1/2

]
,

For k = o(n1/3), this corresponds to our result;

For k = o(n1/2), we only have the upper bound;

For k ≥ Cn1/2, we only have a weaker upper bound (and no lower
bound).

Jehanne Dousse (CNRS) Asymptotics of skew SYT March 11, 2019 22 / 22



Proofs

Thank you for your attention!
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