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Idea of Self-adjoint Perturbation Theory

Throughout consider self-adjoint operators on a separable
Hilbert space H.

The general context of this talk is perturbation theory:

Given operator A, what can we say about the spectral
properties of A+B for B ∈ClassX?

Classically Class X = {trace cl.}, {Hilb.–Schmidt}, {comp.},
or some other von Neuman–Schatten class Sp.

Here our goal is to:

Relate rank one pert. w/ Anderson-type Hamiltonians!

Rank one pert. are Aγ := A+ γ〈·, ϕ〉ϕ with ϕ ∈ H, γ ∈ R.

This is interesting, as {γ〈·, ϕ〉ϕ} ⊂ Sp for all 1 ≤ p ≤ ∞,
while Anderson-type Hamiltonians have a random
perturbation that is almost surely non-compact.



Origins, applications and connections of rank one pert.
Differential operators with changing boundary conditions:

Sturm–Liouville operators (Weyl 1910),

Half-line Schrödinger operator Au = − d2

dx2u+ V u,

Maybe soon PDEs.

Describe all self-adjoint extensions of a symmetric operator
with deficiency indices (1, 1).
Anderson-type Hamiltonian
Large random matrices, free probability probability
Decoupling of CMV matrices
Adding partition vertices to quantum graphs
Nehari interpolation problem
Holomorphic composition operators
Rigid functions
Functional models (Sz.-Nagy–Foiaş, deBranges–Rovnyak,
Nikolski–Vasyunin)
Two weight problem for Hilbert/Cauchy transform
Existence of the limit in the Julia–Carathéodory quotient
Carlesson embedding
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Unitary Equivalence and Spectral Decompositions

A ∼ T means unitary equivalence of operators,
i.e. UAU−1 = T for some unitary U .

A ∼ T (mod Class X), if (UAU−1 − T ) ∈ Class X for some
unitary operator U .

Tac ∼
(
Mz

∣∣
⊕

∫
H(z)dµac(z)

)
. Think “⊕

∫
H(z)dµ(z) = L2(µ)”.

σess(T ) = σ(T )\{isolated point spectrum of finite mult.}.



Perturbation Theory (think “A and T = A+B”)
Theorem (von Neuman early 1900’s)

A ∼ T (Mod compact operators)
A bdd⇔ σess(A) = σess(T ).

Theorem (Kato–Rosenblum 1950’s, Carey–Pincus 1976)

A ∼ T (Mod trace class) ⇔ Aac ∼ Tac, conditions.

Theorem (Aronszajn–Donoghue Theory 1970-80’s)

Complete info for eigenvalues and absolutely cont. part of A and
T = Aγ . Singular parts are mutually singular and ‘interlacing’.

A and T are said to be completely non-equivalent, if there are no
non-trivial closed inv. subspaces H1, H2 ≤ H w/ A|H1

∼ T |H2
.

Theorem (Poltoratski 2000)

Let A and T be cyclic, self-adjoint, completely non-equivalent
operators with purely singular spectrum so that σ(A) = σ(T ) = K
and σpp(A) ∩ ∂K = σpp(T ) ∩ ∂K = ∅.
Then we have A ∼ T (mod rank one).



Anderson-type Hamiltonians

Self-adjoint operator A on a separable Hilbert space H.

{ϕn}n∈N ⊂ H orthonormal basis.

ω = (ω1, ω2, . . .), where ωi’s are i.i.d. random variables
distributed according to an absolutely continuous probability
measure P on R.

Anderson-type Hamiltonian Aω on H is given by

Aω := A+
∑
n

ωn〈 · , ϕn〉ϕn.

Perturbation is almost surely a non-compact operator.

Special case: discrete random Schrödinger operator on l2(Zd)

Af(x) = −4 f(x) = −
∑

n∈Zd,|n|=1

(f(x+ n)− f(x)),

ϕn(x) = δn(x) =

{
1 x = n,
0 else.



Simon–Wolff

Recall Aω = A+
∑

n ωn〈 · , ϕn〉ϕn vs. Aγ = A+ γ〈 · , ϕ〉ϕ, γ ∈ R.

Simon–Wolff 1986 provided a characterization of when
rank-one perturbation problems Aγ are pure point for
Lebesgue a.e. γ ∈ R. With this they showed that the
one-dimensional discrete random Schrödinger operator
exhibits ‘Anderson localization’.

Their idea was to sweep through the parameter domain for
the perturbed operators’ random coupling constants.

This technique was the first kind of connection between rank
one perturbations and Anderson-type Hamiltonians.

I believe their success inspired numerous mathematical
physicists to work on rank one perturbations.



Theorem (L. 2019 in BJMA)

Consider the Anderson-type Ham. Aω = A+
∑
ωn〈 · , ϕn〉ϕn.

together with corresponding scalar-valued spectral measure µω.
Assume A is bounded and of finite multiplicity. For almost all
(ω, η) ∈ (

∏
n P×

∏
n P) we have:

1) (µω)ac ∼ (µη)ac,

2) σess(Aω) = σess(Aη) and

3) If (Aω)ess is cyclic almost surely and |∂ess-supp(µω)ac| = 0,
then (Aω)ess ∼ (Aη)ess(mod rank one).



Proof of “(µω)ac ∼ (µη)ac”:
Absolutely continuous distributions P satisfy the Kolmogorov 0-1
law. So properties that are invariant under finite rank pert. of H
are enjoyed by Hω for almost all or almost no ω (deterministic).
Fix ε > 0 and ω. Consider the Borel function x 7→ Dεµω(x) where

Dεµω(x) :=
µω([x− ε, x+ ε])

2ε
.

The essential support of the absolutely continuous part is given by

ess-supp(µω)ac =

{
x ∈ R : 0 < lim sup

ε→0
Dεµω(x) <∞

}
.

By the Kato–Rosenblum theorem, the symmetric difference
between ess-supp(µ(0,0,0,...))ac∆ess-supp(µ(ω1,...,ωn,0,...))ac has zero
Lebesgue measure. So by the Kolmogorov 0-1 law, Lebesgue
almost every point x ∈ R lies in ess-supp(µω)ac for almost all, or
almost no ω.
In fact, we have proved that ess-supp(µω)ac is a deterministic set.



Proof idea “(Aω)ess ∼ (Aη)ess(mod rank one)”:

Cauchy transform for non-negative σ:

Kσ(z) =
1

π

∫
R

dσ(t)

t− z
, z ∈ C+.

Use the Krein–Lifshitz spectral shift function

u = −arg(1− πγKνγ),

which drops from π to 0 at isolated points of supp(νγ)s and
lies in (0, π) a.e. on the absolutely continuous spectrum.

u
1:1←→ {νγ}

1:1←→ Aγ .

Define auxiliary singular measures and then modify their
Krein–Lifshitz spectral shift function.

Use Poltoratski’s sufficient conditions to ensure that the
singular parts correspond to rank one perturbations.
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Thanks!


