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2 A Corollary, and σ0(G )

Corollary (of Volumes 1–8)

A minimal counterexample G to CFSG is of even type. Moreover,
assuming all the uniqueness theorems in Part II, it is of special
even type.

By Aschbacher-Smith Quasi Thin Theorem, e(G ) ≥ 3, so
σ(G ) 6= ∅, where

Definition

σ(G ) =

{
{odd primes p |m2,p(G ) ≥ 4} if nonempty

{odd primes p |m2,p(G ) = 3} otherwise

m2,p(G ) = largest p-rank found among all 2-locals in G .
σ0(G ) = {p ∈ σ(G ) |G has no very strong p-uniqueness subgroup}

σ0(G ) 6= ∅: Volumes 9 and 10.
σ0(G ) = ∅ 6= σ(G ): Volumes 11 and 12.
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3 The foundation: Background Results

These are well-established results that we itemize in the first
volume. In subsequent volumes we add a few more.
The first one is the Odd Order theorem of W. Feit and J. G.
Thompson.
When M. Aschbacher and S. D. Smith published their
Classification of Quasithin Groups, we added that to the list.
Another Background Result is that each sporadic simple group is
determined by its “centralizer of involution pattern.”
In the Generic Case we use some recent results on Phan Theory
due to R. Köhl, S. Shpectorov, C. Bennett, B. Mühlherr and
others, for the purpose of recognizing certain Chevalley groups.



4 Outline

I Case division.

I Uniqueness Theorems.

I The Generic Case.

I The Bicharacteristic Case.



5 Minimal counterexample; the finite quasisimple groups

G = minimal counterexample to CFSG
G is K-proper

K = Alt ∪ Chev ∪Spor includes covering groups

p = prime

Kp = {K ∈ K |Op′(K ) = 1} (Op′(K ) = max p′ /K )

Kp = set of possible components of N := N/Op′(N),
N = NG (P) = p-local subgroup in K-proper simple group G

Convention: For any group H, H := H/Op′(H).

Notation: mp(X ) = p-rank of X
If K , L ∈ Kp, then K ↑p L ⇐⇒ there is x ∈ Aut(L) of order p

and K0 / /CL(x) such that K0
∼= K .
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6 A principle

We begin by surveying the isomorphism types, for all primes p and
p-local subgroups N of G , of components of E (N). On the basis
of this (and whether G is of even type) we select

I a prime p to guide the analysis of G , and

I a strategy for that analysis.



7 The Guiding Prime; A Basic Case Division

If G is of odd type, p = 2 will be the guiding prime, and

if G is of even type, an odd prime p will be the guiding prime.

Odd, 2-Special Type Even, p-Special Type ∀p ∈ σ0(G )

Odd, 2-Generic Type Even, p-Generic Type for some p ∈ σ0(G )



8 p-Component Pairs in G

p = a prime; mp(G ) ≥ 3

A p-component pair (x ,K ) in G consists of an element x of order
p and a p-component K of CG (x).
(K / /CG (x), K quasisimple, K minimal)

Based on Lp′-balance, (x ,Kx) < (y ,Ky ) ⇐⇒
[K x , y ] = 1 and Ky is a “pumpup” of Kx in CG (y):

trivial ([K y , x ] = 1 and K x
∼= K y ), vertical (K x ↑p K y ), or

diagonal

Information about E (CG (x)) moves along the commuting graph of
elements of G of order p.

(x ,Kx) is p-terminal if for all such y , [Ky , x ] = 1 and Kx
∼= Ky (&

a further Sylow p-subgroup condition holds)
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9 p-Terminal Pairs Exist

(x ,Kx) is p-terminal if [Ky , x ] = 1 (&. . . ) for all (x ,Kx) < (y ,Ky )

Theorem (M. Aschbacher, R. H. Gilman, GLS)

Let (x ,K ) be a p-component pair. If p > 2, assume that K has a
Zp × Zp subgroup disjoint from Op′p(K ). Then a suitable series of
pumpups leads to a p-terminal pair.

For a p-component pair (x ,K ), K itself is “terminal”
⇐⇒ K / /CG (y) for all y ∈ CG (K ) of order p.

Example: In L5(q), p = 3 dividing q − 1, ω3 = 1 6= ω,

(diag(ω, ω2, 1, 1, 1),SL3(q))

pumps up to (diag(ω2, ω, ω, ω, ω),SL4(q)),

which is 3-terminal and terminal.



10 Kp = Cp ∪ Tp ∪ Gp (a partition for each prime p)
Start with

Kp = Chev(p) ∪ {K |mp(K ) = 1} ∪ {the rest}

and move some groups around the “edges”.

For p ≤ 11: some groups are taken from Gp and put in Cp or Tp.
C2 contains 19 sporadic groups, C3 contains 16
C2 ∪ T2 contains L2(q) and SL2(q), q odd
T3 contains A7, L3(q), U3(q), SL3(q), SU3(q), q 6= 3n

Properties:
I If K , L ∈ Kp and K ↑p L, then

I K ∈ Gp =⇒ L ∈ Gp
I L ∈ Cp =⇒ K ∈ Cp

and roughly speaking,
I K ∈ Cp =⇒ K has good balance properties for prime p

ideally: Op′(CAut(K)(x)) = 1 for all x ∈ Aut(K ), xp = 1
I K ∈ Gp =⇒ K has good generation properties for p

ideally: Zp × Zp
∼= E ≤ Aut(K ) =⇒ K = 〈CK (e) | e ∈ E#〉
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11 Generic type vs. Special type

Definition

Given p, G is of p-generic type if and only if there exists a
p-terminal component pair (x ,Kx) such that

I K x ∈ Gp;

I mp(CG (x)) ≥ 3, with strict inequality if p > 2.

Otherwise, G is of p-special type.

For example if ∃ involution z : CG (z) ∼= Z2 × L5(3),
then G is of 2-generic type.

If ∃ x : x3 = 1, CG (x) ∼= SU6(8)× PSp8(3),
then G is of 3-generic type.



12 Even type vs. Odd type

Definition (GLS)

G is of even type if and only if

I m2(G ) ≥ 3,
I For every involution z ∈ G ,

I O2′(CG (z)) = 1
I K ∈ C2 for every component K of CG (z).

Otherwise, G is of odd type.

If G ∈ Chev(2), then G is of even type.
In the first-generation proof, “odd type”=“not charac. 2-type.”

Most of the largest sporadic groups are of even type but not char.
2 type, e.g. M = F1, BM = F2, Co1, Fi ′24, Fi23, Fi22, Suz



13 The Outcomes: What is G in the different cases?
Special Odd Type (Part IV) Special Even Type (Part V)

SMALL CASE – m2(G ) ≤ 2: SMALL CASE – e(G ) ≤ 3:

L2(q), L3(q), U3(q), q odd Chev(2), tw. rank > 1, untw. rank ≤ 3;

M11,A7 14 sporadics; A12; some other Lie type

2-INTERMEDIATE CASE BICHARACTERISTIC CASE

All 2-Components in C2 ∪ T2, All p-Components in Cp, e(G ) ≥ 4:

and m2(G ) ≥ 3: p = 3 & Co1, Fi22, Fi23, Fi ′24, F2, F1
Chev(odd), untw. Lie rank ≤ 2; Ω±7,8(3), U7(2), 2D5(2), 2E6(2)
3D4(q), some L4(q),U4(q),q odd; p-INTERMEDIATE CASE

A9, A10, A11 Some p-Component in Tp, none in Gp,

M12, Mc , Ly , O ′N e(G ) ≥ 4: No Groups

p-Generic Type (Part III): Large Chev ; An, n ≥ 13

p = 2 or p > 2 according as Odd or Even Type

Uniqueness Theorems (Part II)
Chev(2), twisted rank 1

i.e., groups with a strongly embedded subgroup; also J1



14 Uniqueness Theorems when p = 2
I Bender-Suzuki Strongly Embedded Subgroup Theorem

I Global C (G ,T )-Theorem (Aschbacher, Foote, Harada,
Solomon)

I Terminal components K are standard if m2(K ) > 1
(Aschbacher, Gilman) ([K ,K g ] 6= 1 for all g ∈ G ) - rules out
wreathed local structure

Theorem (Aschbacher, Gilman)

Let x be an involution of a simple group G and K a component of
CG (x) which is terminal in G . If m2(K ) > 1, then K is standard in
G , i.e., for all g ∈ G , [K ,K g ] 6= 1.

GLS proves a version of this and some other uniqueness theorems
for odd primes too.
A subgroup M < G is strongly p-embedded in G if and only if it
has order divisible by p and contains the normalizers of all its
nontrivial p-subgroups.
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15 Uniqueness Theorems in K-proper simple G for any p

Theorem (GLS4)

Let M be a maximal subgroup of G , and K a p-component of M.
Suppose that for every y ∈ CM(K ) of order p, CG (y) ≤ M.
Suppose that mp(K ) > 1, mp(CM(K )) > 1, and mp(M) ≥ 4.
Then either M is strongly p-embedded in G or else:

1. There is g ∈ G −M and Ep2
∼= Q ≤ CM(K ) such that

Qg ≤ M; and

2. K /M.

If mp(K ) = 1 and p > 2, we still get these conclusions, unless M is
“almost strongly p-embedded in G .”

Corollary

Let (x ,K ) be a p-component pair in G with K quasisimple and
terminal in G , mp(K ) ≥ 2, mp(NG (K )) ≥ 4. Then either G has a
strongly p-embedded subgroup or K is standard in G .



16 The Uniqueness Case – Volume 12

Theorem (G. Stroth – Uniqueness Case – Vol. 12, in progress)

Suppose that G is a K-local simple group of even type with
σ(G ) 6= ∅. Assume that for each p ∈ σ(G ), G possesses a very
strong p-uniqueness subgroup Mp. Then any such Mp is the
unique maximal 2-local containing one of its Sylow 2-subgroups. . .

Corollary (GLS-R. Foote)

. . . and in fact is strongly embedded in G , so G does not exist.

“Definition”: Let p ∈ σ(G ). A very strong p-uniqueness subgroup
of G is a maximal subgroup M such that
I M is almost strongly p-embedded in G
I M contains a Sylow 2-subgroup of G
I For almost any H ≤ G such that O2(H) 6= 1 and

mp(H ∩M) > 1, H ≤ M
I F ∗(M) = O2(M)E (M), E (M) = 1 or E (M) ∈ Chev(2) of

untwisted rank > 2, mp(CM(E (M))) = 1.
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17 Bootstrapping – Volume 11
“Definition”: Let p ∈ σ(G ). A very strong p-uniqueness subgroup
of G is a maximal subgroup M such that

I M is almost strongly p-embedded in G ;

I M contains a Sylow 2-subgroup of G

I For almost any H ≤ G such that O2(H) 6= 1 and
mp(H ∩M) > 1, H ≤ M.

I F ∗(M) = O2(M)E (M), E (M) = 1 or E (M) ∈ Chev(2),
mp(CM(E (M))) = 1

Volume 11 bootstraps from the first condition to the other three.

Hence the even type strategy is:

CHOOSE p ∈ σ(G ) with NO ALMOST STRONGLY
p-EMBEDDED SUBGROUP IN G .

THEN SHOW G ∈ K.
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18 The Generic Case

The following conditions define this case.

I Either G is of odd type, p = 2, and m2(G ) ≥ 3, or
G is of even type, p > 2, and mp(G ) ≥ 4; and

I In either case, there is a p-component pair (x ,K ) such that
K ∈ Gp and mp(CG (x)) ≥ 3 or 4 according as p = 2 or p > 2.

p is fixed but arbitrary, satisfying these conditions (except for one
possible shift).

Desired conclusion: G ∼= An, n ≥ 13, or G ∈ Chev .
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19 The Generic Case: Neighborhoods

A neighborhood N in simple group G is determined by (D, L)
D ≤ G , D ∼= Zp × Zp, and L is a p-component of CG (D).
Then for each 1 6= d ∈ D, the subnormal closure of L in CG (d) is
called Ld , and

N = N (D, L) = {Ld | 1 6= d ∈ D}.

Example: G = L5(q), q odd, p = 2

I d1 = diag(1,−1,−1,−1,−1), d2 = diag(−1,−1,−1,−1, 1),

I D = 〈d1, d2〉
I CG (D) . L ∼= SL3(q), Ld1

∼= Ld2
∼= SL4(q), Ld1d2 = L

I N = {Ld1 , Ld2 , Ld1d2} and 〈N〉 = G



20 A neighborhood in L5(q) (q odd, p = 2)

Ld1 Ld2 Ld1d2
SL4(q) SL4(q) SL3(q)

\ | /

SL3(q)

This example neighborhood is

I semisimple–each Op′(Ld) ≤ Z (Ld)

I nontrivial–Ld 6∼= L for at least two 〈d〉 ≤ D

I vertical–nontrivial, and each Ld is a vertical or trivial pumpup

I level–all Ld ’s are of Lie type with the same q.



21 Lp′-balance and neighborhoods

Theorem (Gorenstein-Walter)

In a neighborhood N = N (D, L), each Ld , d ∈ D, satisfies one of
the following:

I Ld ∼= L (trivial pumpup–D centralizes Ld)

I Ld is quasisimple and L ↑p Ld “via” D/〈d〉
I Ld is the commuting product of p covering groups of L

permuted transitively by D/〈d〉.

Here X always means X/Op′(X ).

K-group observation: if p > 2, then the first and third possibilities
never both occur in the same neighborhood.



22 The Generic Case – Volumes 5, 7, 8 – Flowchart

CHOOSE p, and p-TERMINAL (x ,K ), K ∈ Gp
↓

CHOOSE (D, L), x ∈ D ∼= Ep2 , AND LET N = N (D, L)
↓

N IS SEMISIMPLE
↓

N IS NONTRIVIAL
↓

N IS VERTICAL (IF CHOSEN PROPERLY)
↓

IF p > 2, K ∈ Chev(2) AND p|q2 − 1
↓

N IS LEVEL AND COMES FROM SOME KNOWN G ∗

↓
〈N〉 ∼=c G ∗ AND ΓD,1(G ) NORMALIZES 〈N〉

↓
G = 〈N〉



23 The Generic Case: Choosing (x ,K )

There is a technical “stratification” of Gp, according to
isomorphism type. We choose (x ,K ) so that K is in the highest
stratum possible, and call it “preferred”.

Roughly speaking, we prefer alternating and sporadic groups to
groups of Lie type, and large rank groups of Lie type to small rank
ones.

By a series of pumpups, we may choose (x ,K ) to be p-terminal.

Looking ahead to our neighborhood, x will lie in D, and K = Lx ,
and L /E (CK (D)).



24 The Generic Case: Choosing a p-Source A

We want to be able to apply signalizer functor theory to
A ∼= Zp × Zp × Zp: need 3/2-balance for A.

We also want A to be closely related to our soon-to-be-made
choice of D (recall L /E (CK (D))).

For small (rank) K , choice is ad hoc. For large rank:

I K ∼= An, n ≥ 9, p = 2: A = E × 〈x〉, E ≤ K , E is root
four-group

I K ∼= An, p odd, n > 3p: A = 〈x1, x2, x3〉, xi disjoint p-cycles

I K large Lie type, p = 2: A = Z (SL2(q)× SL2(q)× SL2(q)),
root SL2(q)’s (Aschbacher)

I K large classical group, p odd: A ≤ K , minimum support on
natural module among all Zp × Zp × Zp subgroups



25 The Generic Case: Semisimple Neighborhoods

Choose D ≤ CK (x) and (large) L /E (CK (D)) such that
x ∈ D ∼= Zp × Zp and D is “nicely related” to A.

(Best situation: [D,A] = 1 and E (CL(A)) 6= 1.)

Let N = {Ld | 1 6= d ∈ D}, the neighborhood determined by D and L.

Let W = Θ3/2(G ;A), M = NG (W ) (signalizer functor gadgets)

Signalizer functor theory implies ΓA,2(G ) = 〈NG (B)
∣∣ |A : B| ≤ p〉 ≤ M.

Relationship of D and A implies Gorenstein-Walter Alternative:

1. N is a semisimple neighborhood (Ld ≤ E (CG (d)) for all
1 6= d ∈ D), OR

2. W 6= 1, so ΓA,2(G ) ≤ M < G .

Option 2 =⇒ G has a strongly p-embedded subgroup,
contradiction.

Hence N is a semisimple neighborhood.



26 The Generic Case: More example neighborhoods N
VERTICAL

Ld1 Ld2 Ld1d2
D5(q) D5(q) D5(q)

\ | /

D4(q)

NOT VERTICAL

Ld1 Ld2 Ld1d2
D5(q) D5(q) D4(q)× D4(q)

\ | /

D4(q)
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\ | /
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〈N〉 = D5(q)× D5(q)
〈N〉D = D5(q) o Z2



27 The Generic Case: Volume 5

Theorem∗

In the Generic Case, starting with any preferred and p-terminal
(x ,K ), there exists D ≤ CG (x), D ∼= Zp × Zp, and L /E (CK (D)),
and a nontrivial semisimple neighborhood N (D, L). Moreover,

I K is standard in G (no pumpups; [K ,K g ] = 1 =⇒ K = K g )

I mp(CG (K )) = 1 unless p = 2 and K ∼= An, in which case
m2(CG (K )) = 2 . . .

I If p > 2, then K ∈ Chev(2).



28 The Generic Case: Nontrivial Neighborhoods

First show 〈x〉 strongly closed in CG (x) =⇒ almost strongly
p-embedded subgroup (p odd).

Then ∃z = xg ∈ CG (x), 〈z〉 6= 〈x〉 (Z ∗ theorem)

Often [z ,D] = 1. Action of D on K g /CK (z) is faithful and
produces a nontrivial “neighborhood in K g” which implies that
N (D, L) is nontrivial too.

If [z ,D] 6= 1 find a suitable “bridge element” x1 of order p
centralizing both D and z and show
nontrivial nbhd in K g =⇒
nontrivial nbhd in E (CG (x1)) =⇒
N (D, L) is nontrivial.



29 The Generic Case: The Ranking Function f

We have to refine our choice of (x ,K ) to make sure N (D, L) is
vertical. The “bigger” the better.

If p = 2 and K ∼= An, make sure that n is as large as possible.

If K = dLn(q) ∈ Chev , maximize f (K ) = qn
2
.

Subject to that, maximize the Lie type of K (A− G ):
A < D < E < BC < F < G

Call (x ,K ) “maximal” if it achieves these maximizations.

f (K ) is a crude measure of the Sylow q-subgroup of K .

Properties:

I I ↑p J =⇒ f (I ) ≤ f (J)

I I , J ∈ Chev(2), I involved in J =⇒ f (I ) ≤ f (J).



30 The Generic Case: Vertical Neighborhoods

Theorem

If (x ,K ) is maximal, then N (D, L) is vertical.

Otherwise, for some d ∈ D − 〈x〉,

Ld = L1 × · · · × Lp, each Li ∼= L

Now start with (d , L1), with mp(CCG (d)(L1)) ≥ 2p − 1. (Assuming
p odd)
Take a series of vertical pumpups ending with a p-terminal pair:

(d , L1) = (d1, J1) < · · · < (d∗, J∗)

By previous theorem mp(CCG (d∗)(J
∗)) = 1 (in Lie type case) Hence

there exists a series

K ↓p L ∼ L1 = J1 ↑p J2 ↑p · · · ↑p Jm = J∗

such that m ≥ 3, implying f (J∗) > f (K ) and contradicting
maximality of (x ,K ).
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31 The Generic Case: Volume 7
In Volume 7 our neighborhood gets refined further and the
alternating group case is finished.

Theorem∗

In the Generic Case, there exists a prime p and maximal pair
(x ,K ), and x ∈ D ∼= Zp × Zp and L / /E (CK (D)), such that

1. N := N (D, L) is vertical;

2. If K ∈ Chev , then p splits K (i.e., p divides q2 − 1);

3. If K ∈ Chev , then N is level.

Moreover, either K ∈ Chev or G = 〈N〉 ∼= An, n ≥ 13.

In the alternating case we prove 〈N〉 ∼= An and NG (〈N〉) is
strongly embedded in G .

In this theorem, for the first time, we specify for any given K a
unique choice of D and L (up to automorphisms of K ) – an
“acceptable subterminal pair.” We do this to reduce the number of
recognition results we will have to prove to recognize 〈N〉.



32 The Generic Case: Volume 8, The Lie-type Endgame

Now that N looks good, we need to identify 〈N〉.

Theorem

With N as before and K ∈ Chev ,

I 〈N〉 ∈ Chev

I ΓD,1(G ) ≤ NG (〈N〉), i.e., NG (D0) ≤ NG (〈N〉) for all
1 6= D0 ≤ D

I NG (〈N〉) is almost strongly p-embedded in G , or 〈N〉 = G .
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33 The Generic Case: Recognition Criteria

Recognition theorems for groups in Chev :

I Curtis-Tits theorems and Phan theory (odd characteristic,
some characteristic 2)

I Gilman-Griess theorem (characteristic 2, exceptional gps)

I Wong-Finkelstein-Solomon theorems for classical groups



34 The Generic Case: Wong-Finkelstein-Solomon Method
Illustration: recognize Sp(V ) = Sp2m(q), q = 2n, m ≥ 5.
Standard module V = V1 ⊥ · · · ⊥ Vm, dimVi = 2

For every I ⊆ {1, . . . ,m} let VI = ⊕i∈IVi and

Sp(V ) ≥ CSp(V )(VI ′) ”=”Sp(VI )

Let T ≤ Sp(V ), T ∼= Symm permuting {V1, . . . ,Vm} naturally,
with NT (Vi ) = CT (Vi ) for all i = 1, . . . ,m.

Theorem (Solomon-Wong-Finkelstein)

Let G = 〈K ,N〉. Suppose
given an isomorphism f : Sp(V{1,...,m−1})→ K , and
given a surjection λ : T ← N.
Then there is a surjection g : Sp(V )→ G ,
assuming two natural conditions on f and λ:

1. λ ◦ f |Tm = 1Tm and

2. Let g ∈ N and I ⊆ {1, . . . ,m} be such that m 6∈ I ∪ λ(g)(I ).
Then f (Sp(VI ))g = f (Sp(Vλ(g)(I ))).
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35 C.Curtis, J.Tits, and K.-W.Phan

Curtis-Tits: Let K ∈ Chev of twisted rank ≥ 3. Let ∆ be the set
of nodes of the twisted Dynkin diagram and S := {Kδ | δ ∈ ∆} the
set of fundamental rank 1 subgroups. Then with respect to the
generating set ∪S , the subgroups 〈Kδ,Kδ′〉, δ, δ′ ∈ ∆, together
contain defining relations for the universal version of K .

Phan: Consider certain K ∈ Chev of untwisted rank ≥ 3. Let Γ be
the set of nodes of the untwisted Dynkin diagram. Let Kγ , γ ∈ Γ,
be copies of SL2(q) and make twisted isomorphism type
assumptions about 〈Kγ ,Kγ′〉, γ, γ′ ∈ Γ. (Most famously,
[Kγ ,Kγ′ ] = 1 if γ, γ′ not connected, and 〈Kγ ,Kγ′〉 ∼= (S)U3(q) if
γ, γ′ connected by a single bond.) Such subgroups can be found in
K and often contain defining relations for K . Note: K itself is not
necessarily a twisted group.



36 Volume 9: Groups of Special Even Type, e(G ) ≥ 4

Theorem (C5 and C6, in progress)

Let G be of special even type, e(G ) ≥ 4.

I (Theorem C5) If Lop(G ) ⊆ Cp, then p = 3 and G ∼= Co1, Fi22,

Fi23, Fi ′24, F2, F1, Ω7(3), PΩ±8 (3), U7(2), 2D5(2), or 2E6(2).

I (Theorem C6) Lop(G ) ⊆ Cp.

I G has even type, i.e., for all involutions z ∈ G ,
O2′(CG (z)) = 1 and all components L of CG (z) lie in C2.
Thus, L is
I in Chev(2), or
I one of 19 sporadic groups and their covers, or
I L2(q), q ∈ FM9, or
I (P)Ω±n (3), n = 5, 6, or G2(3) or L3(3)

I For every x ∈ G of order p (fixed odd prime) with
mp(CG (x)) ≥ 4, no components of CG (x) lie in Gp.

I m2,p(G ) ≥ 4
I There is no almost strongly p-embedded subgroup in G .
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37 Remarks on Theorem C5

Setup:

I F ∗(CG (z)) = O2(CG (z))E (CG (z)), components in C2
(z2 = 1)

I Lop(G ) ⊆ Cp
I m2,p(G ) ≥ 4

I There is no almost strongly p-embedded subgroup in G .

1. C3 = Chev(3) ∪ 16 sporadics ∪ · · ·
2. K. Klinger and G. Mason (1974) proved that if m2,p(G ) ≥ 3,

G cannot simultaneously be of characteristic 2-type and
p-type. (Subremark: Characteristic p-type includes
Op′(CG (x)) = 1 for all x of order p. We can get by assuming
Op′(CG (x)) has odd order for certain x .)

3. Root ideas go through Klinger-Mason back to Thompson’s
N-group paper. Heavy use of Thompson Dihedral Lemma.



38 Some tools

Lemma (Thompson Dihedral Lemma)

If T ∼= (Z2)n acts faithfully on a p-group P, p odd, then TP
contains the direct product of n copies of D2p. In particular
m2,p(TP) ≥ n − 1.

Definition

Ep(G ) = {B ≤ G |B ∼= (Zp)n, some n > 0}.
B∗(G ) = the set of “witnesses” to m2,p(G )

{B ∈ Ep(G ) |IG (B; 2) 6= {1}, mp(B) = m2,p(G )},
Sp(G ) = the set of maximal el.ab. p-groups w.r.t. inclusion



39 Strong Balance Theorem

Lemma (Strong Balance)

Let B ∈ Sp(G ) with mp(B) ≥ 4. Then for all b ∈ B# and every
B-invariant p′-subgroup W of CG (b), W ≤ Op′(CG (b)).

EXCEPT IF p = 3 and CG (b) has a component L ∼= L2(33), and
some b ∈ B induces a field automorphism on L of order 3; for
then, CL(b) ∼= L2(3).

Theorem (Strong Balance)

G is strongly balanced with respect to any B ∈ Sp(G ) such that
mp(B) ≥ 4. (I.e., the exceptional configuration in the Strong
Balance Lemma does not occur in G .)

The indirect proof constructs a p-component uniqueness subgroup
and argues that it is almost strongly p-embedded.



40 Theorem C5: Stage 1

Theorem (Stage 1)

Under the hypotheses of Theorem C5,

1. G is balanced with respect to any B ∈ Sp(G ), mp(B) ≥ 4.

2. If B ∈ B∗(G ), then there exists B < B1 ∈ Ep(G ).

Definition: G has weak p-type if and only if for every
1 6= b ∈ B ∈ Ep(G ),

I If mp(B) ≥ 4, then every component of CG (b) lies in Cp, and

I If B ∈ B∗(G ), then Op′(CG (b)) has odd order.

Corollary

Under the hypotheses of Theorem C5, G has weak p-type (as well
as even type).

Weak p-type is an analogue for p > 2 of even type for p = 2.



40 Groups of Symplectic Type

A 2-group T is of symplectic type ⇐⇒ T = E ∗M,
E extraspecial, M cyclic or of maximal class ⇐⇒
Every characteristic abelian subgroup of T is cyclic (P.Hall)

Proposition

Let B ∈ B∗(G ). Then any B-invariant 2-subgroup T ≤ G such
that CT (B) 6= 1 is cyclic or of symplectic type.

We call such B,T a symplectic pair if T is maximal with respect
to inclusion (relative to fixed B).
It is faithful if CB(T ) = 1, and trivial if |T | = 2. Examples:

In G = F1, T = F ∗(CG (z)) ∼= 21+24, B ∼= E36

In G = F2, |T | = 2, CG (T ) ∼= 22E6(2)2



41 Theorem C5, Stage 2: Trivial Symplectic Pairs

Theorem (Theorem C5, Stage 2)

Symplectic pairs exist, and p = 3. Also, G ∼= Ω7(3) or PΩ±8 (3) or
else

I Every symplectic pair is faithful or trivial.
I Let (B,T ) be a trivial symplectic pair. Let K be a component

of E (CG (T )) 6= 1. After replacing (B,T ,K ) with a possibly
different triple satisfying the same conditions, there is
b ∈ CG (T ) of order 3 such that
I K > I < J where I / /CK (b), J / /CG (b) are 3-components;
I (K , I , J), up to isomorphism, is one of a short explicit list of

examples. It is called a “nonconstrained {2, 3}-neighborhood.”



42 A “NONCONSTRAINED (2, 3)-NEIGHBORHOOD”

(K , I , J)

K /CG (t) J /CG (b)

2 2E6(2) Fi22

\ /

I = 2U6(2)

I /CG (tb)

[t, b] = 1



43 Theorem C5, Stage 3: Faithful Symplectic Pairs

Theorem (Klinger-Mason 90%)

Suppose faithful symplectic pairs (B,T ) exist.
Among all such and all b ∈ B#, maximize |CT (b)|. Then
CG (b) has a 3-component J on which BCT (b)/〈b〉 acts faithfully.

Moreover, J ∼= F1,F2, . . . ,U6(2), . . . .

The configuration of CG (Z (T )) and CG (b) is a “CONSTRAINED
{2, 3}-NEIGHBORHOOD”.



44 A Constrained {2, 3}-Neighborhood

Here 〈z〉 = Z (T ) ∼= Z2, [z , b] = 1, b3 = 1.

CG (z) J /NG (〈b〉)
21+24Co1 3Fi ′24

\ /

CJ(z) = 21+12[3× 3]U4(3)2



45 Theorem C5, Stages 3 and 4

Theorem (Theorem C5, Stage 3)

Either G ∼= Ω7(3) or Ω±8 (3), or there exists a constrained or
non-constrained {2, 3}-neighborhood in G matching a known group
G ∗ = Co1, Fi22, Fi23, Fi ′24, Fi24, F2, F1, U7(2), 2D5(2), or 2E6(2).

Red: Non-constrained
Black: Constrained

Theorem (Theorem C5, Stage 4)

G ∼= G ∗.
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