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%+ G finite, p prime, S Sylow p-subgroup
* o € Cawc)(S) of p-power order

Question 14.1 (Kourkovka Notebook, 1999)
If p=2 and Oy(G) =1, is & inner?

Theorem (Glauberman, 1968)
Yes.

Theorem (Gross, 1982)
If p odd and O, (G) =1, then « is inner, provided also Op(G) = 1.
> Uses CFSG.

Theorem (Glauberman, Guralnick, L., Navarro, 2019)
Gross’s theorem true without assumption that O,(G) = 1.

=> Uses Z,-theorem, hence CFSG.
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> P < Sis Fs(G)-centric <= Cg(P) = Z(P) x Oy (Cs(P)).
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- (BLO 2003) |£5(G)|) ~ BG, and  Out(£5(G)) = Out(BGY)
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The orbit category and cohomological obstructions to linking systems

# centric orbit category: O = O(F°)
+ objects: the F-centric subgroups F*
#+ morphisms: Moro(P, Q) = Homz(P, Q)/Inn(Q)
+ center functor: Z = Zz: O(F°)°® — Ab
+ on objects: Z(P) = Z(P);
#+ on a morphism P 1, Q: the composite Z(Q) — Z(P*¥) £> Z(P).
Theorem (Broto-Levi-Oliver, 2003)
Obstructions to existence and uniqueness of L given F lie in lim% Z and
lim% Z.
Theorem (Chermak (2013), Oliver (2013), Glauberman-L. (2016))
lim& Z =0 for all k > 1 if p odd and for all k > 2 if p = 2.
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+ Autz(S) analogous to Ng(S).
#+ Aut(L) analogous to Nau(c)(S)-
# Auto(L) = group of rigid automorphisms; analogous to Cau(c)(S)

1 1 1

1—— Z(S)/Z(F) — Z"(O(F*), Z5) — |im*(Z5) — 1
s

1— Autz(S)/Z(F) —= > Aut(£) — > Out(L) — 1

s resg

1— > Autr(S) incl Aut(F) ——= Out(F) —=1
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> p=2: Outo(L) = G for

F = F2o(Asny2) = Fo(Asnss),
F = F2(PSL2(q)), g = +1 (mod 8), ETC

-> (Oliver) Outo(L) =1 for £L = L5(G) where G is simply connected of Lie
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Theorem (Glauberman-L.)

Outo(L) is an elementary abelian 2-group for any saturated 2-fusion system F.
Moreover, the exact sequence

1 Z(S)/Z(F) <2 Auto(L) — Outo(L) — 1

splits.
- This is best possible: e.g. p=2and G = As X -+ X Ae.
-> Similar argument for p odd gives simpler proof of (*).

- More generally, this holds for £ any linking locality/proper locality.
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Interlude: Group automorphisms centralizing the centric linking system

Take £ = L5(G).
* Rc: Nawie)(S) — Aut(L) is given by “restriction to p-local subgroups
modulo O,".
*+ kg: Out(G) — Out(L) the induced map

Theorem (Glauberman-L.)
If Oy (G) =1, then ker(r¢) is a p'-group.
-> Depends on the Z,-theorem
- Reinterprets Glauberman’s work on Schreier conjecture (1966)

- Consequences for the definition of a “tame fusion system”
(Andersen-Oliver-Ventura)
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Centralizer Cx(X) of a subgroup X < S

+ objects: Q < Cs(X);

#+ morphisms: ¢ € Homz(Q, R) which extend to ¢: XQ — XR with @|x =
idx.

Problem: Construct “Cx(€)" on “Cs(E)" for a subsystem £ on T < 57

v (Aschbacher, Henke, Semeraro) if £ is normal in F,
¢ (Aschbacher) if £ is a component of F,
v (

Aschbacher, in restrictive cases) if £ is a component in Cr(t) for some
involution t.

? Applications to combinatorially describing [BH,', BG,'|???
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A more basic problem

? First Step: Need to locate the Sylow group “Cs(€)" < Cs(T) of Cx(£).
v Cs(€) behaves like the centralizer of a linking system Lg for £.

Problem
How to tell whether a subgroup X < Cs(T) “acts uniquely” on Lg, respecting
E— F7?

X

11— ZYO(£°), Z¢) — Aut(Le) — Aut(§) —> 1

Definition
A section is a family o of extensions o(0): XP — XQ, for each P £ Q in
Mor(E€) satisfying the following conditions

+ [X,0(¢)] < Z(P?) for each ¢,
*+ o(poc)=0(p)oc foreach ¢ and each t € T.
Write (X, &) for the collection of sections.
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Definition
A rigid action of X on Lg (respecting £ < F) is a group homomorphism

p: X = ZHO(EF), Z¢)
for which there is a section o € ['(X, ) such that

p(¥)([e]) = [x, o ()7

for each morphism [¢] in the orbit category O(£°).

Definition
For a fixed section o € ['(X, &), define a functor

KX#]:: O(SC)OP — Ab
by, on objects:
KX,]:(P) = {a c Aut}-(XP) | a|p = idp and [X,a] < Z(P)}7

and, on morphisms by sending P ﬂ) Q to the composite

-1

Kx.7(Q) 22 Kx #(P?) 2% Ky #(P).
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Obstructions to rigid actions on linking systems

Theorem (L.)

Let £ < F be a subsystem on T < S, and fix X < Cs(T). Assume that
r'(X,€&) is nonempty. Then

(1) there is a class [1] € Iimfg(gc) Kx, 7 such that X has a rigid action on Lg if
and only if [t] = 0;

(2) the group Z'(O(E°), Kx.7) acts freely and transitively on the set of rigid
actions when that set is nonempty.

Example
For F = F2(As 1 X) with X = (x) of order 2 and €& = F>(A(As)), one has

“m%:)(gc)KX’]-‘ = |im%9(gc)leg ~ G.



