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Prelude: Automorphisms centralizing a Sylow p-subgroup

: G finite, p prime, S Sylow p-subgroup

: α ∈ CAut(G)(S) of p-power order

Question 14.1 (Kourkovka Notebook, 1999)

If p = 2 and O2′(G) = 1, is α2 inner?

Theorem (Glauberman, 1968)

Yes.

Theorem (Gross, 1982)

If p odd and Op′(G) = 1, then α is inner, provided also Op(G) = 1.

Ô Uses CFSG.

Theorem (Glauberman, Guralnick, L., Navarro, 2019)

Gross’s theorem true without assumption that Op(G) = 1.

Ô Uses Z∗p -theorem, hence CFSG.
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Centric linking systems

: F a saturated fusion system over S

: Pϕ for the image of a morphism ϕ : P → S in F

: P ≤ S is F-centric if CS(Q) = Z(Q) for every Q = Pϕ.

Ô P ≤ S is FS(G)-centric ⇐⇒ CG (P) = Z(P)× Op′(CG (P)).

Centric linking system of a finite group  abstract linking systems

The centric linking system of G is the category L := Lc
S(G) with

: objects: FS(G)-centric subgroups P ≤ S .

: morphisms: MorL(P,Q) = Op′(CG (P))\NG (P,Q), where
NG (P,Q) = {g ∈ G | Pg ≤ Q}.

Ô Have exact sequences: 1→ Z(Q)
δQ−→ AutL(Q)

πQ−−→ AutF (Q)→ 1.

Martino-Priddy Conjecture, MP 1996, Oliver 2004,2006

BG∧p ' BH∧p ⇐⇒ Fp(G) ∼= Fp(H)

Ô (BLO 2003) |Lc
S(G)|∧p ' BG∧p and Out(Lc

S(G)) ∼= Out(BG∧p )
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The orbit category and cohomological obstructions to linking systems

: centric orbit category: O = O(F c)

: objects: the F-centric subgroups F c

: morphisms: MorO(P,Q) = HomF (P,Q)/ Inn(Q)

: center functor: Z = ZF : O(F c)op → Ab

: on objects: Z(P) = Z(P);

: on a morphism P
[ϕ]−−→ Q: the composite Z(Q) ↪→ Z(Pϕ)

ϕ−1

−−→ Z(P).

Theorem (Broto-Levi-Oliver, 2003)

Obstructions to existence and uniqueness of L given F lie in lim3
O Z and

lim2
O Z.

Theorem (Chermak (2013), Oliver (2013), Glauberman-L. (2016))

limk
O Z = 0 for all k ≥ 1 if p odd and for all k ≥ 2 if p = 2.
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Automorphism groups of fusion and centric linking systems

: AutL(S) analogous to NG (S).

: Aut(L) analogous to NAut(G)(S).

: Aut0(L) = group of rigid automorphisms; analogous to CAut(G)(S)

1

��

1

��

1

��
1 // Z(S)/Z(F)

conj //

δS

��

Aut0(L)

��

// Out0(L) //

��

1

1 // AutL(S)/Z(F)
conj //

πS

��

Aut(L) //

resS

��

Out(L) //

��

1

1 // AutF (S)
incl //

��

Aut(F) //

��

Out(F) //

��

1

1 1 1
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On rigid outer automorphisms of linking systems

Ô (*) Recall Out0(L) = lim1
OZF = 1 for p odd.

Ô p = 2: Out0(L) ∼= C2 for

F = F2(A4n+2) = F2(A4n+3),
F = F2(PSL2(q)), q ≡ ±1 (mod 8), ETC

Ô (Oliver) Out0(L) = 1 for L = Lc
S(G) where G is simply connected of Lie

type.

Theorem (Glauberman-L.)

Out0(L) is an elementary abelian 2-group for any saturated 2-fusion system F .
Moreover, the exact sequence

1→ Z(S)/Z(F)
conj−−→ Aut0(L)→ Out0(L)→ 1

splits.

Ô This is best possible: e.g. p = 2 and G = A6 × · · · × A6.

Ô Similar argument for p odd gives simpler proof of (*).

Ô More generally, this holds for L any linking locality/proper locality.
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Interlude: Group automorphisms centralizing the centric linking system

Take L = Lc
S(G).

: κ̃G : NAut(G)(S)→ Aut(L) is given by “restriction to p-local subgroups
modulo Op′”.

: κG : Out(G)→ Out(L) the induced map

Theorem (Glauberman-L.)

If Op′(G) = 1, then ker(κG ) is a p′-group.

Ô Depends on the Z∗p -theorem

Ô Reinterprets Glauberman’s work on Schreier conjecture (1966)

Ô Consequences for the definition of a “tame fusion system”
(Andersen-Oliver-Ventura)
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Centralizers of subgroups and subsystems

Centralizer CF (X ) of a subgroup X ≤ S

: objects: Q ≤ CS(X );

: morphisms: ϕ ∈ HomF (Q,R) which extend to ϕ̃ : XQ → XR with ϕ̃|X =
idX .

Problem: Construct “CF (E)” on “CS(E)” for a subsystem E on T ≤ S?

4 (Aschbacher, Henke, Semeraro) if E is normal in F ,

4 (Aschbacher) if E is a component of F ,

4 (Aschbacher, in restrictive cases) if E is a component in CF (t) for some
involution t.

? Applications to combinatorially describing [BH∧p ,BG
∧
p ]???
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A more basic problem

? First Step: Need to locate the Sylow group “CS(E)” ≤ CS(T ) of CF (E).

4 CS(E) behaves like the centralizer of a linking system LE for E .

Problem
How to tell whether a subgroup X ≤ CS(T ) “acts uniquely” on LE , respecting
E ↪→ F?

X

1

��yyyytt
1 // Ẑ 1(O(Ec),ZE) // Aut(LE) // Aut(E) // 1

Definition
A section is a family σ of extensions σ(ϕ) : XP → XQ, for each P

ϕ−→ Q in
Mor(Ec) satisfying the following conditions

: [X , σ(ϕ)] ≤ Z(Pϕ) for each ϕ,

: σ(ϕ ◦ ct) = σ(ϕ) ◦ ct for each ϕ and each t ∈ T .

Write Γ(X , E) for the collection of sections.
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Rigid actions

Definition
A rigid action of X on LE (respecting E ↪→ F) is a group homomorphism

ρ : X → Ẑ 1(O(Ec),ZE)

for which there is a section σ ∈ Γ(X , E) such that

ρ(x)([ϕ]) = [x , σ(ϕ)]ϕ
−1

.

for each morphism [ϕ] in the orbit category O(Ec).

Definition
For a fixed section σ ∈ Γ(X , E), define a functor

KX ,F : O(Ec)op → Ab

by, on objects:

KX ,F (P) = {α ∈ AutF (XP) | α|P = idP and [X , α] ≤ Z(P)},

and, on morphisms by sending P
[ϕ]−−→ Q to the composite

KX ,F (Q)
res−−→ KX ,F (Pϕ)

c−1
σ(ϕ)−−−→ KX ,F (P).
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Obstructions to rigid actions on linking systems

Theorem (L.)

Let E ≤ F be a subsystem on T ≤ S , and fix X ≤ CS(T ). Assume that
Γ(X , E) is nonempty. Then

(1) there is a class [τ ] ∈ lim2
O(Ec ) KX ,F such that X has a rigid action on LE if

and only if [τ ] = 0;

(2) the group Ẑ 1(O(Ec),KX ,F ) acts freely and transitively on the set of rigid
actions when that set is nonempty.

Example

For F = F2(A6 o X ) with X = 〈x〉 of order 2 and E = F2(∆(A6)), one has

lim1
O(Ec )KX ,F ∼= lim1

O(Ec )Ω1ZE ∼= C2.
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