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Problem

�-ensembles: the probability distributions on Rn with the density

p(x1, . . . , xn) =
1
Z
e
V (x1)+···+V (xn)

Y

i<j

|xi � xj |� ,

V : R ! R,
Z - normalization constant.

Problem
What is the discrete counterpart of �-ensambles?
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Solution

No obvious unique way of defining the discrete counterpart of
�-ensambles.
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Solution

No obvious unique way of defining the discrete counterpart of
�-ensambles.

Several alternative approaches are available (Borodin, Gorin and
Guionnet, Moll).

Different approach viaJack characters with nice asymptotic
properties, for instance double-scaling limit.
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Examples and the representation theory I

Idea (Kerov, Biane, Śniady, ...)

Random Young diagrams come from representation theory of the

symmetric group Sn!

⇢n - a representation of Sn

Pn - probability measure on Yn associated with ⇢n:

�n(⇡) :=
Tr ⇢n(⇡)

Tr ⇢n(id)
=

X

�2Yn

Pn(�)��(⇡),

where �� - an irreducible character.

Definition
� : Pn ! R is a convex character, if it is a convex combination of
irreducible characters.
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Examples and the representation theory II

Example
Plancherel measure

�(⇡) :=

(
1 if ⇡ = 1n,
0 otherwise

$ P�(�) :=
(dim ⇢�)

2

n!

Schur-Weyl measure

�(⇡) := N
`(⇡)�|⇡| $ P�(�) :=

dimE�

Nn
,

where (CN)⌦n =
L

�`n E�.
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Jack deformation

Let ↵ 2 R>0.

J
(↵)
� - Jack polynomial (J(1)� = n!

dim� s� - normalized Schur
polynomial)

irreducible Jack character �(↵)
� :

�(↵)
� (⇡) := ↵� k⇡k

2
z⇡

n!
✓(↵)⇡ (�),

where k⇡k := |⇡|� `(⇡) and J
(↵)
� =

P
⇡ ✓

(↵)
⇡ (�) p⇡.

deformation of irreducible characters: �(1)
� (⇡) = ��(⇡).

We call � : Pn ! R a convex Jack character, if it is a convex
combination of irreducible Jack characters.
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Jack deformation - examples

Example
Jack-Plancherel measure

�(⇡) :=

(
1 if ⇡ = 1n,
0 otherwise

$ P�(�) :=
n!Q

(x,y)2� h↵(x , y)h
0
↵(x , y)

Jack-Schur-Weyl measure

�(⇡) : = N
`(⇡)�|⇡| = N

�k⇡k $

P�(�) : = n!
Y

(x,y)2�

N +
p
↵(x � 1)�

p
↵
�1

(y � 1)
N · h↵(x , y)h0↵(x , y)

= n!
Y

(x,y)2�

N + (
p
↵ x �

p
↵
�1

y) + (
p
↵
�1 �

p
↵)

N · h↵(x , y)h0↵(x , y)
.

ten I
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Main result

Setup:
�n : Pn ! R - convex Jack character, n 2 N
↵ = ↵(n) 2 R s.t. � :=

p
↵
�1 �

p
↵ = g

p
n + g

0 + o(1) for some
g , g 0 2 R.
(�n) fulfills some technical assumptions about its asymptotic
behavior; we will specify their details later.

Theorem (D., Śniady 2019)

Let �n be a random Young diagram with the probability distribution P�n

associated with � := �n. Then

�n converges to some limit shape when n ! 1
the fluctuations of �n around the limit shape are asymptotically

Gaussian.
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↵-anisotropic Young diagrams

Definition
Anisotropic Young diagram Tw ,h(�) - polygon obtained from the Young
diagram � by a horizontal stretching of ratio w and a vertical stretching
of ratio h (each box 1 ⇥ 1 is replaced by a box of dimension w ⇥ h).

� 7! T2, 1
2
(�)

In order to study the shape of random Young diagrams �n 2 Yn sampled
by some Jack-deformed measure, the right scaling is the following:

⇤n := Tp↵
n ,
p

1
↵n
�n.
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Young diagrams as continuous objects

French convention:

x
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Young diagrams as continuous objects

French convention:
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Young diagrams as continuous objects

Russian convention:

z
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Young diagrams as continuous objects
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Young diagrams as continuous objects

Russian convention:

z
�5 �4 �3 �2 �1 1 2 3 4 5

t
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Definition
A profile of a Young diagram � is a function !� : R ! R+ such that its
graph is a profile of � drawn in Russian convention.
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Young diagrams as continuous objects

Russian convention:

z
�5 �4 �3 �2 �1 1 2 3 4 5

t

1
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3

4

5

x

1
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3

4

5
y

1
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4

Definition
A profile of a Young diagram � is a function !� : R ! R+ such that its
graph is a profile of � drawn in Russian convention.

When we claim that a sequence (�n)n of Young diagrams �n 2 Yn

converges to some limit shape, we actually mean that the sequence of
profiles !⇤n converges.
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Asymptotic shape of large Jack-deformed Young diagrams

Setup:
�n : Pn ! R - convex Jack character, n 2 N
↵ = ↵(n) 2 R s.t. � :=

p
↵
�1 �

p
↵ = g

p
n + g

0 + o(1) for some
g , g 0 2 R.
(�n) fulfills some technical assumptions about its asymptotic
behavior; we will specify their details later.

Theorem (D., Śniady 2019; ↵ = 1 Biane 2002)

Let �n be a random Young diagram with the probability distribution P�n

associated with � := �n.

Then there exists some deterministic function !⇤1 : R ! R with the

property that

lim
n!1

!⇤n = !⇤1 ,

where the convergence holds true with respect to the supremum norm, in

probability.
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Examples

We recall that � = g
p
n + g

0 + o(1).

Example
When ↵ > 0 is fixed, that is g = 0 then the limit shape !⇤1 does not
depend on ↵!.

Jack–Plancherel measure (D., Féray 2016)

!⇤1(x) =

(
|x | if |x | � 2;
2
⇡

⇣
x · arcsin x

2 +
p

4 � x2
⌘

otherwise.

Jack–Schur–Weyl measure with
p
n ⇠ cN (D., Śniady 2019)

!⇤1(x)� explicit function depending on c .
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Examples

We recall that � = g
p
n + g

0 + o(1).

Example

1

1

2

↵(n) = 1
c2n for some c 2 R+,

then g = c , g 0 = 0.

Then ⇤n = collection of rectangles
( 1
gn · �i , g)i thus !⇤1 clearly

depends on g !

The limit shape of random Young
diagrams distributed according to
the Jack–Plancherel measure in the
double scaling limit for c = 1

4 .
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Fluctuations

Problem
How to “measure” fluctuations around the limit shape !⇤1?
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Fluctuations

Problem
How to “measure” fluctuations around the limit shape !⇤1?

We know that !⇤n ! !⇤1 , so we define a random vector

�n :=
p
n (!⇤n � !⇤1) .

We would like to show that �n converges in distribution to some
(non-centered) Gaussian random vector �1 in the space (R[x ])0 of
distributions, so informally speaking,

!⇤n ⇡ !⇤1 +
1p
n
�1.

We need to study suitable test functions:

Yk :=
k � 1

2

Z
u
k�2 �n(u)du, k � 2.
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Central limit theorem

Setup:
�n : Pn ! R - convex Jack character, n 2 N
↵ = ↵(n) 2 R s.t. � :=

p
↵
�1 �

p
↵ = g

p
n + g

0 + o(1) for some
g , g 0 2 R.
(�n) fulfills some technical assumptions about its asymptotic
behavior; we will specify their details later.

Theorem (D., Śniady 2019; ↵ = 1 Śniady 2006)

Let �n be a random Young diagram with the probability distribution P�n

associated with � := �n.

Then the random vector �n converges in distribution to some

(non-centered) Gaussian random vector �1 in the space (R[x ])0 of

distributions, the dual space to polynomials, as n ! 1.

Equivalently, the family of random variables (Yk)k�2 converges as

n ! 1 to a (non-centered) Gaussian distribution.
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Question

Problem
What are the proper assumptions about asymptotic behavior of convex

Jack characters which provide the law of large numbers and the central

limit theorem?
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Approximate factorization property

We extend the domain of �n : Pn ! R to the set
F

0kn Pk of partitions
of sufficiently small numbers by setting

�n(⇡) := �n(⇡, 1n�|⇡|) for |⇡|  n.
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Approximate factorization property
We extend the domain of �n : Pn ! R to the set

F
0kn Pk of partitions

of sufficiently small numbers by setting

�n(⇡) := �n(⇡, 1n�|⇡|) for |⇡|  n.

The general idea of our assumptions is the following:
the characters do not grow too fast:

�n(⇡) = O(n�
k⇡k
2 ),

characters on cycles have subleading terms of a proper order:

�n((l)) n
l�1
2 = al+1 +

bl+1 + o(1)p
n

for n ! 1,

the characters should approximately factorize, i.e.

�n(⇡1 · · ·⇡`) ⇡ �n(⇡1) · · ·�n(⇡`).
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Cumulants I

Note that �n(⇡) = E
�
�(�)(⇡)

�
is, by definition, the expectation of the

irreducible Jack characters ��(⇡) taken with the probability P�n(�).
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Note that �n(⇡) = E
�
�(�)(⇡)

�
is, by definition, the expectation of the

irreducible Jack characters ��(⇡) taken with the probability P�n(�).

�n(⇡1 · ⇡2)� �n(⇡1) · �n(⇡2) = Var
�
�(�)(⇡)

�
.
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Cumulants I

Note that �n(⇡) = E
�
�(�)(⇡)

�
is, by definition, the expectation of the

irreducible Jack characters ��(⇡) taken with the probability P�n(�).

�n(⇡1 · ⇡2)� �n(⇡1) · �n(⇡2) = Var
�
�(�)(⇡)

�
.

Cumulants E
` (x1, . . . , x`) of random variables x1, . . . , x` - natural

generalization of a variance:
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

E(x1) = E
1 (x1),

E(x1x2) = E
2 (x1, x2) + E

1 (x1)
E
1 (x2),

E(x1x2x3) = E
3 (x1, x2, x3) + E

1 (x1)
E
2 (x2, x3)

+ E
1 (x2)

E
2 (x1, x3) + E

1 (x3)
E
2 (x1, x2)

+ E
1 (x1)

E
1 (x2)

E
1 (x3),

...
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Cumulants I

Note that �n(⇡) = E
�
�(�)(⇡)

�
is, by definition, the expectation of the

irreducible Jack characters ��(⇡) taken with the probability P�n(�).

�n(⇡1 · ⇡2)� �n(⇡1) · �n(⇡2) = Var
�
�(�)(⇡)

�
.

Cumulants �
` (⇡1 . . .⇡`) of random variables �(�)(⇡1), . . . ,�(�)(⇡`) -

natural generalization of a variance:
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

�(⇡1) = �
1 (⇡1),

�(⇡1⇡2) = �
2 (⇡1,⇡2) + �

1 (⇡1) 
�
1 (⇡2),

�(⇡1⇡2⇡3) = �
3 (⇡1,⇡2,⇡3) + �

1 (⇡1) 
�
2 (⇡2,⇡3)

+ �
1 (⇡2) 

�
2 (⇡1,⇡3) + �

1 (⇡3) 
�
2 (⇡1,⇡2)

+ �
1 (⇡1) 

�
1 (⇡2) 

�
1 (⇡3),

...
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Approximate factorization property revisited

(
�n(⇡) = O(n�

k⇡k
2 ),

�n(⇡1 · · ·⇡`) ⇡ �n(⇡1) · · ·�n(⇡`)

Examples (Of measures with AFP, thus CLT)

Jack–Plancherel measure (↵ > 0 fixed, D., Féray 2016)

�n(⇡) :=

(
1 if ⇡ = 1n,
0 otherwise

�
` (⇡1, . . . ,⇡`) =

(
1 if ` = 1,⇡1 = 1k ,
0 otherwise

Jack–Schur–Weyl measure (
p
n ⇠ cN, D., Śniady 2019)

�n(⇡) := N
�k⇡k �

` (⇡1, . . . ,⇡`) =

(
N

�k⇡`k if ` = 1,
0 otherwise.
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�
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� k⇡1k+···+k⇡`k�2(`�1)

2

⌘
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More examples

Theorem
�
�1
n

�
,
�
�2
n

�
- families of convex Jack characters with AFP. Then all the

families have AFP.

the restriction
�
�i
q,n

�
:=

⇣�
�i
qn

�#qn
n

⌘
, where qn � n and

limn!1
qn
n = q;

the induction
�
�i
q,n

�
:=

⇣�
�i
qn

�"qn
n

⌘
, where qn  n and

limn!1
qn
n = q;

the outer product

(�n) :=
⇣
�1
q(1)
n

� �2
q(2)
n

⌘
,

where q
(1)
n + q

(2)
n = n and the limits q

(i) := limn!1
q(i)
n
n exist;

the tensor product

(�n) :=
�
�1
n · �2

n

�
.

Ii
'

= E hii
'

Conjecture : ( s t  e  u

leg
'
8g)

c i KI . h
. Ie) h

'

del .

 I ' '
e

Nid
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The main tool - algebraic combinatorics

Our main tool for proving above theorems are certain results on the
structure of the algebra of polynomial functions P.

We define the normalized Jack character Ch(↵)⇡ : Y ! Q[
p
↵,

p
↵
�1

]:

Ch(↵)⇡ (�) :=

(
|�||⇡| �(↵)

� (⇡) if |�| � |⇡|;
0 if |�| < |⇡|.

Basis: P = Span{�k Ch⇡ : k 2 N,⇡ 2 P}.
Gradation: deg(�k Ch⇡) = k + k⇡k.
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Equivalent characterization of characters with AFP

Theorem (D., Śniady 2019; ↵ = 1 Śniady 2006)

for each integer ` � 1 and all integers l1, . . . , l` � 2 the limit

lim
n!1

�n

`

�
(l1), . . . , (l`)

�
n

l1+···+l`+`�2
2 exists and is finite;

for each integer ` � 1 and all x1, . . . , x` 2 P the limit

lim
n!1

�n

` (x1, . . . , x`) n
� deg x1+···+deg x`�2(`�1)

2 exists and is finite;

for each integer ` � 1 and all x1, . . . , x` 2 P• the limit

lim
n!1

�n

•` (x1, . . . , x`) n
� deg x1+···+deg x`�2(`�1)

2 exists and is finite.
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Two different cumulants:

Question
Why this theorem is helpful? �n

` vs. �n

•`?
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Two different cumulants:

Question
Why this theorem is helpful? �n

` vs. �n

•`?

P and P• are the same rings, but the multiplication is different:
(�p Ch⇡) · (�q Ch�) = �p+q

P
???⌧⇡,�

???⌧⇡,� Ch⌧ ,

(�p Ch⇡) • (�q Ch�) := �p+q Ch⇡� .
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Two different cumulants:

Question
Why this theorem is helpful? �n

` vs. �n

•`?

P and P• are the same rings, but the multiplication is different:
(�p Ch⇡) · (�q Ch�) = �p+q

P
???⌧⇡,�

???⌧⇡,� Ch⌧ ,

(�p Ch⇡) • (�q Ch�) := �p+q Ch⇡� .

This multiplication gives a rule for computing cumulants!
�n

2 (⇡,�) =
P

???⌧⇡,�
???⌧⇡,� n

|⌧ |�n(⌧)� n
|⇡| · n|�| · �n(⇡) · �n(�),

�n
•2(⇡,�) = n

|⇡�|�n(⇡�)� n
|⇡| · n|�| · �n(⇡) · �n(�).
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Perspectives

Limit shape of the Jack-Plancherel measure (or other measures
given by convex characters) in the double scaling limit?

Covariance of normal distribution in the double scaling limit = the
top-degree of normalized Jack characters indexed by two rows = the
combinatorics of unhandled maps with two faces.

Joint distribution of properly normalized
�
�(n)

�
1 �

�
�(n)

�
2 � . . .

with respect to Jack-Plancherel measure = Tracy-Widom �
(Guionnet, Huang 2019). What about convex characters with AFP?
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Thank you

THANK YOU FOR YOUR
ATTENTION!


