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In terms of S,:

I(Sn): Cayley graph of S, with generators
{mi=(@,i+1):ie{l,...,n—1}}.

A sorting network o is shortest path in I'(S,) from the identity
1---n to the reverse permutation n--- 1.



In terms of S,:

I(Sn): Cayley graph of S, with generators
{mi=(@,i+1):ie{l,...,n—1}}.

A sorting network o is shortest path in I'(S,) from the identity
1---n to the reverse permutation n---1. We can write

n...]_:ﬂ-kN...fn-kl:

a reduced decomposition of n---1.
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History:

» Stanley, 1984: The number of n-element sorting networks is
equal to the number of Young tableaux of staircase shape
(n—1,n—2,---,1).

» Edelman-Greene, 1987: Bijective proof

> Angel-Holroyd-Romik-Virdg, 2007: What does a uniform
random sorting network look like?
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Just look at positions of the swaps and rescale space and time.
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Swap distribution:

Theorem (AHRV, 07)

The swap distribution of a random sorting network converges to

L£eb X semi.



Trajectories:
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Trajectories:
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random sorting network are close to sine curves (with a random

AHRV conjectured that with high probability, all trajectories in a
amplitude and phase shift): t — Asin(wt 4+ ©).



Permutation Matrices:

For a sorting network o = (09, 01,...,0n), how can we
geometrically describe the half-way permutation oy /5 ?
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Permutation Matrices:

Example: 7 = 54132

Can think of this as a random measure on the square [—1,1]? with
d-masses of size 1/n at the locations of the 1s.
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AHRYV conjectured that the halfway permutation matrix measure
converges to the projected surface area measure of the 2-sphere



Permutation Matrices:

AHRYV conjectured that the halfway permutation matrix measure
converges to the projected surface area measure of the 2-sphere:
the Archimedean measure 2(tch.



Permutation Matrices at other times:




Permutation Matrix Evolution:

For 0 = (00,01,...,0n), look at the increment evolution for the
halfway matrix:
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Permutation Matrix Evolution:

For 0 = (00,01,...,0n), look at the increment evolution for the
halfway matrix:

-1
t = ON/24NeO gy

Sine curve conjecture suggests that the movement of a fixed
particle under this evolution looks like

(asin(mt +0),asin(wt + /2 + 6)) = a(sin(wt + ), cos(mt + 6))

Can plot these curves after subtracting the rotation!
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Back to I'(S,):

We can embed I'(S,) into R” by the map:

7= (17(1),...,7(n))
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Back to I'(S,):

We can embed I'(S,) into R” by the map:
7+ (7(1),...,7(n)) € Hyperplane N Sphere

(S,) lives in an (n — 2)-dimensional sphere S"~2.
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AHRV conjectured that a random sorting network is close to a
(random) great circle on S"2.



The weak limit:

All conjectures follow from the following weak limit theorem:

Theorem (D. 2018)

Let Y, : [0,1] — [—1,1] be a uniform scaled n-element sorting
network trajectory. Then

Y, %y
where

Y(t) = X cos(rt) + Zsin(rt), (X, Z) ~ Arch.



Local Limit:

Angel-D.-Holroyd-Virag and Gorin-Rahman constructed the local
limit of random sorting networks:

I /
a4 O)

Il
7}7 O(n)—




Local Limit at the centre (a« = 0, t = 0):

Define
U(x,t) = o ey (x + [n/2]) = [n/2].



Local Limit at the centre (a« = 0, t = 0):

Define
U(x,t) = o ey (x + [n/2]) = [n/2].

Then

ur 4 v,
where U : Z x [0,00) — Z is a random function: a swap process
on the integers.






Local Limit:

» U is stationary in time and ergodic in space



Local Limit:

X

» U is stationary in time and ergodic in space

» Away from the centre: for (a, t) € (—1,1) x [0,1) we get the

limit
Uta(x,s) = U(x, V1 —a?s).

The only time/space dependence is by a semicircle rescaling



Local Limit:

» Stationarity in space/time implies that particles have
asymptotic speeds:

im U(x,t) — U(x,0)

t—00 t

=5(x) as.



Swap rates in the local limit:
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Heuristically, particles in U can be thought of as moving along lines
with independent slopes drawn from the local speed distribution .
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Swap rates in the local limit:

Theorem (D.,Virag 2018)

1. Let L(t) = ct+d, and let N(L,t) be the number of particles
that have crossed L by time t. Then
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Swap rates in the local limit:

Theorem (D.,Virag 2018)

1. Let L(t) = ct+d, and let N(L,t) be the number of particles
that have crossed L by time t. Then

lim N(L 1)

t—o00 t

— [y - ciduty) as

2. Let M(x, t) be the number of particles that particle x has
swapped with by time t. Then

lim M(x. 1)

t—o00 t

— [y = Stlduty) as



Local — Global

Let h:[0,1] — [—1,1] be a (Lipschitz) path.
The number of particles that cross h (counting global
multiplicities) should be roughly nJ(h), where

1 /
J(h) = ;/0 D, (%) 1~ W(b)dt,

Du(x) = / ly — x|du(y)

and
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Let h:[0,1] — [—1,1] be a (Lipschitz) path.
The number of particles that cross h (counting global
multiplicities) should be roughly nJ(h), where

1 /
J(h) = ;/0 D, (%) 1~ W(b)dt,

Du(x) = / ly — x|du(y)

The quantity J(h) is the particle flux across h.

and
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Theorem (D. 2018)

1. If h:[0,1] — [—1,1] is Lipschitz, and h(0) = —h(1), then
J(h) > 1.
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Theorem (D. 2018)
1. If h:[0,1] — [—1,1] is Lipschitz, and h(0) = —h(1), then
J(h) > 1.

2. If Y is any subsequential limit of the uniform sorting network
trajectory Yy, then J(Y) = 1.



Local — Global

Theorem (D. 2018)

1. If h:[0,1] — [—1,1] is Lipschitz, and h(0) = —h(1), then
J(h) > 1.

2. If Y is any subsequential limit of the uniform sorting network
trajectory Yy, then J(Y) = 1.

Upshot: Limits of particle trajectories minimize flux!
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Using the minimization property:

Problem: we don't know . We do know:

1. Since p is symmetric, D, is even

2. D, is minimized at any median of 4, hence D, is minimized
at 0

» We can use these properties to narrow down the set of
possible minimizers of flux

» Note: By shifting, it is enough to consider paths h with
h(0) = —h(1) =0
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» D,(g'/\/1—g?) < Du(W/V1— h?) on the region where they
differ
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» D,(g'/\/1— g2) < D,(W/v/1— h2) on the region where they
differ

> \/1 —g2< V1 — h2 on the region where they differ




Example:

» D,(g'/\/1— g2) < D,(W/v/1— h2) on the region where they
differ

> \/1 —g2< V1 — h2 on the region where they differ
» Hence J(g) < J(h)




Example:

Hence if h(0) = —h(1) = 0 is a minimal flux path with h > 0, it
must be unimodal! By using symmetry arguments, we can get that
any minimal flux path with h(0) = —h(1) = 0 must be unimodal.



Uniqueness at a fixed maximum value? Suppose not.
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Uniqueness at a fixed maximum value? Suppose not.
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f is a minimal flux path that contradicts unimodality!



