・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Gaussian fluctuations of Jack-deformed random Young diagrams (joint work with Piotr Śniady)

Maciej Dołęga

Institute of Mathematics, Polish Academy of Sciences

Workshop on Asymptotic Combinatorics, Banff, 12 III 2019

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Problem

 β -ensembles: the probability distributions on \mathbb{R}^n with the density

$$p(x_1,\ldots,x_n)=\frac{1}{Z}e^{V(x_1)+\cdots+V(x_n)}\prod_{i< j}|x_i-x_j|^{\beta},$$

- $V \colon \mathbb{R} \to \mathbb{R}$,
- Z normalization constant.

Problem

What is the discrete counterpart of β -ensambles?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Solution

 No obvious unique way of defining the discrete counterpart of β-ensambles.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Solution

- No obvious unique way of defining the discrete counterpart of β-ensambles.
- Several alternative approaches are available (Borodin, Gorin and Guionnet, Moll).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Solution

- No obvious unique way of defining the discrete counterpart of β-ensambles.
- Several alternative approaches are available (Borodin, Gorin and Guionnet, Moll).
- Different approach viaJack characters with nice asymptotic properties, for instance double-scaling limit.

æ

Examples and the representation theory I

Idea (Kerov, Biane, Śniady, ...)

Random Young diagrams come from representation theory of the symmetric group \mathfrak{S}_n !

- ρ_n a representation of \mathfrak{S}_n
- \mathbb{P}_n probability measure on \mathbb{Y}_n associated with ρ_n :

$$\chi_n(\pi) := \frac{\operatorname{Tr} \ \rho_n(\pi)}{\operatorname{Tr} \ \rho_n(\operatorname{id})} = \sum_{\lambda \in \mathbb{Y}_n} \mathbb{P}_n(\lambda) \chi_\lambda(\pi),$$

where χ_{λ} - an irreducible character.

Definition

 $\chi : \mathcal{P}_n \to \mathbb{R}$ is a convex character, if it is a convex combination of irreducible characters.

Examples and the representation theory I

Idea (Kerov, Biane, Śniady, ...)

Random Young diagrams come from representation theory of the symmetric group \mathfrak{S}_n !

- ρ_n a representation of \mathfrak{S}_n
- \mathbb{P}_n probability measure on \mathbb{Y}_n associated with ρ_n :

$$\chi_n(\pi) := \frac{\operatorname{Tr} \ \rho_n(\pi)}{\operatorname{Tr} \ \rho_n(\operatorname{id})} = \sum_{\lambda \in \mathbb{Y}_n} \mathbb{P}_n(\lambda) \chi_\lambda(\pi),$$

where χ_{λ} - an irreducible character.

Definition

 $\chi : \mathcal{P}_n \to \mathbb{R}$ is a convex character, if it is a convex combination of irreducible characters.

□ > < 団 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Examples and the representation theory II

Example

• Plancherel measure

$$\chi(\pi) := egin{cases} 1 & ext{if } \pi = 1^n, \ 0 & ext{otherwise} \end{cases} & \leftrightarrow \quad \mathbb{P}_\chi(\lambda) := rac{(\dim
ho_\lambda)^2}{n!}$$

Schur-Weyl measure

$$\chi(\pi) := \mathsf{N}^{\ell(\pi) - |\pi|} \quad \leftrightarrow \quad \mathbb{P}_{\chi}(\lambda) := rac{\dim E_{\lambda}}{\mathsf{N}^n},$$

where $(\mathbb{C}^N)^{\otimes n} = \bigoplus_{\lambda \vdash n} E_{\lambda}$.

うして ふゆう ふほう ふほう うらつ

Jack deformation

Let $\alpha \in \mathbb{R}_{>0}$.

- $J_{\lambda}^{(\alpha)}$ Jack polynomial ($J_{\lambda}^{(1)} = \frac{n!}{\dim \lambda} s_{\lambda}$ normalized Schur polynomial)
- irreducible Jack character $\chi_{\lambda}^{(\alpha)}$:

$$\chi_{\lambda}^{(\alpha)}(\pi) := lpha^{-rac{\|\pi\|}{2}} rac{Z_{\pi}}{n!} rac{ heta(lpha)}{\pi}(\lambda),$$

where $\|\pi\| := |\pi| - \ell(\pi)$ and $J_{\lambda}^{(\alpha)} = \sum_{\pi} \theta_{\pi}^{(\alpha)}(\lambda) p_{\pi}$.

• deformation of irreducible characters: $\chi_{\lambda}^{(1)}(\pi) = \chi_{\lambda}(\pi)$.

We call $\chi : \mathcal{P}_n \to \mathbb{R}$ a convex Jack character, if it is a convex combination of irreducible Jack characters.

Jack deformation - examples

Example

• Jack-Plancherel measure

$$\chi(\pi) := \begin{cases} 1 & \text{if } \pi = 1^n, \\ 0 & \text{otherwise} \end{cases} \leftrightarrow \ \mathbb{P}_{\chi}(\lambda) := \frac{n!}{\prod_{(x,y) \in \lambda} h_{\alpha}(x,y) h'_{\alpha}(x,y)}$$

• Jack-Schur-Weyl measure

$$\begin{split} \chi(\pi) &:= N^{\ell(\pi)-|\pi|} = N^{-\|\pi\|} \quad \leftrightarrow \\ \mathbb{P}_{\chi}(\lambda) &:= n! \prod_{(x,y)\in\lambda} \frac{N + \sqrt{\alpha}(x-1) - \sqrt{\alpha}^{-1}(y-1)}{N \cdot h_{\alpha}(x,y)h'_{\alpha}(x,y)} \\ &= n! \prod_{(x,y)\in\lambda} \frac{N + (\sqrt{\alpha} \times - \sqrt{\alpha}^{-1} y) + (\sqrt{\alpha}^{-1} - \sqrt{\alpha})}{N \cdot h_{\alpha}(x,y)h'_{\alpha}(x,y)}. \end{split}$$

Main result

Setup:

- $\chi_n \colon \mathcal{P}_n \to \mathbb{R}$ convex Jack character, $n \in \mathbb{N}$
- $\alpha = \alpha(n) \in \mathbb{R}$ s.t. $\gamma := \sqrt{\alpha}^{-1} \sqrt{\alpha} = g\sqrt{n} + g' + o(1)$ for some $g, g' \in \mathbb{R}$.
- (χ_n) fulfills some technical assumptions about its asymptotic behavior; we will specify their details later.

Theorem (D., Śniady 2019)

Let λ_n be a random Young diagram with the probability distribution \mathbb{P}_{χ_n} associated with $\chi := \chi_n$. Then

- λ_n converges to some limit shape when $n \to \infty$
- the fluctuations of λ_n around the limit shape are asymptotically Gaussian.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

α -anisotropic Young diagrams

Definition

Anisotropic Young diagram $T_{w,h}(\lambda)$ - polygon obtained from the Young diagram λ by a horizontal stretching of ratio w and a vertical stretching of ratio h (each box 1×1 is replaced by a box of dimension $w \times h$).

In order to study the shape of random Young diagrams $\lambda_n \in \mathbb{Y}_n$ sampled by some Jack-deformed measure, the right scaling is the following:

$$\Lambda_n := T_{\sqrt{\frac{\alpha}{n}}, \sqrt{\frac{1}{\alpha n}}} \lambda_n.$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

lpha-anisotropic Young diagrams

Definition

Anisotropic Young diagram $T_{w,h}(\lambda)$ - polygon obtained from the Young diagram λ by a horizontal stretching of ratio w and a vertical stretching of ratio h (each box 1×1 is replaced by a box of dimension $w \times h$).

In order to study the shape of random Young diagrams $\lambda_n \in \mathbb{Y}_n$ sampled by some Jack-deformed measure, the right scaling is the following:

$$\Lambda_n := T_{\sqrt{\frac{\alpha}{n}}, \sqrt{\frac{1}{\alpha n}}} \lambda_n.$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

lpha-anisotropic Young diagrams

Definition

Anisotropic Young diagram $T_{w,h}(\lambda)$ - polygon obtained from the Young diagram λ by a horizontal stretching of ratio w and a vertical stretching of ratio h (each box 1×1 is replaced by a box of dimension $w \times h$).

In order to study the shape of random Young diagrams $\lambda_n \in \mathbb{Y}_n$ sampled by some Jack-deformed measure, the right scaling is the following:

$$\Lambda_n := T_{\sqrt{\frac{\alpha}{n}}, \sqrt{\frac{1}{\alpha n}}} \lambda_n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Young diagrams as continuous objects

French convention:

Young diagrams as continuous objects

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Young diagrams as continuous objects

Young diagrams as continuous objects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Young diagrams as continuous objects

Definition

A profile of a Young diagram λ is a function $\omega_{\lambda} : \mathbb{R} \to \mathbb{R}_+$ such that its graph is a profile of λ drawn in Russian convention.

Young diagrams as continuous objects

Russian convention:

Definition

A profile of a Young diagram λ is a function $\omega_{\lambda} : \mathbb{R} \to \mathbb{R}_+$ such that its graph is a profile of λ drawn in Russian convention.

When we claim that a sequence $(\lambda_n)_n$ of Young diagrams $\lambda_n \in \mathbb{Y}_n$ converges to some limit shape, we actually mean that the sequence of profiles ω_{Λ_n} converges.

Asymptotic shape of large Jack-deformed Young diagrams

Setup:

- $\chi_n \colon \mathcal{P}_n \to \mathbb{R}$ convex Jack character, $n \in \mathbb{N}$
- $\alpha = \alpha(n) \in \mathbb{R}$ s.t. $\gamma := \sqrt{\alpha}^{-1} \sqrt{\alpha} = g\sqrt{n} + g' + o(1)$ for some $g, g' \in \mathbb{R}$.
- (χ_n) fulfills some technical assumptions about its asymptotic behavior; we will specify their details later.

Theorem (D., Śniady 2019; lpha=1 Biane 2002)

Let λ_n be a random Young diagram with the probability distribution \mathbb{P}_{χ_n} associated with $\chi := \chi_n$. Then there exists some deterministic function $\omega_{\Lambda_\infty} : \mathbb{R} \to \mathbb{R}$ with the

property that

$$\lim_{n\to\infty}\omega_{\Lambda_n}=\omega_{\Lambda_\infty},$$

where the convergence holds true with respect to the supremum norm, in probability.

Examples

We recall that
$$\gamma = g\sqrt{n} + g' + o(1)$$
.

Example

When $\alpha > 0$ is fixed, that is g = 0 then the limit shape $\omega_{\Lambda_{\infty}}$ does not depend on $\alpha!$.

• Jack-Plancherel measure (D., Féray 2016)

$$\omega_{\Lambda_{\infty}}(x) = \begin{cases} |x| & \text{if } |x| \ge 2;\\ \frac{2}{\pi} \left(x \cdot \arcsin \frac{x}{2} + \sqrt{4 - x^2} \right) & \text{otherwise.} \end{cases}$$

• Jack–Schur–Weyl measure with $\sqrt{n} \sim cN$ (D., Śniady 2019)

 $\omega_{\Lambda_{\infty}}(x)$ – explicit function depending on c.

Examples

We recall that
$$\gamma = g\sqrt{n} + g' + o(1)$$
.

Example

• $\alpha(n) = \frac{1}{c^2 n}$ for some $c \in \mathbb{R}_+$,

• then
$$g = c, g' = 0$$
.

Then $\Lambda_n = \text{collection of rectangles}$ $(\frac{1}{gn} \cdot \lambda_i, g)_i$ thus $\omega_{\Lambda_{\infty}}$ clearly depends on g!

The limit shape of random Young diagrams distributed according to the Jack–Plancherel measure in the double scaling limit for $c = \frac{1}{4}$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Fluctuations

Problem

How to "measure" fluctuations around the limit shape $\omega_{\Lambda_{\infty}}$?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Fluctuations

Problem

How to "measure" fluctuations around the limit shape $\omega_{\Lambda_{\infty}}$?

We know that $\omega_{\Lambda_n} \to \omega_{\Lambda_\infty}$, so we define a random vector

$$\Delta_n := \sqrt{n} \left(\omega_{\Lambda_n} - \omega_{\Lambda_\infty} \right).$$

We would like to show that Δ_n converges in distribution to some (non-centered) Gaussian random vector Δ_{∞} in the space $(\mathbb{R}[x])'$ of distributions, so informally speaking,

$$\omega_{\Lambda_n} \approx \omega_{\Lambda_\infty} + \frac{1}{\sqrt{n}} \Delta_\infty.$$

We need to study suitable test functions:

$$Y_k := \frac{k-1}{2} \int u^{k-2} \Delta_n(u) du, \quad k \ge 2.$$

Central limit theorem

Setup:

- $\chi_n \colon \mathcal{P}_n \to \mathbb{R}$ convex Jack character, $n \in \mathbb{N}$
- $\alpha = \alpha(n) \in \mathbb{R}$ s.t. $\gamma := \sqrt{\alpha}^{-1} \sqrt{\alpha} = g\sqrt{n} + g' + o(1)$ for some $g, g' \in \mathbb{R}$.
- (χ_n) fulfills some technical assumptions about its asymptotic behavior; we will specify their details later.

Theorem (D., Śniady 2019; $\alpha = 1$ Śniady 2006)

Let λ_n be a random Young diagram with the probability distribution \mathbb{P}_{χ_n} associated with $\chi := \chi_n$. Then the random vector Δ_n converges in distribution to some (non-centered) Gaussian random vector Δ_∞ in the space ($\mathbb{R}[x]$)' of distributions, the dual space to polynomials, as $n \to \infty$.

Equivalently, the family of random variables $(Y_k)_{k\geq 2}$ converges as $n \to \infty$ to a (non-centered) Gaussian distribution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question

Problem

What are the proper assumptions about asymptotic behavior of convex Jack characters which provide the law of large numbers and the central limit theorem?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Approximate factorization property

We extend the domain of $\chi_n \colon \mathcal{P}_n \to \mathbb{R}$ to the set $\bigsqcup_{0 \le k \le n} \mathcal{P}_k$ of partitions of sufficiently small numbers by setting

$$\chi_n(\pi) := \chi_n(\pi, 1^{n-|\pi|}) \quad \text{for } |\pi| \le n.$$

Approximate factorization property

We extend the domain of $\chi_n \colon \mathcal{P}_n \to \mathbb{R}$ to the set $\bigsqcup_{0 \le k \le n} \mathcal{P}_k$ of partitions of sufficiently small numbers by setting

$$\chi_n(\pi):=\chi_n(\pi,1^{n-|\pi|}) \qquad ext{for } |\pi|\leq n.$$

The general idea of our assumptions is the following:

• the characters do not grow too fast:

$$\chi_n(\pi) = O(n^{-\frac{\|\pi\|}{2}}),$$

• characters on cycles have subleading terms of a proper order:

$$\chi_n((l)) \ n^{\frac{l-1}{2}} = a_{l+1} + \frac{b_{l+1} + o(1)}{\sqrt{n}} \qquad \text{for } n \to \infty,$$

• the characters should approximately factorize, i.e.

$$\chi_n(\pi_1\cdots\pi_\ell)\approx\chi_n(\pi_1)\cdots\chi_n(\pi_\ell).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cumulants I

Note that $\chi_n(\pi) = \mathbb{E}(\chi_{(\circ)}(\pi))$ is, by definition, the expectation of the irreducible Jack characters $\chi_{\lambda}(\pi)$ taken with the probability $\mathbb{P}_{\chi_n}(\lambda)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cumulants I

Note that $\chi_n(\pi) = \mathbb{E}(\chi_{(\circ)}(\pi))$ is, by definition, the expectation of the irreducible Jack characters $\chi_\lambda(\pi)$ taken with the probability $\mathbb{P}_{\chi_n}(\lambda)$.

$$\chi_n(\pi_1 \cdot \pi_2) - \chi_n(\pi_1) \cdot \chi_n(\pi_2) = \operatorname{Var} \left(\chi_{(\circ)}(\pi) \right).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Cumulants I

Note that $\chi_n(\pi) = \mathbb{E}(\chi_{(\circ)}(\pi))$ is, by definition, the expectation of the irreducible Jack characters $\chi_{\lambda}(\pi)$ taken with the probability $\mathbb{P}_{\chi_n}(\lambda)$.

$$\chi_n(\pi_1 \cdot \pi_2) - \chi_n(\pi_1) \cdot \chi_n(\pi_2) = \operatorname{Var} \left(\chi_{(\circ)}(\pi) \right).$$

Cumulants $\kappa_{\ell}^{\mathbb{E}}(x_1, \ldots, x_{\ell})$ of random variables x_1, \ldots, x_{ℓ} - natural generalization of a variance:

$$\begin{split} \mathcal{E}(x_{1}) &= \kappa_{1}^{\mathbb{E}}(x_{1}), \\ \mathbb{E}(x_{1}x_{2}) &= \kappa_{2}^{\mathbb{E}}(x_{1}, x_{2}) + \kappa_{1}^{\mathbb{E}}(x_{1})\kappa_{1}^{\mathbb{E}}(x_{2}), \\ \mathbb{E}(x_{1}x_{2}x_{3}) &= \kappa_{3}^{\mathbb{E}}(x_{1}, x_{2}, x_{3}) + \kappa_{1}^{\mathbb{E}}(x_{1})\kappa_{2}^{\mathbb{E}}(x_{2}, x_{3}) \\ &+ \kappa_{1}^{\mathbb{E}}(x_{2})\kappa_{2}^{\mathbb{E}}(x_{1}, x_{3}) + \kappa_{1}^{\mathbb{E}}(x_{3})\kappa_{2}^{\mathbb{E}}(x_{1}, x_{2}) \\ &+ \kappa_{1}^{\mathbb{E}}(x_{1})\kappa_{1}^{\mathbb{E}}(x_{2})\kappa_{1}^{\mathbb{E}}(x_{3}), \\ &\vdots \end{split}$$

うして ふゆう ふほう ふほう うらつ

Cumulants I

Note that $\chi_n(\pi) = \mathbb{E}(\chi_{(\circ)}(\pi))$ is, by definition, the expectation of the irreducible Jack characters $\chi_{\lambda}(\pi)$ taken with the probability $\mathbb{P}_{\chi_n}(\lambda)$.

$$\chi_n(\pi_1 \cdot \pi_2) - \chi_n(\pi_1) \cdot \chi_n(\pi_2) = \operatorname{Var} \left(\chi_{(\circ)}(\pi) \right).$$

Cumulants $\kappa_{\ell}^{\chi}(\pi_1 \dots \pi_{\ell})$ of random variables $\chi_{(\circ)}(\pi_1), \dots, \chi_{(\circ)}(\pi_{\ell})$ - natural generalization of a variance:

$$\begin{aligned} \chi(\pi_1) &= \kappa_1^{\chi}(\pi_1), \\ \chi(\pi_1\pi_2) &= \kappa_2^{\chi}(\pi_1,\pi_2) + \kappa_1^{\chi}(\pi_1) \ \kappa_1^{\chi}(\pi_2), \\ \chi(\pi_1\pi_2\pi_3) &= \kappa_3^{\chi}(\pi_1,\pi_2,\pi_3) + \kappa_1^{\chi}(\pi_1) \ \kappa_2^{\chi}(\pi_2,\pi_3) \\ &+ \kappa_1^{\chi}(\pi_2) \ \kappa_2^{\chi}(\pi_1,\pi_3) + \kappa_1^{\chi}(\pi_3) \ \kappa_2^{\chi}(\pi_1,\pi_2) \\ &+ \kappa_1^{\chi}(\pi_1) \ \kappa_1^{\chi}(\pi_2) \ \kappa_1^{\chi}(\pi_3), \end{aligned}$$

Approximate factorization property revisited

$$\begin{cases} \chi_n(\pi) = O(n^{-\frac{\|\pi\|}{2}}), \\ \chi_n(\pi_1 \cdots \pi_\ell) \approx \chi_n(\pi_1) \cdots \chi_n(\pi_\ell) \end{cases}$$

Examples (Of measures with AFP, thus CLT)

• Jack–Plancherel measure ($\alpha > 0$ fixed, D., Féray 2016)

$$\chi_n(\pi) := \begin{cases} 1 & \text{if } \pi = 1^n, \\ 0 & \text{otherwise} \end{cases} \quad \kappa_\ell^{\chi}(\pi_1, \dots, \pi_\ell) = \begin{cases} 1 & \text{if } \ell = 1, \pi_1 = 1^k, \\ 0 & \text{otherwise} \end{cases}$$

• Jack–Schur–Weyl measure ($\sqrt{n} \sim cN$, D., Śniady 2019)

$$\chi_n(\pi) := N^{-\|\pi\|} \quad \kappa_\ell^{\chi}(\pi_1, \dots, \pi_\ell) = \begin{cases} N^{-\|\pi_\ell\|} & \text{if } \ell = 1, \\ 0 & \text{otherwise.} \end{cases}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Approximate factorization property revisited

$$\kappa_{\ell}^{\chi}(\pi_1,\ldots,\pi_{\ell})=O\left(n^{-\frac{\|\pi_1\|+\cdots+\|\pi_{\ell}\|-2(\ell-1)}{2}}\right).$$

Examples (Of measures with AFP, thus CLT)

• Jack–Plancherel measure ($\alpha > 0$ fixed, D., Féray 2016)

$$\chi_n(\pi) := \begin{cases} 1 & \text{if } \pi = 1^n, \\ 0 & \text{otherwise} \end{cases} \quad \kappa_\ell^{\chi}(\pi_1, \dots, \pi_\ell) = \begin{cases} 1 & \text{if } \ell = 1, \pi_1 = 1^k, \\ 0 & \text{otherwise} \end{cases}$$

• Jack–Schur–Weyl measure ($\sqrt{n} \sim cN$, D., Śniady 2019)

$$\chi_n(\pi) := N^{-\|\pi\|} \quad \kappa_\ell^{\chi}(\pi_1, \dots, \pi_\ell) = \begin{cases} N^{-\|\pi_\ell\|} & \text{if } \ell = 1, \\ 0 & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Approximate factorization property revisited

$$\kappa_\ell^{\chi}(\pi_1,\ldots,\pi_\ell) = O\left(n^{-rac{\|\pi_1\|+\cdots+\|\pi_\ell\|-2(\ell-1)}{2}}
ight).$$

Examples (Of measures with AFP, thus CLT)

• Jack–Plancherel measure ($\alpha > 0$ fixed, D., Féray 2016)

$$\chi_n(\pi) := \begin{cases} 1 & \text{if } \pi = 1^n, \\ 0 & \text{otherwise} \end{cases} \quad \kappa_\ell^{\chi}(\pi_1, \dots, \pi_\ell) = \begin{cases} 1 & \text{if } \ell = 1, \pi_1 = 1^k, \\ 0 & \text{otherwise} \end{cases}$$

• Jack-Schur-Weyl measure ($\sqrt{n} \sim cN$, D., Śniady 2019)

$$\chi_n(\pi) := N^{-\|\pi\|} \quad \kappa_\ell^{\chi}(\pi_1, \dots, \pi_\ell) = \begin{cases} N^{-\|\pi_\ell\|} & \text{if } \ell = 1, \\ 0 & \text{otherwise.} \end{cases}$$

More examples

Theorem

 $(\chi_n^1), (\chi_n^2)$ - families of convex Jack characters with AFP. Then all the families have AFP.

- the restriction $(\chi^i_{q,n}) := \left((\chi^i_{q_n})^{\downarrow^{q_n}_n}
 ight)$, where $q_n \ge n$ and
- $$\begin{split} \lim_{n \to \infty} \frac{q_n}{n} &= q; \\ \bullet \text{ the induction } (\chi_{q,n}^i) := \left((\chi_{q_n}^i)^{\uparrow_n^{q_n}} \right), \text{ where } q_n \leq n \text{ and } \\ \lim_{n \to \infty} \frac{q_n}{n} &= q; \\ \lim_{n \to \infty} \frac{q_n}{n} = q; \\ \end{split}$$

$$(\chi_n) := \left(\chi_{q_n^{(1)}}^1 \circ \chi_{q_n^{(2)}}^2\right), \begin{array}{c} \mathsf{c}_{\lambda\mu} (\mathfrak{a}) \cdot \mathsf{h}_{\mathfrak{a}}(\mathfrak{c}) \mathsf{h}_{\mathfrak{a}}(\mathfrak{c}) \\ \mathsf{h}_{\mathfrak{a}}(\mathfrak{c}) \cdot \mathsf{h}_{\mathfrak{a}}(\mathfrak{c}) \mathsf{h}_{\mathfrak{a}}(\mathfrak{c}) \\ \mathsf{h}_{\mathfrak{a}}(\mathfrak{c}) \mathsf{h}$$

where $q_n^{(1)} + q_n^{(2)} = n$ and the limits $q^{(i)} := \lim_{n \to \infty} \frac{q_n^{(i)}}{n}$ exist; \mathbb{N}_+

• the tensor product

$$(\chi_n) := \left(\chi_n^1 \cdot \chi_n^2\right)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

The main tool - algebraic combinatorics

Our main tool for proving above theorems are certain results on the structure of the algebra of polynomial functions \mathscr{P} .

We define the normalized Jack character $Ch_{\pi}^{(\alpha)} \colon \mathbb{Y} \to \mathbb{Q}[\sqrt{\alpha}, \sqrt{\alpha}^{-1}]$:

$$\mathsf{Ch}_{\pi}^{(\alpha)}(\lambda) := \begin{cases} |\lambda|^{|\underline{\pi}|} \ \chi_{\lambda}^{(\alpha)}(\pi) & \text{if } |\lambda| \ge |\pi|; \\ 0 & \text{if } |\lambda| < |\pi|. \end{cases}$$

- Basis: $\mathscr{P} = \operatorname{Span}\{\gamma^k \ \operatorname{Ch}_{\pi} : k \in \mathbb{N}, \pi \in \mathcal{P}\}.$
- Gradation: $\deg(\gamma^k \operatorname{Ch}_{\pi}) = k + ||\pi||.$

Equivalent characterization of characters with AFP

Theorem (D., Śniady 2019; $\alpha = 1$ Śniady 2006)

 \bullet for each integer $\ell \geq 1$ and all integers $I_1, \ldots, I_\ell \geq 2$ the limit

 $\lim_{n\to\infty}\kappa_{\ell}^{\chi_n}\big((l_1),\ldots,(l_{\ell})\big) \ n^{\frac{l_1+\cdots+l_{\ell}+\ell-2}{2}} \text{ exists and is finite;}$

• for each integer $\ell \geq 1$ and all $x_1, \ldots, x_\ell \in \mathscr{P}$ the limit

 $\lim_{n \to \infty} \kappa_{\ell}^{\chi_n}(x_1, \dots, x_{\ell}) \ n^{-\frac{\deg x_1 + \dots + \deg x_{\ell} - 2(\ell-1)}{2}} \text{ exists and is finite;}$

• for each integer $\ell \geq 1$ and all $x_1, \ldots, x_\ell \in \mathscr{P}_{ullet}$ the limit

 $\lim_{n \to \infty} \kappa_{\bullet \ell}^{\chi_n}(x_1, \dots, x_\ell) \ n^{-\frac{\deg x_1 + \dots + \deg x_\ell - 2(\ell-1)}{2}} \text{ exists and is finite.}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two different cumulants:

Question

Why this theorem is helpful? $\kappa_{\ell}^{\chi_n}$ vs. $\kappa_{\bullet\ell}^{\chi_n}$?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Two different cumulants:

Question

Why this theorem is helpful? $\kappa_{\ell}^{\chi_n}$ vs. $\kappa_{\bullet\ell}^{\chi_n}$?

 \mathscr{P} and \mathscr{P}_{ullet} are the same rings, but the multiplication is different:

- $(\gamma^{p} \operatorname{Ch}_{\pi}) \cdot (\gamma^{q} \operatorname{Ch}_{\sigma}) = \gamma^{p+q} \sum_{???_{\pi,\sigma}^{\tau}} ???_{\pi,\sigma}^{\tau} \operatorname{Ch}_{\tau},$
- $(\gamma^{p} \operatorname{Ch}_{\pi}) \bullet (\gamma^{q} \operatorname{Ch}_{\sigma}) := \gamma^{p+q} \operatorname{Ch}_{\pi\sigma}.$

Two different cumulants:

Question

Why this theorem is helpful? $\kappa_{\ell}^{\chi_n}$ vs. $\kappa_{\bullet\ell}^{\chi_n}$?

 \mathscr{P} and \mathscr{P}_{ullet} are the same rings, but the multiplication is different:

•
$$(\gamma^{p} \operatorname{Ch}_{\pi}) \cdot (\gamma^{q} \operatorname{Ch}_{\sigma}) = \gamma^{p+q} \sum_{???_{\pi,\sigma}^{\tau}} ???_{\pi,\sigma}^{\tau} \operatorname{Ch}_{\tau},$$

•
$$(\gamma^{p} \operatorname{Ch}_{\pi}) \bullet (\gamma^{q} \operatorname{Ch}_{\sigma}) := \gamma^{p+q} \operatorname{Ch}_{\pi\sigma}$$

This multiplication gives a rule for computing cumulants!

•
$$\kappa_{2}^{\chi_{n}}(\pi,\sigma) = \sum_{???_{\pi,\sigma}^{\tau}} ???_{\pi,\sigma}^{\pi} n^{|\tau|} \chi_{n}(\tau) - n^{|\pi|} \cdot n^{|\sigma|} \cdot \chi_{n}(\pi) \cdot \chi_{n}(\sigma),$$

• $\kappa_{\bullet 2}^{\chi_{n}}(\pi,\sigma) = n^{|\pi\sigma|} \chi_{n}(\pi\sigma) - n^{|\pi|} \cdot n^{|\sigma|} \cdot \chi_{n}(\pi) \cdot \chi_{n}(\sigma).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Perspectives

- Limit shape of the Jack-Plancherel measure (or other measures given by convex characters) in the double scaling limit?
- Covariance of normal distribution in the double scaling limit = the top-degree of normalized Jack characters indexed by two rows = the combinatorics of unhandled maps with two faces.
- Joint distribution of properly normalized $(\lambda_{(n)})_1 \ge (\lambda_{(n)})_2 \ge \ldots$ with respect to Jack-Plancherel measure = Tracy-Widom β (Guionnet, Huang 2019). What about convex characters with AFP?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

THANK YOU FOR YOUR ATTENTION!