The Archimedean Limit of Random Sorting Networks

Duncan Dauvergne

March 11, 2019

How to (naively) sort a list?

How to (naively) sort a list?

An n-element sorting network is a way of sorting a list of n numbers from increasing to decreasing order using a minimal number of adjacent swaps.

How to (naively) sort a list?

An n-element sorting network is a way of sorting a list of n numbers from increasing to decreasing order using $N=\binom{n}{2}$ adjacent swaps.

In terms of S_{n} :

$\Gamma\left(S_{n}\right)$: Cayley graph of S_{n} with generators

$$
\left\{\pi_{i}=(i, i+1): i \in\{1, \ldots, n-1\}\right\}
$$

A sorting network σ is shortest path in $\Gamma\left(S_{n}\right)$ from the identity $1 \cdots n$ to the reverse permutation $n \cdots 1$.

In terms of S_{n} :

$\Gamma\left(S_{n}\right)$: Cayley graph of S_{n} with generators

$$
\left\{\pi_{i}=(i, i+1): i \in\{1, \ldots, n-1\}\right\}
$$

A sorting network σ is shortest path in $\Gamma\left(S_{n}\right)$ from the identity $1 \cdots n$ to the reverse permutation $n \cdots 1$. We can write

$$
n \cdots 1=\pi_{k_{N}} \cdots \pi_{k_{1}}:
$$

a reduced decomposition of $n \cdots 1$.

History:

History:

- Stanley, 1984: The number of n-element sorting networks is equal to the number of Young tableaux of staircase shape $(n-1, n-2, \cdots, 1)$.

History:

- Stanley, 1984: The number of n-element sorting networks is equal to the number of Young tableaux of staircase shape $(n-1, n-2, \cdots, 1)$.
- Edelman-Greene, 1987: Bijective proof

History:

- Stanley, 1984: The number of n-element sorting networks is equal to the number of Young tableaux of staircase shape $(n-1, n-2, \cdots, 1)$.
- Edelman-Greene, 1987: Bijective proof
- Angel-Holroyd-Romik-Virág, 2007: What does a uniform random sorting network look like?

Swap distribution:

Swap distribution:

Just look at positions of the swaps and rescale space and time.

Swap distribution:

Swap distribution:

Theorem (AHRV, 07)
The swap distribution of a random sorting network converges to $\mathfrak{L e b} \times \mathfrak{s e m i}$.

Trajectories:

Trajectories:

AHRV conjectured that with high probability, all trajectories in a random sorting network are close to sine curves (with a random amplitude and phase shift): $t \mapsto A \sin (\pi t+\Theta)$.

Permutation Matrices:

For a sorting network $\sigma=\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{N}\right)$, how can we geometrically describe the half-way permutation $\sigma_{N / 2}$?

Permutation Matrices:

Example: $\tau=54132$

Permutation Matrices:

Example: $\tau=54132$

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Permutation Matrices:

Example: $\tau=54132$

Can think of this as a random measure on the square $[-1,1]^{2}$ with δ-masses of size $1 / n$ at the locations of the 1 s .

Permutation Matrices:

AHRV conjectured that the halfway permutation matrix measure converges to the projected surface area measure of the 2-sphere

Permutation Matrices:

AHRV conjectured that the halfway permutation matrix measure converges to the projected surface area measure of the 2-sphere: the Archimedean measure $\mathfrak{A r c h}$.

Permutation Matrices at other times:

Permutation Matrix Evolution:

For $\sigma=\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{N}\right)$, look at the increment evolution for the halfway matrix:

$$
t \mapsto \sigma_{N / 2+N t} \sigma_{N t}^{-1}
$$

Permutation Matrix Evolution:

For $\sigma=\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{N}\right)$, look at the increment evolution for the halfway matrix:

$$
t \mapsto \sigma_{N / 2+N t} \sigma_{N t}^{-1}
$$

Sine curve conjecture suggests that the movement of a fixed particle under this evolution looks like

$$
(a \sin (\pi t+\theta), a \sin (\pi t+\pi / 2+\theta))=a(\sin (\pi t+\theta), \cos (\pi t+\theta))
$$

Permutation Matrix Evolution:

For $\sigma=\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{N}\right)$, look at the increment evolution for the halfway matrix:

$$
t \mapsto \sigma_{N / 2+N t} \sigma_{N t}^{-1}
$$

Sine curve conjecture suggests that the movement of a fixed particle under this evolution looks like

$$
(a \sin (\pi t+\theta), a \sin (\pi t+\pi / 2+\theta))=a(\sin (\pi t+\theta), \cos (\pi t+\theta))
$$

Can plot these curves after subtracting the rotation!

Back to $\Gamma\left(S_{n}\right)$:

We can embed $\Gamma\left(S_{n}\right)$ into \mathbb{R}^{n} by the map:

$$
\tau \mapsto(\tau(1), \ldots, \tau(n))
$$

Back to $\Gamma\left(S_{n}\right)$:

We can embed $\Gamma\left(S_{n}\right)$ into \mathbb{R}^{n} by the map:

$$
\tau \mapsto(\tau(1), \ldots, \tau(n)) \in \text { Hyperplane }
$$

Back to $\Gamma\left(S_{n}\right)$:

We can embed $\Gamma\left(S_{n}\right)$ into \mathbb{R}^{n} by the map:

$$
\tau \mapsto(\tau(1), \ldots, \tau(n)) \in \text { Hyperplane } \cap \text { Sphere }
$$

Back to $\Gamma\left(S_{n}\right)$:

We can embed $\Gamma\left(S_{n}\right)$ into \mathbb{R}^{n} by the map:

$$
\tau \mapsto(\tau(1), \ldots, \tau(n)) \in \text { Hyperplane } \cap \text { Sphere }
$$

$\Gamma\left(S_{n}\right)$ lives in an $(n-2)$-dimensional sphere \mathcal{S}^{n-2}.
$\Gamma\left(S_{4}\right):$

$\Gamma\left(S_{4}\right):$

AHRV conjectured that a random sorting network is close to a (random) great circle on \mathcal{S}^{n-2}.

The weak limit:

All conjectures follow from the following weak limit theorem:

Theorem (D. 2018)
Let $Y_{n}:[0,1] \rightarrow[-1,1]$ be a uniform scaled n-element sorting network trajectory. Then

$$
Y_{n} \xrightarrow{d} Y
$$

where

$$
Y(t)=X \cos (\pi t)+Z \sin (\pi t), \quad(X, Z) \sim \mathfrak{A l c h}
$$

Local Limit:

Angel-D.-Holroyd-Virag and Gorin-Rahman constructed the local limit of random sorting networks:

Local Limit at the centre $(\alpha=0, t=0)$:

Define

$$
U^{n}(x, t)=\sigma_{\lfloor N t\rfloor}(x+\lfloor n / 2\rfloor)-\lfloor n / 2\rfloor .
$$

Local Limit at the centre $(\alpha=0, t=0)$:

Define

$$
U^{n}(x, t)=\sigma_{\lfloor N t\rfloor}(x+\lfloor n / 2\rfloor)-\lfloor n / 2\rfloor .
$$

Then

$$
U^{n} \xrightarrow{d} U
$$

where $U: \mathbb{Z} \times[0, \infty) \rightarrow \mathbb{Z}$ is a random function: a swap process on the integers.

Local Limit：

Local Limit:

- U is stationary in time and ergodic in space

Local Limit:

- U is stationary in time and ergodic in space
- Away from the centre: for $(\alpha, t) \in(-1,1) \times[0,1)$ we get the limit

$$
U_{t, \alpha}(x, s)=U\left(x, \sqrt{1-\alpha^{2}} s\right)
$$

The only time/space dependence is by a semicircle rescaling

Local Limit:

- Stationarity in space/time implies that particles have asymptotic speeds:

$$
\lim _{t \rightarrow \infty} \frac{U(x, t)-U(x, 0)}{t}=S(x) \quad \text { a.s. }
$$

Swap rates in the local limit:

Heuristically, particles in U can be thought of as moving along lines with independent slopes drawn from the local speed distribution μ.

Swap rates in the local limit:

Heuristically, particles in U can be thought of as moving along lines with independent slopes drawn from the local speed distribution μ.

Swap rates in the local limit:

Theorem (D.,Virag 2018)

1. Let $L(t)=c t+d$, and let $N(L, t)$ be the number of particles that have crossed L by time t. Then

$$
\lim _{t \rightarrow \infty} \frac{N(L, t)}{t}=\int|y-c| d \mu(y) \quad \text { a.s. }
$$

Swap rates in the local limit:

Theorem (D.,Virag 2018)

1. Let $L(t)=c t+d$, and let $N(L, t)$ be the number of particles that have crossed L by time t. Then

$$
\lim _{t \rightarrow \infty} \frac{N(L, t)}{t}=\int|y-c| d \mu(y) \quad \text { a.s. }
$$

2. Let $M(x, t)$ be the number of particles that particle x has swapped with by time t. Then

$$
\lim _{t \rightarrow \infty} \frac{M(x, t)}{t}=\int|y-S(x)| d \mu(y) \quad \text { a.s. }
$$

Local \rightarrow Global

Let $h:[0,1] \rightarrow[-1,1]$ be a (Lipschitz) path. The number of particles that cross h (counting global multiplicities) should be roughly $n J(h)$, where

$$
J(h):=\frac{1}{2} \int_{0}^{1} D_{\mu}\left(\frac{h^{\prime}(t)}{\sqrt{1-h^{2}(t)}}\right) \sqrt{1-h^{2}(t)} d t
$$

and

$$
D_{\mu}(x)=\int|y-x| d \mu(y)
$$

Local \rightarrow Global

Let $h:[0,1] \rightarrow[-1,1]$ be a (Lipschitz) path.
The number of particles that cross h (counting global multiplicities) should be roughly $n J(h)$, where

$$
J(h):=\frac{1}{2} \int_{0}^{1} D_{\mu}\left(\frac{h^{\prime}(t)}{\sqrt{1-h^{2}(t)}}\right) \sqrt{1-h^{2}(t)} d t
$$

and

$$
D_{\mu}(x)=\int|y-x| d \mu(y)
$$

The quantity $J(h)$ is the particle flux across h.

Local \rightarrow Global

Local \rightarrow Global

Theorem (D. 2018)

1. If $h:[0,1] \rightarrow[-1,1]$ is Lipschitz, and $h(0)=-h(1)$, then $J(h) \geq 1$.

Local \rightarrow Global

Theorem (D. 2018)

1. If $h:[0,1] \rightarrow[-1,1]$ is Lipschitz, and $h(0)=-h(1)$, then $J(h) \geq 1$.
2. If Y is any subsequential limit of the uniform sorting network trajectory Y_{n}, then $J(Y)=1$.

Local \rightarrow Global

Theorem (D. 2018)

1. If $h:[0,1] \rightarrow[-1,1]$ is Lipschitz, and $h(0)=-h(1)$, then $J(h) \geq 1$.
2. If Y is any subsequential limit of the uniform sorting network trajectory Y_{n}, then $J(Y)=1$.

Upshot: Limits of particle trajectories minimize flux!

Using the minimization property:

Problem: we don't know μ.

Using the minimization property:

Problem: we don't know μ. We do know:

1. Since μ is symmetric, D_{μ} is even

Using the minimization property:

Problem: we don't know μ. We do know:

1. Since μ is symmetric, D_{μ} is even
2. D_{μ} is minimized at any median of μ, hence D_{μ} is minimized at 0

Using the minimization property:

Problem: we don't know μ. We do know:

1. Since μ is symmetric, D_{μ} is even
2. D_{μ} is minimized at any median of μ, hence D_{μ} is minimized at 0

- We can use these properties to narrow down the set of possible minimizers of flux

Using the minimization property:

Problem: we don't know μ. We do know:

1. Since μ is symmetric, D_{μ} is even
2. D_{μ} is minimized at any median of μ, hence D_{μ} is minimized at 0

- We can use these properties to narrow down the set of possible minimizers of flux
- Note: By shifting, it is enough to consider paths h with $h(0)=-h(1)=0$

Example:

Example:

Example:

- $D_{\mu}\left(g^{\prime} / \sqrt{1-g^{2}}\right) \leq D_{\mu}\left(h^{\prime} / \sqrt{1-h^{2}}\right)$ on the region where they differ

Example:

- $D_{\mu}\left(g^{\prime} / \sqrt{1-g^{2}}\right) \leq D_{\mu}\left(h^{\prime} / \sqrt{1-h^{2}}\right)$ on the region where they differ
- $\sqrt{1-g^{2}}<\sqrt{1-h^{2}}$ on the region where they differ

Example:

- $D_{\mu}\left(g^{\prime} / \sqrt{1-g^{2}}\right) \leq D_{\mu}\left(h^{\prime} / \sqrt{1-h^{2}}\right)$ on the region where they differ
- $\sqrt{1-g^{2}}<\sqrt{1-h^{2}}$ on the region where they differ
- Hence $J(g)<J(h)$

Example:

Hence if $h(0)=-h(1)=0$ is a minimal flux path with $h \geq 0$, it must be unimodal! By using symmetry arguments, we can get that any minimal flux path with $h(0)=-h(1)=0$ must be unimodal.

Uniqueness at a fixed maximum value? Suppose not.

Uniqueness at a fixed maximum value? Suppose not.

Uniqueness at a fixed maximum value? Suppose not.

Uniqueness at a fixed maximum value? Suppose not.

f is a minimal flux path that contradicts unimodality!

