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How to (naively) sort a list?

An n-element sorting network is a way of sorting a list of n
numbers from increasing to decreasing order using a minimal
number of adjacent swaps.
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In terms of Sn:

Γ(Sn): Cayley graph of Sn with generators

{πi = (i , i + 1) : i ∈ {1, . . . , n − 1}}.

A sorting network σ is shortest path in Γ(Sn) from the identity
1 · · · n to the reverse permutation n · · · 1.

We can write

n · · · 1 = πkN · · ·πk1 :

a reduced decomposition of n · · · 1.
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History:

I Stanley, 1984: The number of n-element sorting networks is
equal to the number of Young tableaux of staircase shape
(n − 1, n − 2, · · · , 1).

I Edelman-Greene, 1987: Bijective proof

I Angel-Holroyd-Romik-Virág, 2007: What does a uniform
random sorting network look like?
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Just look at positions of the swaps and rescale space and time.
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Figure 4: A histogram of the swap process for a uniformly chosen 2000-
element sorting network. (The height of each column represents the number
of swaps in the corresponding space-time window.)

In fact we can compute the exact distribution of s1 for each n; see Propo-
sition 9. In addition we establish the following “law of large numbers” for
the swap locations. For an n-element sorting network ω, define the scaled
swap process η = η(ω) to be the measure

η :=
1

N

N∑

k=1

δ
( k

N
,

2sk

n
− 1

)
,

where δ(x, y) is the point measure at (x, y) on R2. Figure 4 is a histogram
of η for a uniform 2000-element sorting network. Denote the semicircle mea-
sure by semi(dy) := 2

π

√
1− y21y∈(−1,1) dy, and Lebesgue measure on [0, 1] by

Leb(dx) := 1x∈[0,1] dx.

Theorem 2 (Law of large numbers). Let ωn be a uniform n-element
sorting network. The scaled swap process η satisfies

η(ωn) =⇒ Leb× semi as n→∞.

Here =⇒ denotes convergence in distribution of random measures in the
vague topology on Borel measures on R2, and the right side denotes the de-
terministic product measure.
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Theorem (AHRV, 07)

The swap distribution of a random sorting network converges to
Leb× semi.



Trajectories:



Figure 1: Selected particle trajectories for a uniformly chosen 2000-element
sorting network.

Figure 2: The permutation ma-
trix of the half-time configuration
σN/2 for a uniformly chosen 2000-
element sorting network.
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AHRV conjectured that with high probability, all trajectories in a
random sorting network are close to sine curves (with a random
amplitude and phase shift): t 7→ A sin(πt + Θ).



Permutation Matrices:

For a sorting network σ = (σ0, σ1, . . . , σN), how can we
geometrically describe the half-way permutation σN/2 ?



Permutation Matrices:

Example: τ = 54132




0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0



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Permutation Matrices:

Example: τ = 54132




•
•

•
•

•




Can think of this as a random measure on the square [−1, 1]2 with
δ-masses of size 1/n at the locations of the 1s.





Permutation Matrices:

AHRV conjectured that the halfway permutation matrix measure
converges to the projected surface area measure of the 2-sphere

:
the Archimedean measure Arch.
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Permutation Matrices at other times:

Figure 5: Graphs of the configurations at times 0, N
10

, 2N
10

, . . . , N for a uni-
formly chosen 500-element sorting network. Also shown are the asymptotic
“octagon bounds” of Theorem 4, and the conjectural asymptotic “ellipse
bounds” implied by Conjecture 2.

Figure 1 illustrates some trajectories for a uniform 2000-element sorting
network. We conjecture that as n→∞, all particle trajectories converge to
sine curves of random amplitudes and phases.

Conjecture 1 (Sine trajectories). Let ωn be an n-element uniform sorting
network and let Ti be the scaled trajectory of particle i. For each n there exist
random variables (An

i )n
i=1, (Θ

n
i )

n
i=1 such that for all ε > 0,

Pn
U

(
max
i∈[1,n]

max
t∈[0,1]

∣∣Ti(t, ωn)− An
i sin(πt + Θn

i )
∣∣ > ε

)
→ 0 as n→∞.

Figures 2 and 5 illustrate the graphs {(i, σk(i)) : i ∈ [1, n]} (i.e. the loca-
tions of 1’s in the permutation matrix) of some configurations from uniform
sorting networks. We conjecture that as n → ∞ the graphs asymptotically
concentrate in a family of ellipses, with a certain particle density in the in-
terior of the ellipse. Define the scaled configuration µt = µt(ω) at time t
by

µt :=
1

n

n∑

i=1

δ
(2i

n
− 1 ,

2σ⌊tN⌋(i)

n
− 1

)
. (1)

We define the Archimedes measure with parameter t ∈ (0, 1) by

Archt(dx× dy) :=
1

2π

√[
sin2(πt) + 2xy cos(πt)− x2 − y2

]−1

∨ 0 dx dy.
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Permutation Matrix Evolution:

For σ = (σ0, σ1, . . . , σN), look at the increment evolution for the
halfway matrix:

t 7→ σN/2+Ntσ
−1
Nt

Sine curve conjecture suggests that the movement of a fixed
particle under this evolution looks like

(a sin(πt + θ), a sin(πt + π/2 + θ)) = a(sin(πt + θ), cos(πt + θ))

Can plot these curves after subtracting the rotation!
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Back to Γ(Sn):

We can embed Γ(Sn) into Rn by the map:

τ 7→ (τ(1), . . . , τ(n))

∈ Hyperplane ∩ Sphere

Γ(Sn) lives in an (n − 2)-dimensional sphere Sn−2.
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Γ(S4):



Γ(S4):

AHRV conjectured that a random sorting network is close to a
(random) great circle on Sn−2.



The weak limit:

All conjectures follow from the following weak limit theorem:

Theorem (D. 2018)

Let Yn : [0, 1]→ [−1, 1] be a uniform scaled n-element sorting
network trajectory. Then

Yn
d→ Y

where

Y (t) = X cos(πt) + Z sin(πt), (X ,Z ) ∼ Arch.



Local Limit:

Angel-D.-Holroyd-Virag and Gorin-Rahman constructed the local
limit of random sorting networks:

O(1)

O(n)

α

t



Local Limit at the centre (α = 0, t = 0):

Define
Un(x , t) = σbNtc(x + bn/2c)− bn/2c.

Then
Un d→ U,

where U : Z× [0,∞)→ Z is a random function: a swap process
on the integers.
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0

-1

-2

I U is stationary in time and ergodic in space

I Away from the centre: for (α, t) ∈ (−1, 1)× [0, 1) we get the
limit

Ut,α(x , s) = U(x ,
√

1− α2s).

The only time/space dependence is by a semicircle rescaling
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Local Limit:

1

0

-1

-2

I Stationarity in space/time implies that particles have
asymptotic speeds:

lim
t→∞

U(x , t)− U(x , 0)

t
= S(x) a.s.



Swap rates in the local limit:

Heuristically, particles in U can be thought of as moving along lines
with independent slopes drawn from the local speed distribution µ.
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Swap rates in the local limit:

Theorem (D.,Virag 2018)

1. Let L(t) = ct + d, and let N(L, t) be the number of particles
that have crossed L by time t. Then

lim
t→∞

N(L, t)

t
=

∫
|y − c |dµ(y) a.s.

2. Let M(x , t) be the number of particles that particle x has
swapped with by time t. Then

lim
t→∞

M(x , t)

t
=

∫
|y − S(x)|dµ(y) a.s.
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Local → Global

Let h : [0, 1]→ [−1, 1] be a (Lipschitz) path.
The number of particles that cross h (counting global
multiplicities) should be roughly nJ(h), where

J(h) :=
1

2

∫ 1

0
Dµ

(
h′(t)√

1− h2(t)

)√
1− h2(t)dt,

and

Dµ(x) =

∫
|y − x |dµ(y)

The quantity J(h) is the particle flux across h.
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Local → Global

Theorem (D. 2018)

1. If h : [0, 1]→ [−1, 1] is Lipschitz, and h(0) = −h(1), then
J(h) ≥ 1.

2. If Y is any subsequential limit of the uniform sorting network
trajectory Yn, then J(Y ) = 1.

Upshot: Limits of particle trajectories minimize flux!
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Using the minimization property:

Problem: we don’t know µ.

We do know:

1. Since µ is symmetric, Dµ is even

2. Dµ is minimized at any median of µ, hence Dµ is minimized
at 0

I We can use these properties to narrow down the set of
possible minimizers of flux

I Note: By shifting, it is enough to consider paths h with
h(0) = −h(1) = 0
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√

1− h2) on the region where they
differ
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Example:

h

g

Hence if h(0) = −h(1) = 0 is a minimal flux path with h ≥ 0, it
must be unimodal! By using symmetry arguments, we can get that
any minimal flux path with h(0) = −h(1) = 0 must be unimodal.



Uniqueness at a fixed maximum value? Suppose not.
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Uniqueness at a fixed maximum value? Suppose not.

g

h
f

f is a minimal flux path that contradicts unimodality!


