Dark Matter Searches at the LHC

Christopher Anelli On Behalf of the ATLAS and CMS Experiments

University of Victoria

Banff DM-Statistics Workshop 2018

Dark Matter Motivation

Abundance of astrophysical evidence for the existence of cold, dark matter (DM).

Galaxy Rotation Curves

Gravitational Lensing

Structure Formation

Dark matter cannot be explained by Standard Model (SM) particles.

- CMB and Big Bang Nucleosynthesis measure the baryon fraction and rule out ordinary dark baryons.
- Supporting a new, Beyond the Standard Model (BSM) particle, WIMP miracle predicts a weakly interacting particle will freeze out with correct relic abundance to account for current dark matter density.

LHC

Located along the French-Swiss border, the Large Hadron Collider is a proton-proton accelerator. Collisions occur at center of mass energies of 13 TeV.

LHC

Experiments

There are four main detectors located along the LHC ring:

Christopher Aneili

Experiments

ATLAS and CMS detectors consist of an Inner Tracker, Electromagnetic Calorimeter (ECAL), Hadronic Calorimeter (HCAL), Muon System, and Magnetic Field.

Particle Reconstruction

- Basic reconstruction elements: charged tracks in the Inner Tracker, energy clusters in the ECAL and HCAL, and muon tracks in the Muon System.
- Elements are grouped together to identify **muons**, **electrons**, **photons**, **charged hadrons**, and **neutral hadrons**.

Mono-X + MET

Look for DM through the presence of missing transverse energy (MET) in the detector:

 $\mathbf{E_T^{miss}} = -\Sigma \overrightarrow{p_T}$ All Reconstructed Objects

Neutrinos also produce E_T^{miss} , and are one of the main source of background.

 P_T imbalance requires the DM production to be recoiled against something. For recoil off of Initial State Radiation (ISR), there are the Mono-Jet, Mono-Photon, and Mono-Z signatures.

Dark Matter Models

Simplified Models

Scalar

Pseudoscalar

Collider searches use simplified models of DM.

Mediator types:

- Vector
- Axial-vector

DM simplified models have 6 free parameters: Z

- gq mediator coupling to quarks
- g_l mediator coupling to leptons
- g_X mediator coupling to DM

• M_{DM} - DM mass

q

 \overline{q}

H

• M_{med} - Mediator mass

med

• **F**med - Mediator width

Following the <u>recommendations</u> of the DM Working Group, ATLAS and CMS have agreed to study a common set of couplings values:

- For Vector and Axial-vector models $g_q=0.25$, $g_\ell=0$, $g_\chi=1$
- Γ_{med} is set using the minimal width formula.
- Results are shown as 2D exclusion plots in M_{med} : M_{DM}.

 $\bar{\chi}$

 χ

Analysis Strategy (Mono-Jet)

ATLAS

SR

Data Driven Estimates

Data control regions, non-overlapping with the signal region, are leveraged to estimate backgrounds.

One of the main backgrounds for Mono-Jet is Z(vv) + jets.

CR

- Dimuon control region is same as signal region, but with inverted lepton veto and requirement of muon pair consistent with Z-boson decay.
- Simulated transfer factors account for branching fractions and different selection efficiencies, multiply control region Z(µµ) to estimate Z(vv) background in the signal region.
- Five control regions used for final estimate of Z(vv) + jets and W(lv) + jets backgrounds, fit to maximum likelihood.

35.9 fb⁻¹ (13 TeV)

Likelihood Profile

Likelihood for observed number of events following a Poisson distribution. Product over nbins.

Significances and limits are calculated using a likelihood profile test statistic, q_{μ} . From Wilk's theorem, test statis $p_0 = \int_{0}^{\infty} f(q_0|0) dq_0 = \int_{0}^{\infty} f(q_0$

$$p_0 = \int_{q_{0,obs}} \frac{f(q_0|0) \, dq_0}{q_\mu} = -2 \ln \frac{\mathcal{L}(\mu, \hat{\theta})}{\mathcal{L}(\hat{\mu}, \hat{\theta})} \longleftarrow \text{ maximizes likelihood for specific } \mu$$

From the distribution, χ^2 , get p-value for specific q. Can convert p-value into equivalent significance.

$$Z = \Phi^{-1}(1-p)$$

$$Z = \Phi^{-1}(1-p)$$
Inverse Gaussian CDF

Christopher Anelli

Discovery

For discovery significance is calculated over the background only hypothesis, $\mu = 0$.

Dashed line shows expected significance for the $\mu = 1$ (SM Higgs boson) case.

Exclusion Limits

For exclusion limits, scan signal models and hypothesis test to find 95% confidence level.

For small expected signal compared to background, $CL_s \equiv \frac{p_{s+b}}{1-p_b} \xrightarrow{p_{s+b}} p_{s+b} = P(q \ge q_{obs}|s+b)$ use CLs method.

For 2D exclusion plots (Simplified Model), at each point (M_{med} , M_{DM}) calculate CLs values for nominal signal, $q_{1.}$ Draw contour along CLs = 0.05.

Simplified Model Results

Vector model:

Because mediators couple to quarks, they can also decay to dijet final states.

Simplified Model Results

Axial-vector model:

Comparing to Direct Detection

Simplified models allow for comparison between direct detection and collider results:

Vector model:

AS

20

Comparing to Direct Detection

Simplified models allow for comparison between direct detection and collider results:

Axial-vector model:

AS

σ^{SD} DM-proton [cm²]

10⁻³⁷

10⁻³⁸

10⁻³⁹

 10^{-40}

10⁻⁴¹

 10^{-42}

 10^{-43}

10⁻⁴⁴

10⁻⁴⁵

Christopher Anelli

Supersymmetry

Supersymmetry (SUSY) is a well developed theory for solving the hierarchy problem in the SM. Each SM particle has a supersymmetric pair.

In many SUSY models, the lightest neutralino is stable and provides a natural DM particle candidate.

SUSY Limits

 χ_1

Left figure shows the limits for the lightest neutralino mass versus one of the heavier neutralino or charging masses.

Right figure similarly shows limits for the lightest neutralino mass versus gluino mass.

ERIMENT

*Or

SUSY Searches

ATLAS SUSY Searches* - 95% CL Lower Limits

December 2017

	Model	e, μ, τ, γ	Jets	E ^{miss} _T	∫L dt[fb	⁻¹) Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}^{\theta}$ $qq, q \rightarrow q \tilde{k}^{\theta}$ (compressed) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{k}_{1}^{\theta}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{k}_{1}^{\theta} \rightarrow q q W^{*} \tilde{\chi}_{1}^{\theta}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \ell \ell / \gamma \gamma \tilde{\chi}_{1}^{\theta}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \ell \ell / \gamma \gamma \tilde{\chi}_{1}^{\theta}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \ell \ell / \gamma \gamma \tilde{\chi}_{1}^{\theta}$ $\tilde{g}GMSB (\tilde{\ell} NLSP)$ GGM (biny NLSP) GGM (higgsino-bino NLSP) Gravitino LSP	0 ποπο-jet 0 <i>ee.μμ</i> 3 <i>e.μ</i> 0 1-2 τ + 0-1 <i>ℓ</i> 2 γ γ 0	2-6 jets 1-3 juts 2-6 jets 2-6 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 4 jets 11 jets 0-2 jets 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 36.1 36.1 36.1 36.1 20.3	q 710 GeV g 710 GeV g g	1.57 TeV $m(\tilde{r}_1^0) < 200 \text{ GeV}, m(1^{st} \text{ gen.} \tilde{q}) + m(2^{ot} \text{ gen.} \tilde{q})$ $m(q) - m(\tilde{k}_1^0) < 5 \text{ GeV}$ $m(q) - m(\tilde{k}_1^0) < 5 \text{ GeV}$ 2.02 TeV $m(\tilde{k}_1^0) < 200 \text{ GeV}$ 2.01 TeV $m(\tilde{k}_1^0) < 200 \text{ GeV}$ 2.01 TeV $m(\tilde{k}_1^0) < 300 \text{ GeV}$ 1.7 TeV $m(\tilde{k}_1^0) < 300 \text{ GeV}$ 1.87 TeV $m(\tilde{k}_1^0) = 0 \text{ GeV}$ 1.8 TeV $m(\tilde{k}_1^0) = 0 \text{ GeV}$ 2.0 TeV $cr(NLSP) < 0.1 \text{ mm}$ 2.15 TeV $cr(NLSP) < 0.1 \text{ mm}$ 2.05 TeV $m(\tilde{k}_1^0) = 1700 \text{ GeV}, cr(NLSP) < 0.1 \text{ mm}, \mu > 0$ $m(\tilde{G}) > 1.8 \times 10^{-4} \text{ eV}, m(\tilde{g}) = m(\tilde{g}) = 1.5 \text{ TeV}$	1712.02832 1711.03001 1712.02832 1712.02832 1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONF-2017-080 ATLAS-CONF-2017-080 1502.01518
R med.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{k}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{k}_{1}^{0}$	0 0-1 e,µ	3 b 3 b	Yes Yes	36.1 36.1	iê Îê	1.92 TeV m(k ⁰ ₁)<600 GeV 1.97 TeV m(k ⁰ ₁)<200 GeV	1711.01901 1711.01901
3rd gen. squarks direct production	$\begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow d\tilde{\chi}_{1}^{n} \\ \tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow b\tilde{\chi}_{1}^{n} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{n} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (natural GMSB) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{array}$	0 $2 e, \mu$ (SS) $0-2 e, \mu$ $0-2 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z) $1-2 e, \mu$	2 b 1 b 1-2 b 1-2 jets/1-2 l mcno-jet 1 b 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 36.1 20.3 36.1 36.1 36.1	b1 950 GeV b1 275-700 GeV i1 117-170 GeV 200-720 GeV i1 90-198 GeV 0.195-1.0 TeV i1 90-430 GeV 0.195-1.0 TeV i1 90-430 GeV 0.195-1.0 TeV i2 290-790 GeV 0.195-1.0 TeV	$\begin{split} m(\tilde{k}_{1}^{0}) &< 420 \text{GeV} \\ m(\tilde{k}_{1}^{0}) &< 200 \text{GeV}, \ m(\tilde{k}_{1}^{0}) &= m(\tilde{k}_{1}^{0}) + 100 \text{GeV} \\ m(\tilde{k}_{1}^{0}) &= 2m(\tilde{k}_{1}^{0}), \ m(\tilde{k}_{1}^{0}) &= 55 \text{GeV} \\ m(\tilde{k}_{1}^{0}) &= 1 \text{GeV} \\ m(\tilde{k}_{1}^{0}) &= 1 \text{GeV} \\ m(\tilde{k}_{1}^{0}) &= 1 50 \text{GeV} \\ m(\tilde{k}_{1}^{0}) &= 1 50 \text{GeV} \\ m(\tilde{k}_{1}^{0}) &= 0 \text{GeV} \\ m(\tilde{k}_{1}^{0}) &= 0 \text{GeV} \\ m(\tilde{k}_{1}^{0}) &= 0 \text{GeV} \end{split}$	1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03386 1706.03386
EW direct	$\begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_1^+ \ell \tilde{\chi}_2^0, \tilde{\ell}_1^+ \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau (\nu \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \ell_L \tau \tilde{\ell}_L \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_L \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 h \tilde{\chi}_1^0, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 \rightarrow \tilde{\ell}_R \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_1^0 \rightarrow \\ \text{GGM (bino NLSP) weak prod., } \tilde{\chi}_1^0 \rightarrow \end{array}$	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ e,μ,γ 4 e,μ γG 1 e,μ + γ γG 2 γ	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 36.1	₹ 90-500 GeV x̂1 [±] 750 GeV x̂1 [±] 760 GeV x̂1 [±] 580 GeV x̂1 [±] 580 GeV x̂1 [±] 635 GeV ŵ 115-370 GeV ŵ 1.06 TeV	$\begin{split} m(\tilde{k}_{1}^{0})=&0\\ m(\tilde{k}_{1}^{0})=&0, m(\tilde{\ell},\tilde{\nu})=&0.5(m(\tilde{k}_{1}^{+})+m(\tilde{k}_{1}^{0}))\\ m(\tilde{k}_{1}^{0})=&0, m(\tilde{\ell},\tilde{\nu})=&0.5(m(\tilde{k}_{1}^{+})+m(\tilde{k}_{1}^{0}))\\ m(\tilde{k}_{1}^{+})=&m(\tilde{k}_{1}^{0})=&0, m(\tilde{\ell},\tilde{\nu})=&0.5(m(\tilde{k}_{1}^{+})+m(\tilde{k}_{1}^{0}))\\ m(\tilde{k}_{1}^{+})=&m(\tilde{k}_{2}^{0}), m(\tilde{k}_{2}^{+})=&0, \tilde{\ell} \text{ decoupled}\\ m(\tilde{k}_{1}^{+})=&m(\tilde{k}_{2}^{0}), m(\tilde{k}_{2}^{+})=&0, \tilde{\ell} \text{ decoupled}\\ m(\tilde{k}_{2}^{0})=&m(\tilde{k}_{1}^{0})=&0, m(\tilde{\ell},\tilde{\nu})=&0.5(m(\tilde{k}_{2}^{0})+m(\tilde{\ell}_{1}^{0}))\\ c\tau<&1 mm\\ c\tau<&1 mm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07375 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS-CONF-2017-080
Long-lived particles	Direct $\hat{\chi}_{1}^{+}\hat{\chi}_{1}^{-}$ prod., long-lived $\hat{\chi}_{1}^{\pm}$ Direct $\hat{\chi}_{1}^{+}\hat{\chi}_{1}^{-}$ prod., long-lived $\hat{\chi}_{1}^{\pm}$ Stable, stopped \hat{g} R-hadron Stable g R-hadron Metastable \hat{g} R-hadron Metastable \hat{g} R-hadron, $\hat{g} \rightarrow q \hat{\chi}_{1}^{0}$ GMSB, stable $\hat{\tau}, \hat{\chi}_{1}^{0} \rightarrow \hat{\tau}(\hat{e}, \hat{\mu}) + \tau(e, \mu)$ GMSB, $\hat{\chi}_{1}^{0} \rightarrow \gamma \hat{\sigma}$, long-lived $\hat{\chi}_{1}^{0}$ $\hat{g}_{\hat{g}}, \hat{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx 1-2 µ 2 y displ. ee/eµ/µ	1 jet - 1-5 jots - - - - -	Yes Yes - Yes - Yes - Yes	36.1 18.4 27.9 3.2 3.2 32.8 19.1 20.3 20.3	x̂1 460 GeV x̂1 495 GeV x̂1 495 GeV x̂1 850 GeV x̂1 537 GeV x̂1 537 GeV x̂1 440 GeV x̂1 1.0 TeV	$\begin{array}{c} m(\tilde{\xi}_{1}^{0})-m(\tilde{\xi}_{1}^{0})\sim 160 \ \text{MeV}, \ r(\tilde{\xi}_{1}^{0})=0.2 \ \text{ns} \\ m(\tilde{\xi}_{1}^{0})-m(\tilde{\xi}_{1}^{0})\sim 160 \ \text{MeV}, \ r(\tilde{\xi}_{1}^{0})<15 \ \text{ns} \\ m(\tilde{\xi}_{1}^{0})=100 \ \text{GeV}, \ 10 \ \mu\text{s} < r(\tilde{g})<1000 \ \text{s} \\ \hline \textbf{1.58 \ TeV} \\ \hline \textbf{1.57 \ TeV} \qquad m(\tilde{\xi}_{1}^{0})=100 \ \text{GeV}, \ \tau>10 \ \text{ns} \\ \hline \textbf{2.37 \ TeV} \qquad r(\tilde{g})=0.17 \ \text{ns}, m(\tilde{\xi}_{1}^{0})=100 \ \text{GeV} \\ 10<\tan\beta<50 \\ 1< r(\tilde{\xi}_{1}^{0})<3 \ \text{ns}, \ \text{SP58 \ model} \\ 7 < cr(\tilde{\xi}_{1}^{0})<740 \ \text{mn}, \ m(\tilde{g})=1.3 \ \text{TeV} \\ \end{array}$	1712.02118 1506.05332 1310.6584 1606.05129 1604.04320 1710.04301 1411.6795 1409.5542 1504.05162
RPV	LFV $pp \rightarrow \tilde{i}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/\epsilon\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu v, \mu\mu v$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow erv_{v}, e\tau v_{\tau}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{t}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow bs$ $t_{1}t_{1}, t_{1} \rightarrow b!$	$e\mu,e\tau,\mu\tau$ $2 e,\mu$ (SS) $4 e,\mu$ $0 e,\mu + \tau$ $0 4-1 e,\mu$ 8 $1 e,\mu$ 8 0 $2 e,\mu$	(-3 b 5 large-R je -10 jets/0-4 -10 jets/0-4 2 jers + 2 b 2 b	Yes Yes Yes ts - b - b -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.7	\$\vec{v}_r\$ 1 \$\vec{v}_1^1\$ 1.14 TeV \$\vec{x}_1^1\$ 1.14 TeV \$\vec{x}_1^1\$ 450 GeV \$\vec{v}_1\$ 450 GeV \$\vec{v}_1\$ 100-470 GeV \$\vec{v}_1\$ 0.4-1	1.9 TeV $\lambda'_{311}=0.11, \lambda'_{132/131/233}=0.07$.45 TeV m(\tilde{q})=m(\tilde{g}), $c\tau_{LSP}<1$ mm // m($\tilde{\xi}^0_1$)>400GeV, $\lambda_{134}\neq0$ ($k=1,2$) m($\tilde{\epsilon}^0_1$)>0.2.xm($\tilde{\epsilon}^+_1$), $\lambda_{133}\neq0$ 1.875 TeV m($\tilde{\xi}^0_1$)=1075 GeV 2.1 TeV m($\tilde{\xi}^0_1$)=1 TeV, $\lambda_{112}\neq0$ 1.65 TeV m(\tilde{t}^0_1)=1 TeV, $\lambda_{323}\neq0$.45 TeV BR $(t_1 \rightarrow be/\mu)>20\%$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5000 SUSY-2016-22 1704.08493 1704.08493 1710.07171 1710.05544
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\tilde{x}}_1^0$	0	20	Yes	20.3	ε 510 GeV	m(ℓ ₁ ⁰)<200 GeV	1501.01325
Orly a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made. 10 ⁻¹ 24 1 Mass scale [TeV]								

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

Invisible Higgs Decay

ATLAS Two Higgs Doublet with Pseudoscalar Mediator

Two Higgs Doublet models with a light pseudoscalar (a) mediator to dark matter can produce enhanced signals in the mono-Z and mono-Higgs channels compared to Mono-Jet.

Enhancement due to resonant production of two higgs doublet's heavy scalar (H) or heavy pseudoscalar (A) particles.

Future of Collider Searches

LHC Timeline:

- Searches for DM at the LHC are ongoing and complement current direct and indirect searches.
- Collider searches look for Mono-X + MET signatures.
- Results are interpreted as limits on generic, simplified models of Dark Matter with minimal number of free parameters.
- In addition, optimized searches for specific, developed theories such as SUSY are also carried out.
- The DM hunt continues, with the completion of LHC Run-2 scheduled in 2018, and over the LHC lifetime a total of 3000 fb⁻¹ of data to be collected.

Backup Slides

Integrated Luminosity

 χ^2 Distribution

 χ^2 distribution for k degrees of freedom:

CLs Method

Distribution of q under the signal + background and signal only hypotheses.

 $CL_s \equiv \frac{p_{s+b}}{1-p_b}$

DM in Association with tt~

imthe rtiDark matter produced in association with top and and bottom quarks. <u>arXiv 1710.11412</u>

AS

ver,

as

