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Science Collaboration

* Informatics and Statistics one of eight
LSST Science Collaborations

* Over 75 members and growing:
data scientists and astronomers

 http://issc.science.lsst.org




LSST Basics

* 10-year photometric survey
+ 3.2 Gigapixel camera

e 32 trillion observations of
40 billion objects

» Science Goals
— Cataloging the Solar System
— Exploring the Changing Sky
— Milky Way Structure & Formation

— Understanding Dark Matter and Dark Energy
Ivezic, et al. (2014)



Common Themes

* General implementation challenges
» Existing procedures to LSST scales

* Expanding sophistication of analysis
procedures in use

« Making the most of available data



Representations

* A recurring challenge is representing
observables in forms amenable to
standard analysis tools

* The fundamental challenge of “Big Data”

 What summary statistic retains the
important information in the data?

« Separating signal from noise
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Classifying Variables
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Blazars versus CVs

Cataclysmic Variables (CV) - binary
system in Milky Way with matter transfer
from secondary (normal) star to primary
white dwarf

Blazars — Quasars with “jet” of energy
pointed at Earth

Both produce light curves with irregular
variability, lacking periodic structure
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Blazars versus CVs
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Log Magnitude Difference

Blazars versus CVs
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Summarizing the SF

Typical to fit model to structure function

 Power Law Form (Schmidt et al.)
« Damped Random Walk (Kelly et al.)

Effort to find a low-dimensional

representation, avoiding the curse of
dimensionality
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Summarizing the SF

Typical to fit model to structure function

 Power Law Form (Schmidt et al.)
« Damped Random Walk (Kelly et al.)

Effort to find a low-dimensional

representation, avoiding the curse of
dimensionality

Ideally, could utilize higher-dimensional
representation



Nonparametric Regression

Important smoothing technique
Regression as a summary tool



What is Nonparametric?

Data

Estimate

In the parametric case, the influence of
assumptions is fixed

Assumptions




What is Nonparametric?

Data

Estimate

/
In the nonparametric case, the influence of

assumptions is controlled by smoothing
parameter h which shrinks with more data

Assumptions




Nonparametric Regression

0.03 0.05 0.07

(I) é 1|0 1|5 2|0 2|5 3|0
Here we consider local linear regression

* Fits a sequence of local linear models

« Each local model only fits within a
neighborhood. Size of neighborhood
Is the smoothing parameter



Step One: Fix the target point z.

Our objective is to estimate the regression function at .
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Step Two: Create the neighborhood around z.

A common way to choose the neighborhood size is to choose is large
enough to capture proportion a of the data. This parameter « is often

called the span. A typical choice is a = 0.5.
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Step Three: Weight the data in the neighborhood.

Values of x which are close xy will receive a larger weight than those far
from zy. Denote by w; the weight placed on observation ¢. The default

choice is the tri-cube weight function:

3
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Step Four: Fit the local regression line.

This is done by finding 3, and 3, to minimize the weighted sum of squares

> wi (yi — (Bo + Bi;))*

0.07
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Y
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0.03
I




Step Five: Estimate f(z).

This is done using the fitted regression line to estimate the regression func-

tion at xy:

~

f(zo) = Bo + By
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Bias-Variance Tradeoff

Choose smoothing parameter to achieve
balance between

* Too simple = high bias: precise but not
accurate

* Too complex = high variance: accurate,
but not precise

This is the classic bias-variance tradeoff

Could be called the accuracy-precision
tradeoff



Bias-Variance Tradeoff

Risk

. Bias squared

Variance

<-- Less Optimal More >
smoothing



Bias-Variance Tradeoff

Estimate the risk

LS B - (X))

with the leave-one-out cross-validation score:

n

OV = -3 (i~ (X))

1=1

where f’(_i) is the estimator obtained by omitting the i*" pair (X;, Y;).



Curse of Dimensionality

Despite the promise of honparametrics,
fitting models in high dimensions is a
challenge

These fits require ample data in the
“neighborhood” to be reliable, and data
become sparse in high dimensions

Choosing neighborhoods larger reduces
the value of the approach



Curse of Dimensionality
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Curse of Dimensionality
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Curse of Dimensionality
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Figure 2.6 from Hastie, Tibshirani, and Friedman



Curse of Dimensionality
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Curse of Dimensionality
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Additive Models

Additive models avoid the curse of
dimensionality by making a strong, but not
overly restrictive assumption regarding the

relationship between the response and
predictors



Additive Models

The fully nonparametric model:
Y = f(x1,29,...,2,) + €

with the f estimated from the data.

The additive nonparametric model:

Y = 6o+ fi(xr) + fo(za) + -+ folay) + €

with each of the f; estimated from the data. (Each f; is shifted so that
it is centered around zero. The intercept 5, accounts for the overall

mean of the response.)



Additive Models

The general estimation strategy is called backfitting.

In this process, each fj is estimated nonparametrically, in a rotation,

and the process is repeated until there is convergence.

When estimating f;(-), the other f;(-) are held fixed at their current
best estimates, and we set up a one-dimensional nonparametric es-
timation problem, on which one could use either local linear regres-

sion, smoothing splines, or other approach.



Additive Models

A generalization of this model is the projection pursuit regression

model, which can be written as
M
Y =6y + Zﬁkfk (a;‘gx) + €
k=1

where each of the a; are a vector of length p. These o, are the pro-

jection direction vectors.

The functions f, called the ridge functions, are estimated nonpara-
metrically. These functions are scaled to have mean zero and vari-

ance one when applied to the observed sample.



Additive Models
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Additive Models

Squared Error (via Cross—Validation)

35
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Number of Ridge Functions (M)




Neural Networks

The term neural network has evolved to encompass a large
class of models and learning methods. Here we describe the
most widely used “vanilla” neural net, sometimes called the
single hidden layer back-propogation network, or single
layer perceptron. There has been a great deal of hype sur-
rounding neural networks, making them seem magical and
mysterious. As we make clear in this section, they are just
nonlinear statistical models, much like the projection pursuit

regression model discussed above.

Quote from Hastie, Tibshirani, and Friedman



Neural Networks

The single hidden layer back-propogation network regression model

can be written as follows:
M
Y = Fo+ Zﬁ/&b(%k +apx) +e
k=1

where the § and «a are parameters to be estimated, but the function ¢

is not estimated.



Neural Networks

Some terms commonly used in conjunction with neural networks:

e The function ¢ is called the activation function. The standard
choice is the sigmoid function

1
14 exp(—u)’

¢(u)

o The elements ¢(aq; + afx) for k = 1,2,..., M comprise the hid-

den layer.
e The intercept terms ayy, are called the biases.

e The entire collection of a and 8 parameters are called the weights.



Neural Networks

If least squares is used alone, however, the solution is unstable, and
the nonconvex optimization problem that is solved is sensitive to the

starting values used in the iterative search algorithm.

Hence, a regularization penalty is often added onto the residual sum
of squares. A standard choice is the same penalty used in ridge re-

gression, i.e., minimize

M
RSS + A Z
k=1

p
s ] |
1=0

The parameter ) is commonly called the decay parameter.



Neural Networks

Of course, now we have two parameters that control the complex-
ity of the model: M and A\. These should both be chosen carefully
in order to avoid overfitting. Like other nonparametric estimation
methods, neural networks have trememdous capacity to overfit to

the observed data.

We will use k-fold cross-validation to choose the tuning parameters

M and ) (the decay parameter).



Adding Layers

Input nodes Output nodes

Hidden nodes

Connections




Deep Learning

“Deep learning is a particular kind of
machine learning that achieves great
power and flexibility by representing the
world as a nested hierarchy of concepts,
with each concept defined in relation to
simpler concepts, and more abstract
representations computed in terms of
less abstract ones.”

--Page 8 in Deep Learning,
Goodfellow, Bengio, and Courville



Deep Learning

machine learning that ach ? 'EEP lggﬁ 5.';'0'
power and flexibility by re & gm pwu
world as a nested hierarclgs

representations compute “
less abstract ones.”

--Page 8 in Deep Learning,
Goodfellow, Bengio, and Courville

www.deeplearningbook.org



Deep Learning

What makes it “deep?”



Deep Learning
What makes it “deep?”

The number of hidden layers is typically
large, allowing for the modeling of
complex relationships.

This can be viewed as an extension/
resurrection of neural networks



Resurgence of NN

Multiple factors contributed to growth of
interest in Deep Learning:

* Increase In training set sizes

* Improved algorithms for training deeper
networks (e.g., Hinton, et al. in 2006)

« Growth in computational resources
* Successes



Flexibility

A primary appeal of the approach is the
flexibility in constructing the layers

— How many units are there in each layer?

— What is the mapping from one layer to the
next?

— How is the output constructed from the
final hidden layer?



Flexibility

A primary appeal of the approach is the
flexibility in constructing the layers

— What is the mapping from one layer to the
next?



Fully Connected Layer

A standard mapping is a fully connected
layer, simply a linear combination of the
input (either the data or the output of the
preceding layer)
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Input
Layer

First Layer

Second Layer

b1 + wiu by +wou =+ by + WL u



Input —_
e X = (x1,T2,...,24)

d(b1 + wix)  @(bs +wax) == O(by + WpX)

¢(-) is the activation function, a simple
nonlinear mapping



rectified linear hyperbolic tangent

d(u) = max (0, u) ¢(u) = tanh(u)

logistic sigmoid softplus

o) = o 6(u) = 10g(1 + exp(u)
4 2 o 2 4 4 =2 o 2 4
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Input —
Layer X = (mlax%"-a:pd)

Additional Hidden
Layers
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Output Layer

There are standard choices for generating
the output from the final hidden layer



Output Layer

There are standard choices for generating
the output from the final hidden layer

If the output is continuous, then simply
taking a linear combination is typical:

y =b+wlu



Output Layer

There are standard choices for generating
the output from the final hidden layer

If the output is continuous, then simply
taking a linear combination is typical:

y =b+wlu

N

Result of final hidden layer




Output Layer

If the output is binary, then transformation
to a probability is done via the logistic
sigmoid function:

1
Y T 11 exp(— (b + wla))




Output Layer

If the output is multinomial, then
transformation to a probability is done
via the softmax function:

exp(z;)

Zj exp(z;)

softmax(z); =

where
z=Wlu+b



Some Code

R using package mxnet:

fcl = mx.symbol.FullyConnected(data, name="fcl", num_hidden=128)
actl = mx.symbol.Activation(fcl, name="relul", act_type="relu")
fc2 = mx.symbol.FullyConnected(actl, name="fc2", num_hidden=128)
actZz = mx.symbol.Activation(fc2, name="relu2", act_type="relu")
fc3 = mx.symbol.FullyConnected(act2, name="fc3", num_hidden=2)

fullnetwork = mx.symbol.SoftmaxOutput(fc3, name="sm")



Flexibility

A primary appeal of the approach is the
flexibility in constructing the layers

— What is the mapping from one layer to the
next?



Flexibility

A primary appeal of the approach is the
flexibility in constructing the layers

— What is the mapping from one layer to the
next?

There are alternatives to fully connected

layers, e.g. convolutional networks and
recurrent networks



How Does it Work?

Instead of carefully constructing a model
to relate the input to the output, deep
learning exploits a large collection of
simple components to make a prediction

What is the role of expert knowledge?



How Does it Work?

Universal Approximation Theorem
(Hornik, et al.): With enough units, a
single hidden layer can approximate to
arbitrary precision any “nice” function.

But: Deeper networks use units more
efficiently, are easier to fit, and generalize
better



How Does it Work?

But: Deeper networks use units more
efficiently, are easier to fit, and generalize
better

Montufar, et al.: “[flor deep models, the
maximal number of linear regions grows
exponentially fast with the number of
parameters, whereas, for shallow models,
it grows polynomially fast with the number
of parameters.”



Fitting the Model

A cost function is optimized to estimate
the parameters (weights)

Choose cost function to maximize
appropriate likelihood

Stochastic gradient descent with back
propagation to estimate gradient



Regularization

Overfitting is a huge concern

Approaches to regularization (smoothing)
manage the bias/variance tradeoff

The model is parametric, so L? (ridge) or
L' (lasso) penalties on the cost function
are commonly used



Regularization

Dropout is a novel approach to
regularization

Units are randomly included/excluded
during training, approximating averaging
over all possible submodels

Variant of bagging

Reduces potential influence of any
individual unit
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Blazars versus CVs

L B 1 L b >2

ote 8
Sentigd* U2, ST

o g
bl LV 8
T R T T R e,
L g e e
ad -e S -
'-
s 706 b,

Blazar

Absolute Time Difference

Comparison of Structure Functions

Cv




Summarizing the SF
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Summarizing the SF

Typical to fit model to structure function

 Power Law Form (Schmidt et al.)
« Damped Random Walk (Kelly et al.)

Effort to find a low-dimensional

representation, avoiding the curse of
dimensionality

Ideally, could utilize higher-dimensional
representation



Log Magnitude Difference

Blazars versus CVs

Blazar

Absolute Time Difference

Quantile regression fits
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Blazar versus CV

Fit model with three hidden layers, using
Dropout

128 nodes per layer

Rectified linear units as the activation
functions

958 CVs, 318 Blazars from Catalina Real-
Time Transient Survey



Blazar versus CV

Performance on test set:

Truth
| Blazar | CV
Blazar 18 10

Prediction

CcVv 8 o1



Blazar versus CV

Performance on test set:
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Learning @
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o CcV 14 93



Potential of Deep Learning

Best suited to situations where high-
dimensional input is required

Avoid the curse of dimensionality

Seems particularly relevant for
classification challenges

Can be extended to unsupervised
learning - autoencoders



Summary

* Motivation: Representing Data
 Nonparametric Regression

« Curse of Dimensionality

« Additive Models

* Neural Nets

* Deep Learning
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