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The LSST ISSC


•  Informatics and Statistics one of eight 
LSST Science Collaborations!

•  Over 75 members and growing: !
data scientists and astronomers!

•  http://issc.science.lsst.org!





LSST Basics

•  10-year photometric survey!
•  3.2 Gigapixel camera!
•  32 trillion observations of !

40 billion objects!
•  Science Goals!
–  Cataloging the Solar System!
–  Exploring the Changing Sky!
–  Milky Way Structure & Formation!
–  Understanding Dark Matter and Dark Energy!

Ivezić, et al. (2014)!



Common Themes

•  General implementation challenges!
•  Existing procedures to LSST scales!
•  Expanding sophistication of analysis 

procedures in use!
•  Making the most of available data!



Representations

•  A recurring challenge is representing !

observables in forms amenable to 
standard analysis tools!

•  The fundamental challenge of “Big Data”!
•  What summary statistic retains the 

important information in the data?!
•  Separating signal from noise!



Classifying Variables
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Classifying Variables
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Blazars versus CVs

Cataclysmic Variables (CV) – binary 
system in Milky Way with matter transfer 
from secondary (normal) star to primary 
white dwarf!

Blazars – Quasars with “jet” of energy 
pointed at Earth!

Both produce light curves with irregular 
variability, lacking periodic structure!



Blazars versus CVs
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Figure 5.2: Example of light curves from the CRTS.

set, respectively.

Number of
obs.

Prop. of
censored
obs.

Total time
duration

Min. time
difference

Max. time
difference

Min. magni-
tude

Max. magni-
tude

Min. 84 0.0000 1584 0.0004 163.3 13.01 15.74
BL Mean 201 0.0058 1851 0.0010 232.9 15.94 18.44

Max. 302 0.0372 1916 0.0037 356.0 17.68 21.26
Min. 11 0.0000 731 0.0002 138.4 12.35 14.40

CV Mean 197 0.1353 1848 0.0015 261.3 16.17 19.98
Max. 331 0.9529 2069 0.0089 1003.0 19.17 22.05

Table 5.1: Summary of the 167 light curves in the training set (23 blazars and
144 cataclysmic variables).

5.1.1 Light Curve Features

To handle the light curve data for classification purposes we need to homogenize the data by extracting

features or statistical summaries for all of the light curves. These features can then be used as inputs

for classification. Extracting light curve features that are useful for classification has been extensively

explored as discussed in Section 2.2.3 (see e.g., Debosscher et al. 2007 and Richards et al. 2011). In

83

Light Curves from Catalina Real-Time Transient Survey (Drake 2009)!



Blazars versus CVs
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Comparison of Structure Functions!



Summarizing the SF

Typical to fit model to structure function!
•  Power Law Form (Schmidt et al.)!
•  Damped Random Walk (Kelly et al.)!

Effort to find a low-dimensional 
representation, avoiding the curse of 
dimensionality!
!



Summarizing the SF


Figure 2 in Peters et al. Quasar light curve and SF!



Summarizing the SF

Typical to fit model to structure function!
•  Power Law Form (Schmidt et al.)!
•  Damped Random Walk (Kelly et al.)!

Effort to find a low-dimensional 
representation, avoiding the curse of 
dimensionality!
Ideally, could utilize higher-dimensional 
representation!
!



Nonparametric Regression


Part 5: Nonparametric Regression

Figure 2 shows the effect of varying the smoothing parameter. In the1

top fit, there is insufficient smoothing, while in the bottom fit, the2

data have been oversmoothed.3
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Figure 2: A demonstration of the effect of increasing the amount of smoothing in a nonparametric

regression.
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Important smoothing technique!
Regression as a summary tool!



What is Nonparametric?

Data

Assumptions

Estimate

In the parametric case, the influence of 
assumptions is fixed!



What is Nonparametric?

Data

Assumptions

Estimate

h

In the nonparametric case, the influence of 
assumptions is controlled by smoothing 
parameter h which shrinks with more data!



Nonparametric Regression


Part 5: Nonparametric Regression

Figure 2 shows the effect of varying the smoothing parameter. In the1

top fit, there is insufficient smoothing, while in the bottom fit, the2

data have been oversmoothed.3
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Figure 2: A demonstration of the effect of increasing the amount of smoothing in a nonparametric

regression.
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Here we consider local linear regression!
•  Fits a sequence of local linear models!
•  Each local model only fits within a 

neighborhood. Size of neighborhood !
is the smoothing parameter!
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Our model here is that we observe (xi, Yi) for i = 1, 2, . . . , n and that1

Yi = f(xi) + ‘i2

where the ‘i are iid with mean zero and variance ‡2. Assuming that the ‘i3

are normal will lead to further nice properties, but this development does4

not require that assumption.5

In order to construct the local linear regression estimate of f(·), it is best6

to consider a sequence of steps for each fixed x0 at which f(·) will be esti-7

mated.8

(For context on these data, see Ruppert and Matteson, Section 11.3.)9

Lecture Notes for 46-921 Smoothing Slide 46

Step One: Fix the target point x0.1

Our objective is to estimate the regression function at x0.2
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Step Two: Create the neighborhood around x0.1

A common way to choose the neighborhood size is to choose is large2

enough to capture proportion – of the data. This parameter – is often3

called the span. A typical choice is – ¥ 0.5.4
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Step Three: Weight the data in the neighborhood.1

Values of x which are close x0 will receive a larger weight than those far2

from x0. Denote by wi the weight placed on observation i. The default3

choice is the tri-cube weight function:4

wi =

Y
__]

__[

3
1 ≠

--- xi≠x0
max dist

---
343

, if xi in the neighborhood of x0

0, if xi is not in neighborhood of x0
5
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Step Four: Fit the local regression line.1

This is done by finding —0 and —1 to minimize the weighted sum of squares2

nÿ

i=1
wi (yi ≠ (—0 + —1xi))2

3
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Step Five: Estimate f(x0).1

This is done using the fitted regression line to estimate the regression func-2

tion at x0:3

‚f(x0) = ‚—0 + ‚—1x04
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Bias-Variance Tradeoff

Choose smoothing parameter to achieve 
balance between!
•  Too simple – high bias: precise but not 

accurate!
•  Too complex – high variance: accurate, 

but not precise!
This is the classic bias-variance tradeoff!
Could be called the accuracy-precision 
tradeoff!
!
!



Bias-Variance Tradeoff
The Bias–Variance Tradeoff

Risk

Bias squared

Variance

Optimal
smoothing

MoreLess



Bias-Variance Tradeoff

Choosing p and h

Estimate the risk
1

n

n∑

i=1

E(f̂(Xi)− f(Xi))
2

with the leave-one-out cross-validation score:

CV =
1

n

n∑

i=1

(Yi − f̂(−i)(Xi))
2

where f̂(−i) is the estimator obtained by omitting the ith pair (Xi, Yi).



Curse of Dimensionality

Despite the promise of nonparametrics, 
fitting models in high dimensions is a 
challenge!

These fits require ample data in the 
“neighborhood” to be reliable, and data 
become sparse in high dimensions!

Choosing neighborhoods larger reduces 
the value of the approach!

!
!
!



Curse of Dimensionality




Curse of Dimensionality




Curse of Dimensionality


Part 5: Nonparametric Regression

Figure 2.6 from Hastie, Tibshirani, and Friedman (2009), reproduced1

here as Figure 10 shows the curse.2

Incredibly, when p � 10, the neighborhood has to cover 80% of the3

values for each predictor in order for the neighborhood to include4

just 10% of the data.5

Figure 10: Figure 2.6 from Hastie, Tibshirani, and Friedman (2009).
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Figure	2.6	from	Hastie,	Tibshirani,	and	Friedman	



Curse of Dimensionality


Part 5: Nonparametric Regression

Figure 2.6 from Hastie, Tibshirani, and Friedman (2009), reproduced1

here as Figure 10 shows the curse.2

Incredibly, when p � 10, the neighborhood has to cover 80% of the3

values for each predictor in order for the neighborhood to include4

just 10% of the data.5

Figure 10: Figure 2.6 from Hastie, Tibshirani, and Friedman (2009).
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Figure	2.6	from	Hastie,	Tibshirani,	and	Friedman	

In	one	dimension,	the	neighborhood	
has	to	cover	10%	of	the	range	in	the	
one	variable	in	order	to	capture	10%	
of	the	data	points	



Curse of Dimensionality


Part 5: Nonparametric Regression

Figure 2.6 from Hastie, Tibshirani, and Friedman (2009), reproduced1

here as Figure 10 shows the curse.2

Incredibly, when p � 10, the neighborhood has to cover 80% of the3

values for each predictor in order for the neighborhood to include4

just 10% of the data.5

Figure 10: Figure 2.6 from Hastie, Tibshirani, and Friedman (2009).
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Figure	2.6	from	Hastie,	Tibshirani,	and	Friedman	

In	ten	dimensions,	the	neighborhood	
has	to	cover	80%	of	the	range	in	each	
variable	in	order	to	capture	10%	of	
the	data	points	



Additive Models

Additive models avoid the curse of 
dimensionality by making a strong, but not 
overly restrictive assumption regarding the 
relationship between the response and 
predictors!

!
!
!



Additive Models


Part 6: Additive Models

The additive model that we use here is a compromise between the1

linear model on one extrme and the completely nonparametric model2

at the other extreme.3

The classic linear model:4

Y = �0 + �1x1 + �2x2 + · · ·+ �pxp + ✏5

The fully nonparametric model:6

Y = f(x1, x2, . . . , xp) + ✏7

with the f estimated from the data.8

The additive nonparametric model:9

Y = �0 + f1(x1) + f2(x2) + · · ·+ fp(xp) + ✏10

with each of the fi estimated from the data. (Each fi is shifted so that11

it is centered around zero. The intercept �0 accounts for the overall12

mean of the response.)13

Keep in mind that, in this notation, each of the xi could be user-14

defined functions of the original predictors, e.g. xi could be the in-15

teraction between two of the original variables.16
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Part 6: Additive Models

We will now focus on the additive nonparametric model:1

Y = f1(x1) + f2(x2) + · · ·+ fp(xp) + ✏2

with each of the fi estimated from the data.3

The general estimation strategy is called backfitting.4

In this process, each fk is estimated nonparametrically, in a rotation,5

and the process is repeated until there is convergence.6

When estimating fk(·), the other fj(·) are held fixed at their current7

best estimates, and we set up a one-dimensional nonparametric es-8

timation problem, on which one could use either local linear regres-9

sion, smoothing splines, or other approach.10

So, when estimating fk(·), the response is taken to be11

Yi �

2

4
X

j 6=k

bfj(xij)

3

512
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Part 6: Additive Models

1

Projection Pursuit Regression2

If one fits an additive model using the function gam() with family3

= gaussian (which is the default), then the assumption is that4

Y = �0 +
pX

j=1

fj(xj) + ✏5

where ✏ is normally distributed with mean zero and variance �2. Re-6

call that the fj are estimated nonparametrically.7

A generalization of this model is the projection pursuit regression8

model, which can be written as9

Y = �0 +
MX

k=1

�kfk
�
↵T

kx
�
+ ✏10

where each of the ↵k are a vector of length p. These ↵k are the pro-11

jection direction vectors.12

The functions fk, called the ridge functions, are estimated nonpara-13

metrically. These functions are scaled to have mean zero and vari-14

ance one when applied to the observed sample.15
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Part 6: Additive Models

To view the estimates of the ridge functions, simply use1

> plot(model5)2

This is shown as Figure 13 below.3
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0
2

4
6

8

term 4

Figure 13: Plot of the estimated ridge functions for Model Five.
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Part 6: Additive Models

Figure 16 below shows how the error decreases as M is increased. We1

also see the variability across the four cross-validation repetitions.2
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Figure 16: Plot showing the results of the cross-validation procedure. The line connects the average

values across the four repetitions.

The choice of M = 4 follows from the fact that for M > 4 there is3

not clear evidence of improved performance (along with the fact we4

found that M = 4 yields a model which fits well).5
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Part 6: Additive Models

1

Neural Networks for Regression2

To quote from HTF (page 392):3

The term neural network has evolved to encompass a large4

class of models and learning methods. Here we describe the5

most widely used “vanilla” neural net, sometimes called the6

single hidden layer back-propogation network, or single7

layer perceptron. There has been a great deal of hype sur-8

rounding neural networks, making them seem magical and9

mysterious. As we make clear in this section, they are just10

nonlinear statistical models, much like the projection pursuit11

regression model discussed above.12

At one time, research into neural networks was very hot in machine13

learning, but that has largely died down. As is done in HTF, we will14

focus on the basic foundation of the approach.15

I will further focus on the use of neural nets for predicting a contin-16

uous response, and leave the classification discussion for later.17
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Neural Networks
Part 6: Additive Models

The single hidden layer back-propogation network regression model1

can be written as follows:2

Y = �0 +
MX

k=1

�k�
�
↵0k +↵T

kx
�
+ ✏3

where the � and ↵ are parameters to be estimated, but the function �4

is not estimated.5

Exercise: Compare this neural network model to the projection pur-6

suit regression model:7

Y = �0 +
MX

k=1

�kfk
�
↵T

kx
�
+ ✏8

9

10

11

12

13

14

15

16

17

18

19
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Part 6: Additive Models

Terminology1

Some terms commonly used in conjunction with neural networks:2

• The function � is called the activation function. The standard3

choice is the sigmoid function4

�(u) =
1

1 + exp(�u)
.5

• The elements �
�
↵0k +↵T

kx
�

for k = 1, 2, . . . ,M comprise the hid-6

den layer.7

• The intercept terms ↵0k are called the biases.8

• The entire collection of ↵ and � parameters are called the weights.9
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Part 6: Additive Models

Fitting the Model1

In the regression setting, the standard is to use least squares to esti-2

mate the weights (parameters).3

If least squares is used alone, however, the solution is unstable, and4

the nonconvex optimization problem that is solved is sensitive to the5

starting values used in the iterative search algorithm.6

Hence, a regularization penalty is often added onto the residual sum7

of squares. A standard choice is the same penalty used in ridge re-8

gression, i.e., minimize9

RSS + �
MX

k=1

"
�2
k +

pX

i=0

↵2
ik

#
.10

The parameter � is commonly called the decay parameter.11

This regularization becomes particularly important as M is increased.12

Because of the regularization, it is important to transform the predic-13

tors so that they are on comparable scales; often one forces each to14

have mean zero and variance one. This can be accomplished easily15

in R using the scale() function.16
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Neural Networks
Part 6: Additive Models

Of course, now we have two parameters that control the complex-1

ity of the model: M and �. These should both be chosen carefully2

in order to avoid overfitting. Like other nonparametric estimation3

methods, neural networks have trememdous capacity to overfit to4

the observed data.5
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Choosing the Tuning Parameters1

We will use k-fold cross-validation to choose the tuning parameters2

M and � (the decay parameter).3

Since we have to loop over two parameters and still want to assess4

the stability in the procedure, the time required increases signifi-5

cantly. In the code below, only five possible values for each of M6

and � are considered. This took approximately a half hour to run on7

my laptop.8

modelformula = transresp ˜ scale(log(timetoexpiry)) + scale(log(strike)) +9

scale(log(curprice)) + scale(log(histvol))10

11

nnetCV = array(0,dim=c(5,5,4))12

decaylist = c(0,0.0001,0.001, 0.01, 0.02)13

Mlist = c(5,10,15,25,50)14

15

for(k in 1:dim(nnetCV)[[3]])16

{17

set.seed(k)18

for(i in 1:length(decaylist))19

{20

for(j in 1:length(Mlist))21

{22

nnetCV[i,j,k] = CVfornnet(modelformula, size=Mlist[j],23

decay=decaylist[i], numfolds=10, data=alldat)24

}25

}26

}27
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Deep Learning

“Deep learning is a particular kind of 
machine learning that achieves great 
power and flexibility by representing the 
world as a nested hierarchy of concepts, 
with each concept defined in relation to 
simpler concepts, and more abstract 
representations computed in terms of 
less abstract ones.” !
!
--Page 8 in Deep Learning,!
Goodfellow, Bengio, and Courville!



Deep Learning

“Deep learning is a particular kind of 
machine learning that achieves great 
power and flexibility by representing the 
world as a nested hierarchy of concepts, 
with each concept defined in relation to 
simpler concepts, and more abstract 
representations computed in terms of 
less abstract ones.” !
!
--Page 8 in Deep Learning,!
Goodfellow, Bengio, and Courville!

www.deeplearningbook.org!



Deep Learning

What makes it “deep?”!
The number of hidden layers is typically 
large, allowing for the modeling of complex 
relationships. 


Isn’t this just a neural network?

Yes, basically.




Deep Learning

What makes it “deep?”!
The number of hidden layers is typically 
large, allowing for the modeling of 
complex relationships.!
!
This can be viewed as an extension/
resurrection of neural networks!
Isn’t this just a neural network?

Yes, basically.




Resurgence of NN

Multiple factors contributed to growth of 
interest in Deep Learning:!
•  Increase in training set sizes!
•  Improved algorithms for training deeper 

networks (e.g., Hinton, et al. in 2006)!
•  Growth in computational resources!
•  Successes!



Flexibility

A primary appeal of the approach is the 
flexibility in constructing the layers!
–  How many units are there in each layer?!
–  What is the mapping from one layer to the 

next?!
–  How is the output constructed from the 

final hidden layer?!



Flexibility

A primary appeal of the approach is the 
flexibility in constructing the layers!
–  How many units are there in each layer?!
–  What is the mapping from one layer to the 

next?!
–  How is the output constructed from the 

final hidden layer?!



Fully Connected Layer

A standard mapping is a fully connected 
layer, simply a linear combination of the 
input (either the data or the output of the 
preceding layer)!







x = (x1, x2, . . . , xd)Input 
Layer

b+
dX

i=1

wixi
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x = (x1, x2, . . . , xd)Input 
Layer

First Layer

Second Layer

…

u = (u1, u2, . . . , um1)

bm2 +wT
m2
ub2 +wT

2ub1 +wT
1u



�(b1 +wT
1x)

x = (x1, x2, . . . , xd)Input 
Layer

…�(b2 +wT
2x) �(bm +wT

mx)

�(·) is the activation function, a simple 
nonlinear mapping!
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u

rectified linear

−4 −2 0 2 4

u

logistic sigmoid

−4 −2 0 2 4

u

hyperbolic tangent

−4 −2 0 2 4

u

softplus

�(u) = max(0, u)

�(u) =
1

1 + exp(�u)
�(u) = log(1 + exp(u))

�(u) = tanh(u)
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x = (x1, x2, . . . , xd)Input 
Layer

First Layer

Second Layer

…

u = (u1, u2, . . . , um1)

�(bm2 +wT
m2
u)

…

Additional Hidden 
Layers

Output Layer y



Output Layer

There are standard choices for generating 
the output from the final hidden layer!
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There are standard choices for generating 
the output from the final hidden layer!
!
If the output is continuous, then simply 
taking a linear combination is typical:!





y = b+wTu



Output Layer

There are standard choices for generating 
the output from the final hidden layer!
!
If the output is continuous, then simply 
taking a linear combination is typical:!
!



y = b+wTu

Result of final hidden layer



Output Layer

If the output is binary, then transformation 
to a probability is done via the logistic 
sigmoid function:!





y =
1

1 + exp(�(b+wTu))



Output Layer

If the output is multinomial, then 
transformation to a probability is done 
via the softmax function:!
!
!
where!





softmax(z)i =
exp(zi)P
j exp(zj)

z = WTu+ b



Some Code


fc1 = mx.symbol.FullyConnected(data, name="fc1", num_hidden=128)

act1 = mx.symbol.Activation(fc1, name="relu1", act_type="relu")

fc2 = mx.symbol.FullyConnected(act1, name="fc2", num_hidden=128)

act2 = mx.symbol.Activation(fc2, name="relu2", act_type="relu")

fc3 = mx.symbol.FullyConnected(act2, name="fc3", num_hidden=2)

fullnetwork = mx.symbol.SoftmaxOutput(fc3, name="sm")

R using package mxnet:!







Flexibility

A primary appeal of the approach is the 
flexibility in constructing the layers!
–  How many units are there in each layer?!
–  What is the mapping from one layer to the 

next?!
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Flexibility

A primary appeal of the approach is the 
flexibility in constructing the layers!
–  How many units are there in each layer?!
–  What is the mapping from one layer to the 

next?!
–  How is the output constructed from the 

final hidden layer?!
There are alternatives to fully connected 
layers, e.g. convolutional networks and 
recurrent networks!



How Does it Work?

Instead of carefully constructing a model 
to relate the input to the output, deep 
learning exploits a large collection of 
simple components to make a prediction!
!
What is the role of expert knowledge?!



How Does it Work?

Universal Approximation Theorem 
(Hornik, et al.): With enough units, a 
single hidden layer can approximate to 
arbitrary precision any “nice” function.!
!
But: Deeper networks use units more 
efficiently, are easier to fit, and generalize 
better!





How Does it Work?

But: Deeper networks use units more 
efficiently, are easier to fit, and generalize 
better!

Montufar, et al.: “[f]or deep models, the 
maximal number of linear regions grows 
exponentially fast with the number of 
parameters, whereas, for shallow models, 
it grows polynomially fast with the number 
of parameters.”!







Fitting the Model

A cost function is optimized to estimate 
the parameters (weights)!

Choose cost function to maximize 
appropriate likelihood!

Stochastic gradient descent with back 
propagation to estimate gradient!



Regularization

Overfitting is a huge concern!

Approaches to regularization (smoothing) 
manage the bias/variance tradeoff!

The model is parametric, so L2 (ridge) or 
L1 (lasso) penalties on the cost function 
are commonly used!



Regularization

Dropout is a novel approach to 
regularization!

Units are randomly included/excluded 
during training, approximating averaging 
over all possible submodels!

Variant of bagging!

Reduces potential influence of any 
individual unit!



Blazars versus CVs
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Comparison of Structure Functions!



Summarizing the SF


Figure 2 in Peters et al. Quasar light curve and SF!



Summarizing the SF

Typical to fit model to structure function!
•  Power Law Form (Schmidt et al.)!
•  Damped Random Walk (Kelly et al.)!

Effort to find a low-dimensional 
representation, avoiding the curse of 
dimensionality!
Ideally, could utilize higher-dimensional 
representation!
!



Blazars versus CVs
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Absolute Time Difference!

Quantile regression fits!



Blazar versus CV

Fit model with three hidden layers, using 
Dropout!

128 nodes per layer!

Rectified linear units as the activation 
functions!

958 CVs, 318 Blazars from Catalina Real-
Time Transient Survey !

!



Blazar versus CV

Performance on test set:!
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Potential of Deep Learning

Best suited to situations where high-
dimensional input is required!

Avoid the curse of dimensionality!

Seems particularly relevant for 
classification challenges!

Can be extended to unsupervised 
learning - autoencoders!



Summary

•  Motivation: Representing Data

•  Nonparametric Regression

•  Curse of Dimensionality

•  Additive Models

•  Neural Nets

•  Deep Learning
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