Filtered Subspace Iteration for Selfadjoint Operator Eigenvalue Problems

\dagger Jeffrey Ovall, Portland State University, jovall@pdx.edu
Jay Gopalakrishnan, Portland State University
Luka Grubišić, University of Zagreb

NSF DMS-1414365 and DMS-1522471

Basic Discretizations: Finite Differences

1D Model Problem (Strong Form):

$$
-u^{\prime \prime}=\lambda u \text { in }(0,1) \quad, \quad u(0)=u(1)=0
$$

- $u_{n}=\sin (n \pi x), \lambda_{n}=(n \pi)^{2}, n \in \mathbb{N}$

Finite Difference Discretization:

$$
\frac{-\tilde{u}_{j-1}+2 \tilde{u}_{j}-\tilde{u}_{j+1}}{h^{2}}=\tilde{\lambda} \tilde{u}_{j} \text { for } 1 \leq j \leq N \quad, \quad \tilde{u}_{0}=\tilde{u}_{N+1}=0
$$

- Uniform grid: $h=1 /(N+1), x_{j}=j h, 0 \leq j \leq N+1$
- Taylor's theorem: $u^{\prime \prime}\left(x_{j}\right)=\frac{u\left(x_{j-1}\right)-2 u\left(x_{j}\right)+u\left(x_{j+1}\right)}{h^{2}}-\frac{u^{(4)}\left(z_{j}\right)}{12} h^{2}$

$$
\frac{1}{h^{2}}\left(\begin{array}{ccccc}
2 & -1 & & & \\
& & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \tilde{\mathbf{u}}=\tilde{\lambda} \tilde{\mathbf{u}}
$$

$$
A \tilde{\mathbf{u}}=\tilde{\lambda} \tilde{\mathbf{u}}
$$

Basic Discretizations: Finite Differences

Exact and Discrete Eigenvalues/Vectors:

- $u_{n}=\sin (n \pi x), \lambda_{n}=(n \pi)^{2}, n \in \mathbb{N}$
- $\tilde{\mathbf{u}}_{n}=\left(\sin \left(n \pi x_{1}\right), \ldots, \sin \left(n \pi x_{N}\right)\right), \tilde{\lambda}_{n}=\frac{2-2 \cos (n \pi h)}{h^{2}}, 1 \leq n \leq N$
- Relative errors: $0<\frac{\lambda_{n}-\tilde{\lambda}_{n}}{\lambda_{n}}=1-\frac{2-2 \cos (n \pi h)}{(n \pi h)^{2}}$

$$
\frac{x^{2}}{12}-\frac{x^{4}}{360}<1-\frac{2-2 \cos x}{x^{2}}=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{2 x^{2 k}}{(2 k+2)!}<\frac{x^{2}}{12}
$$

Basic Discretizations: Finite Elements

1D Model Problem (Weak Form):

$$
\int_{0}^{1} u^{\prime} v^{\prime} d x=\lambda \int_{0}^{1} u v d x \text { for all } v \in H_{0}^{1}(0,1)
$$

- Integration-by-parts, $a(u, v)=\int_{0}^{1} u^{\prime} v^{\prime} d x, b(u, v)=\int_{0}^{1} u v d x$

Finite Element Discretization:

$$
a(\hat{u}, v)=\hat{\lambda} b(\hat{u}, v) \text { for all } v \in V
$$

- Uniform grid: $h=1 /(N+1), x_{j}=j h, 0 \leq j \leq N+1, I_{k}=\left[x_{k-1}, x_{k}\right]$
- $V=\left\{v \in C[0,1]: v_{I_{I_{k}}} \in \mathbb{P}_{1}\left(I_{k}\right), v(0)=v(1)=0\right\}=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{N}\right\}$

Basic Discretizations: Finite Elements

Generalized (Matrix) Eigenvalue Problem:

Exact and Discrete Eigenvalues/Vectors:

- $u_{n}=\sin (n \pi x), \lambda_{n}=(n \pi)^{2}, n \in \mathbb{N}$
- $\hat{u}_{n}=\sum_{k=1}^{n} \sin \left(n \pi x_{k}\right) \phi_{k}, \hat{\lambda}_{n}=\frac{6}{h^{2}} \frac{2-2 \cos (n \pi h)}{4+2 \cos (n \pi h)}, 1 \leq n \leq N$
- Relative errors: $0<\frac{\hat{\lambda}_{n}-\lambda_{n}}{\lambda_{n}}=\frac{6}{(n \pi h)^{2}} \frac{2-2 \cos (n \pi h)}{4+2 \cos (n \pi h)}-1<0.444 \quad 0<n \pi h<\pi$

$$
\frac{x^{2}}{12}<\frac{6}{x^{2}} \frac{2-2 \cos x}{4+2 \cos x}-1<\frac{x^{2}}{12}+\frac{x^{4}}{360} \text { for } 0 \leq x \leq 2
$$

Finite Element Discretization in 2D

$35.6685,72.4200,104.0508,131.8838,141.8885,194.9604$

A Relationship Between Eigenvalue and Eigenvector Error

 Variational Eigenvalue Problem: Find $\lambda \in \mathbb{R}$, non-zero $u \in \mathcal{H}$ such that$$
a(u, v)=\lambda b(u, v) \text { for all } v \in \mathcal{H}
$$

- b an inner product, assoc. norm $\|\cdot\|_{b}$
- a a semi-inner product, assoc. seminorm $|\cdot|_{a}$

A Simple Identity: (λ, u) an eigenpair, with $\|u\|_{b}=1, \hat{u} \in \mathcal{H}$ any vector with $\|\hat{u}\|_{b}=1, \hat{\lambda}=a(\hat{u}, \hat{u})$ (Rayleigh quotient)

$$
\hat{\lambda}-\lambda=|u-\hat{u}|_{a}^{2}-\lambda\|u-\hat{u}\|_{b}^{2}
$$

- "Eigenvalue error behaves like square of eigenvector error"
- Methods (e.g. finite elements) typically focus on controlling eigenvector error
- Results like this for clusters of eigenvalues, assoc. invariant subspaces?

Elements of Error Estimation

Model Problem(s): Find non-zero $u \in H_{0}^{1}(\Omega)$ and $\lambda \in \mathbb{R}$ such that

$$
\underbrace{\int_{\Omega} D \nabla u \cdot \nabla v+\operatorname{ruv} d x}_{a(u, v)}=\lambda \underbrace{\int_{\Omega} u v d x}_{b(u, v)} \text { for all } v \in H_{0}^{1}(\Omega)
$$

Given a finite dimensional subspace $V \subset H_{0}^{1}(\Omega)$, find non-zero $\hat{u} \in V$ and $\hat{\lambda} \in \mathbb{R}$ such that

$$
\begin{equation*}
a(\hat{u}, v)=\hat{\lambda} b(\hat{u}, v) \text { for all } v \in V \tag{1}
\end{equation*}
$$

- $0<\lambda_{1}<\lambda_{2} \leq \cdots \quad, \quad 0<\hat{\lambda}_{1} \leq \hat{\lambda}_{2} \leq \cdots \leq \hat{\lambda}_{\operatorname{dim}(V)} \quad, \quad \lambda_{i} \leq \hat{\lambda}_{i}$

Error Estimation: Let $\left(\hat{\lambda}_{i}, \hat{u}_{i}\right)$ be an eigenpair of (1), with $\left\|\hat{u}_{i}\right\|_{b}=1$.

$$
\inf _{u \in E\left(\lambda_{i}\right)}\left\|u-\hat{u}_{i}\right\| \leq C\left(\hat{\lambda}_{i}, \hat{\lambda}\right)\left\|u_{i}^{*}-\hat{u}_{i}\right\| \quad, \quad 0 \leq \hat{\lambda}_{i}-\lambda_{i} \leq \inf _{u \in E\left(\lambda_{i}\right)}\left\|u-\hat{u}_{i}\right\|_{a}^{2}
$$

- $\|\cdot\|$ can be either a-norm or b-norm $\quad, \quad C\left(\hat{\lambda}_{i}, \hat{\lambda}\right)=\max _{\mu \in \operatorname{Spec} \backslash\left\{\lambda_{i}\right\}} \frac{\mu}{\left|\mu-\hat{\lambda}_{i}\right|}$
- $u_{i}^{*} \in H_{0}^{1}(\Omega)$ satisfies $a\left(u_{i}^{*}, v\right)=b\left(\hat{\lambda}_{i} \hat{u}_{i}, v\right)$ for all $v \in H_{0}^{1}(\Omega)$
- Many techniques exist for computing estimates of quantities like $\left\|u_{i}^{*}-\hat{u}_{i}\right\|$

Challenges: Singularities

- Sector of unit disk with opening angle $\pi / \alpha, \alpha \in[1 / 2,1)$
- $\lambda_{m, n}=z_{m, n}^{2}, \psi_{m, n}=J_{n \alpha}\left(z_{m, n} r\right) \sin (n \alpha \theta) \sim r^{n \alpha}$
- $z_{m, n}$ is $m^{t h}$ positive root of $J_{n \alpha}$
- Singular and analytic eigenvectors interspersed throughout spectrum
- Below, slit disk $(\alpha=1 / 2) ; r^{1 / 2}$-singularities in red $\quad J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$

Challenges: Singularities

Challenges: Repeated Eigenvalues

Babus̄ka-Osborn Example

$$
\begin{gathered}
\phi(x)=\pi^{-\alpha} \operatorname{sign}(x)|x|^{1+\alpha} \\
\phi^{\prime}(x)=\pi^{-\alpha}(1+\alpha)|x|^{\alpha} \\
-\left(\frac{u^{\prime}(x)}{\phi^{\prime}(x)}\right)^{\prime}=\lambda \phi^{\prime}(x) u(x) \\
u(-\pi)=u(\pi) \\
\frac{u^{\prime}(-\pi)}{\phi^{\prime}(-\pi)}=\frac{u^{\prime}(\pi)}{\phi^{\prime}(\pi)}
\end{gathered}
$$

- $\lambda_{0}=0, u_{0}=1$
- $\lambda_{2 n-1}=\lambda_{2 n}=n^{2} \quad n \in \mathbb{N}$

$$
\begin{aligned}
& u_{2 n-1}(x)=\sin (n \phi(x)) \\
& u_{2 n}(x)=\cos (n \phi(x))
\end{aligned}
$$

Challenges: Clustered Eigenvalues

	λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}
$h=2^{-3}$	19.318164	19.364766	47.449173	47.726913	49.320389	49.320606
$h=2^{-4}$	19.308869	19.356441	47.408335	47.691800	49.318090	49.318225
$h=2^{-5}$	19.305146	19.353140	47.391660	47.677648	49.317276	49.317411
$h=2^{-6}$	19.303796	19.351947	47.385594	47.672517	49.316990	49.317126
"exact"	19.302911	19.351166	47.381613	47.669156	49.316805	49.316941

Problem of Interest

Problem of Interest: Compute "slice" of spectrum

$$
\begin{aligned}
& \Lambda=\operatorname{spec}(A) \cap(y-\gamma, y+\gamma) \\
& E=\operatorname{span}\{\psi \in \operatorname{dom}(A): A \psi=\lambda \psi \text { for some } \lambda \in \Lambda\}
\end{aligned}
$$

- $A: \operatorname{dom}(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ (unbounded) closed, selfadjoint operator on a Hilbert space

$$
\text { e.g. } \mathcal{H}=L^{2}(\Omega), A=-\Delta+V
$$

- Λ contains finitely many eigenvalues, each with finite multiplicity
- $\operatorname{spec}(A) \backslash \wedge \subset\{x \in \mathbb{R}:|x-y| \geq(1+\delta) \gamma\}$ for some $\delta>0$

$$
\begin{aligned}
& y=65 / 2 \\
& \gamma=23 / 2 \\
& \delta=0.178512
\end{aligned}
$$

Filtering

Filtering

Suppose that f is real-valued, bounded and continuous on $\operatorname{spec}(A)$. Then $f(A): \mathcal{H} \rightarrow \mathcal{H}$ is bounded and selfadjoint, and if $\lambda \in \operatorname{spec}(A)$ and $A \psi=\lambda \psi$ for some $\psi \in \operatorname{dom}(A)$, then $f(A) \psi=f(\lambda) \psi$.

Choose f so that:

- E is dominant eigenspace of $f(A)$,

$$
\min _{\lambda \in \Lambda}|f(\lambda)|>\sup _{\lambda \in \operatorname{spec}(A) \backslash \Lambda}|f(\lambda)|
$$

- Action of $f(A)$ is (approx.) computable

$$
\begin{aligned}
& f(z)=w_{N}+\sum_{k=0}^{N-1} w_{k}\left(z_{k}-z\right)^{-1} \\
& f(A)=w_{N}+\sum_{k=0}^{N-1} w_{k}\left(z_{k}-A\right)^{-1}
\end{aligned}
$$

Guidance for Selecting Filters

Cauchy's Integral Formula:

Let $\Gamma \subset \mathbb{C} \backslash \operatorname{spec}(A)$ be a positively oriented, simple, closed contour that encloses Λ and excludes $\operatorname{spec}(A) \backslash \Lambda$, and let $G \subset \mathbb{C}$ be the open set whose boundary is Γ. Then,

$$
r(z)=\frac{1}{2 \pi \mathfrak{i}} \oint_{\Gamma}(\xi-z)^{-1} d \xi= \begin{cases}1, & z \in G, \\ 0, & z \in \mathbb{C} \backslash(G \cup \Gamma) .\end{cases}
$$

Spectral Projector (Ideal Filter)

$$
S=r(A)=\frac{1}{2 \pi \mathfrak{i}} \oint_{\Gamma} R(\xi) d \xi \quad, \quad R(z)=(z-A)^{-1} \quad, \quad E=\operatorname{Range}(S)
$$

Rational Filter (Quadrature Approximation)

$$
r_{N}(z)=\sum_{k=0}^{N-1} w_{k}\left(z_{k}-z\right)^{-1} \quad, \quad S_{N}=r_{N}(A)=\sum_{k=0}^{N-1} w_{k} R\left(z_{k}\right)
$$

Example Filters

Circle Filter

Ellipse Filter

$$
r_{N}(z)=\frac{\frac{\rho^{N}-\rho^{-N}}{2}}{\frac{\rho^{N}+\rho^{-N}}{2}+T_{N}\left(\frac{\rho+\rho^{-1}}{2} \frac{z-y}{\gamma}\right)}
$$

- $\rho>1$ governs eccentricity
- Approaches circle as $\rho \rightarrow \infty$
- Approaches interval as $\rho \rightarrow 1$

Several Contour Integral Based Methods

SSM

- Sakurai/Sugiura, A projection method for generalized eigenvalue problems using numerical integration, J. Comput. Math. Appl. (2003)
- Sakurai/Tadano, CIRR: A Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems, Hokkaido Math. J. (2007)
- Beyn, An integral method for solving non-linear eigenvalue problems, Linear Algebra Appl. (2012)
- Austin/Trefethen, Computing eigenvalues of real symmetric matrices with rational filters in real arithmetic, SISC (2015)

FEAST

- Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B (2009)
- Tang/Polizzi, FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection, SIMAX (2014)
- Güttel/Polizzi/Tang/Viaud, Zolotarev quadrature rules and load balancing for the FEAST eigensolver, SISC (2015)
- Gopalakrishan/Grubisiić /Ovall (2017/2018)

RIM

- Sun/Xu/Zeng, A spectral projection method for transmission eigenvalue problem, Science China Math. (2016)
- Huang/Struthers/Sun/Zhang, Recursive integral method for transmission eigenvalues, JCP (2016)

Filtered Subspace Iteration

Ideal Filtered Subspace Iteration

- Eigenspace of interest, E, is dominant eigenspace of S_{N}
- Let $E^{(0)} \subset \mathcal{H}$ be a (random) finite dimensional subspace such that $S E^{(0)}=E$
- Must have $\operatorname{dim}\left(E^{(0)}\right) \geq \operatorname{dim}(E) \doteq m$; would like $\operatorname{dim}\left(E^{(0)}\right)=m$
- $E^{(\ell)} \approx E$ generated by subspace iteration,

$$
E^{(\ell+1)}=S_{N} E^{(\ell)}
$$

- (Periodically) orthogonalize basis of $E^{(\ell)}$ —implicitly via Rayleigh-Ritz procedure
- $\operatorname{dim}\left(E^{(\ell)}\right)$ paired down (if necessary) so that $\operatorname{dim}\left(E^{(\ell)}\right)=m$ for ℓ suff. large
- $\Lambda^{(\ell)} \approx \Lambda$ generated by Rayleigh-Ritz procedure on restriction of A to $E^{(\ell)}$

Key Questions

(In what sense) do $E^{(\ell)} \rightarrow E$ and $\Lambda^{(\ell)} \rightarrow \Lambda$? At what rates?
What are the effects of discretization, $S_{N}^{h}=\sum_{k=0}^{N-1} w_{k} R_{h}\left(z_{k}\right) \approx S_{N}$?

Iteration Error in Ideal Filtered Subspace Iteration

Iteration Error Theorem: Suppose that $S E^{(0)}=E$, and $\psi \in E$ is an eigenvector of
A with eigenvalue $\lambda \in \Lambda$. There is a sequence $\left\{w^{(\ell)} \in E^{(\ell)}: \ell \geq 0\right\}$ such that

$$
\begin{aligned}
w^{(\ell)}-\psi & =\frac{1}{\left[r_{N}(\lambda)\right]^{\ell}} S_{N}^{\ell}(I-S)\left(w^{(0)}-\psi\right) \\
\left\|w^{(\ell)}-\psi\right\| \mathcal{V} & \leq(\kappa(\lambda))^{\ell}\left\|w^{(0)}-\psi\right\|_{\mathcal{V}} \quad, \quad \kappa(\lambda)=\frac{\max \left\{\left|r_{N}(\mu)\right|: \mu \in \operatorname{Spec}(A) \backslash \Lambda\right\}}{\left|r_{N}(\lambda)\right|}
\end{aligned}
$$

- Recall that $\min \left\{\left|r_{N}(\lambda)\right|: \lambda \in \Lambda\right\}>\max \left\{\left|r_{N}(\mu)\right|: \mu \in \operatorname{Spec}(A) \backslash \Lambda\right\}$
- Additional Hilbert space \mathcal{V}
- \mathcal{V} dense and continuously embedded in \mathcal{H}

$$
\text { (e.g. } \left.\mathcal{V}=H_{0}^{1}(\Omega) \text { in } \mathcal{H}=L^{2}(\Omega)\right)
$$

- $E \subset \mathcal{V}$ and \mathcal{V} invariant w.r.t. resolvent $R(z)=(z-A)^{-1}$
- $(R(z) v, w)_{\mathcal{V}}=(v, R(\bar{z}) w)_{\mathcal{V}}$ for all $v, w \in \mathcal{V}$
- Contraction factor independent of norm!
- Variants on this result allowing for subspaces generated by perturbed versions of S_{N}.

Illustrating the Iteration Error Theorem

Matrix Eigenvalue Problem: $A \mathrm{x}=\lambda \mathrm{x}$

- $A \in \mathbb{R}^{n \times n}$ tridiagonal $\mathrm{w} /$ stencil $(-1,2,-1)$
- Eigenvalues $\lambda_{j}=2-2 \cos \left(j \frac{\pi}{n+1}\right)$, eigenvectors $\left[\psi_{j}\right]_{i}=\sin \left(i j \frac{\pi}{n+1}\right)$
- With $n=100, y=1 / 3, \gamma=1 / 18$, we have $\Lambda=\left\{\lambda_{18}, \lambda_{19}, \lambda_{20}\right\}$

Eigenvalue Error:

- We compute $\left\{\boldsymbol{\psi}_{18}^{(\ell)}, \boldsymbol{\psi}_{19}^{(\ell)}, \boldsymbol{\psi}_{20}^{(\ell)}\right\}$, not $\left\{\mathbf{w}_{18}^{(\ell)}, \mathbf{w}_{19}^{(\ell)}, \mathbf{w}_{20}^{(\ell)}\right\}$ from theorem
- We compute $\lambda_{j}^{(\ell)}=\left\|\boldsymbol{\psi}_{j}^{(\ell)}\right\|^{2} /\left\|\psi_{j}^{(\ell)}\right\|^{2}$, where $\|\mathbf{x}\|^{2}=\mathbf{x}^{T} A \mathbf{x},\|\mathbf{x}\|^{2}=\mathbf{x}^{T} \mathbf{x}$
- Eigenvalue error: $\lambda_{j}^{(\ell)}-\lambda_{j}=\left\|\boldsymbol{\psi}_{j}-\boldsymbol{\psi}_{j}^{(\ell)}\right\|^{2}-\lambda_{j}\left\|\boldsymbol{\psi}_{j}-\boldsymbol{\psi}_{j}^{(\ell)}\right\|^{2}$
- $\operatorname{ERR}=\operatorname{ERR}(\ell)=\left|\lambda_{j}-\lambda_{j}^{(\ell)}\right|, \operatorname{RAT}=\operatorname{RAT}(\ell)=\operatorname{ERR}(\ell) / \operatorname{ERR}(\ell-1)$
- Hope: $\operatorname{RAT}(\ell) \sim \kappa_{j}^{2}$, can compute κ_{j}^{2} explicitly in this case

Illustrating the Iteration Error Theorem

	$\hat{\kappa}^{2}$	ℓ	λ_{17}		λ_{18}		λ_{19}	
			ERR	RAT	ERR	RAT	ERR	RAT
$\begin{aligned} & \stackrel{ \pm}{ \pm} \\ & \stackrel{ \pm}{U} \\ & \frac{\otimes}{U} \\ & \dot{U} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \dot{\omega} \\ & \underset{\sim}{N} \\ & \underset{\sim}{*} \end{aligned}$	2	2.947e-04	$1.961 \mathrm{e}-01$	2.602e-04	$1.573 \mathrm{e}-01$	1.569e-03	$1.848 \mathrm{e}-01$
		3	$3.584 \mathrm{e}-05$	$1.216 \mathrm{e}-01$	3.109e-05	1.195e-01	$2.321 \mathrm{e}-04$	$1.460 \mathrm{e}-01$
		4	$4.312 \mathrm{e}-06$	1.203e-01	3.706e-06	$1.192 \mathrm{e}-01$	3.331e-05	$1.435 \mathrm{e}-01$
		5	5.187e-07	1.203e-01	4.420e-07	1.193e-01	4.762e-06	$1.429 \mathrm{e}-01$
		6	6.240e-08	1.203e-01	$5.274 \mathrm{e}-08$	1.193e-01	6.803e-07	$1.429 \mathrm{e}-01$
		7	7.507e-09	1.203e-01	6.293e-09	1.193e-01	9.718e-08	$1.429 \mathrm{e}-01$
		2	5.844e-05	$3.820 \mathrm{e}-02$	1.408e-04	$4.163 \mathrm{e}-02$	4.597e-04	$5.512 \mathrm{e}-02$
		3	$2.243 \mathrm{e}-06$	$3.838 \mathrm{e}-02$	6.015e-06	$4.272 \mathrm{e}-02$	1.917e-05	$4.171 \mathrm{e}-02$
		4	8.627e-08	$3.846 \mathrm{e}-02$	2.576e-07	4.283e-02	7.900e-07	$4.120 \mathrm{e}-02$
		5	$3.319 \mathrm{e}-09$	3.847e-02	1.103e-08	4.283e-02	3.254e-08	$4.118 \mathrm{e}-02$
		6	1.277e-10	3.847e-02	$4.726 \mathrm{e}-10$	4.283e-02	1.340e-09	4.118e-02
		7	$4.910 \mathrm{e}-12$	$3.847 \mathrm{e}-02$	$2.024 \mathrm{e}-11$	4.283e-02	5.518e-11	4.118e-02

Discretization Error Theorem

Theorem: Suppose that $E_{h}^{(\ell+1)}=S_{N}^{h} E_{h}^{(\ell)}$ for $\ell \geq 0, P_{h}=\frac{1}{2 \pi \mathrm{i}} \oint_{\Theta}\left(z-S_{N}^{h}\right)^{-1} d z$, and $\operatorname{dim}\left(E_{h}^{(0)}\right)=\operatorname{dim}\left(P_{h} E_{h}^{(0)}\right)=\operatorname{dim}(E)$, There is an $h_{0}>0$ such that, for $0<h<h_{0}$, the subspace iterates $E_{h}^{(\ell)}$ converge (in gap) to $E_{h}=\operatorname{Range}\left(P_{h}\right)$. Furthermore,

$$
\operatorname{gap}_{\mathcal{V}}\left(E, E_{h}\right) \leq C h^{\min \left(p, s_{E}\right)} \quad, \quad \operatorname{dist}\left(\Lambda, \Lambda_{h}\right) \leq C h^{2 \min \left(p, s_{E}\right)}
$$

- $\mathcal{V}=H^{1}(\Omega), A$ a Laplace-like operator
- h mesh-size, p polynomial degree
- s_{E} (worst-case) regularity index for functions in E
- Hausdorff distance between sets of numbers X, Y

$$
\operatorname{dist}(X, Y)=\max \left[\sup _{x \in X} \inf _{y \in Y}|x-y|, \sup _{y \in Y} \inf _{x \in X}|x-y|\right]
$$

- Gap between subspaces X and Y

$$
\operatorname{gap}_{\mathcal{V}}(X, Y)=\max \left[\sup _{x \in X} \inf _{y \in Y} \frac{\|x-y\|_{\mathcal{V}}}{\|x\|_{\mathcal{V}}}, \sup _{y \in Y} \inf _{x \in X} \frac{\|x-y\|_{\mathcal{V}}}{\|y\|_{\mathcal{V}}}\right]
$$

Dirichlet Laplace on Unit Square

h
(A) Convergence rates for $\Lambda=\left\{2 \pi^{2}, 5 \pi^{2}\right\}$.

(B) Convergence rates for $\Lambda=\left\{128 \pi^{2}, 130 \pi^{2}\right\}$.

FEAST Implementation

- Gopalakrishnan. Pythonic FEAST. https://bitbucket.org/jayggg/pyeigfeast
- Schöberl. NGSolve. http://ngsolve.org

Dirichlet Laplace on L-Shape

(A) Convergence rates for $\lambda_{1} \approx 9.6397238$.

(B) Convergence rates for $\lambda_{2} \approx 15.197252$.

(c) Convergence rates for $\lambda_{3}=2 \pi^{2}$.

- Individual eigenvalue convergence rates in accordance corresponding eigenvector regularities, not (worst-case) cluster regularity

Dirichlet Laplace on Dumbbell

Search Interval $(1262,1264), p=3$

≈ 1262.41

$128 \pi^{2}$

h	λ_{1}	λ_{2}
2^{-4}	1263.178867	$\underline{1264.020566}$
2^{-5}	1262.447629	$\underline{1263.3} 19956$
2^{-6}	1262.418298	$\underline{1263.309521}$
2^{-7}	1262.410062	$\underline{1263.309366}$

Dirichlet Laplace on "Three Bulb" Domain, Localization

Schrödinger Operator on $\mathcal{H}=L^{2}\left(\mathbb{R}^{2}\right)$

$$
-\Delta \psi-50 e^{-\left(x^{2}+y^{2}\right)} \psi=\lambda \psi \text { in } \mathbb{R}^{2}
$$

- $\operatorname{Spec}(A) \subset(-50, \infty), \operatorname{EssSpec}(A)=[0, \infty)$

Some Technical Details

$$
S_{N}=\sum_{k=0}^{N-1} w_{k} R\left(z_{k}\right) \quad, \quad S_{N}^{h}=\sum_{k=0}^{N-1} w_{k} R_{h}\left(z_{k}\right)
$$

Limit Space: Existence of limit space E_{h} assumes

$$
\lim _{h \rightarrow 0}\left\|R_{h}\left(z_{k}\right)-R\left(z_{k}\right)\right\| \mathcal{V}=0 \text { for } 0 \leq k \leq N-1
$$

Resolvent Estimates for Eigenvalue/Vector Convergence Theorem: For each z in resolvent set of A, there are $C, h_{0}>0$ such that, for all $h<h_{0}$,

$$
\begin{array}{r}
\left\|R(z)-R_{h}(z)\right\|_{\mathcal{V}} \leq C h^{r} \quad, \quad\left\|\left[R(z)-R_{h}(z)\right]_{\left.\right|_{E}}\right\|_{\mathcal{V}} \leq C h^{r_{E}} \\
\left\|R(z)-R_{h}(z)\right\|_{\mathcal{H}} \leq C h^{2 r} \quad, \quad\left\|\left[R(z)-R_{h}(z)\right]_{\left.\right|_{E}}\right\|_{\mathcal{H}} \leq C h^{r+r_{E}}
\end{array}
$$

where $r=\min (s, p), r_{E}=\min \left(s_{E}, p\right)$.
Eigenvalue Discretization Error: If $\|u\|_{\mathcal{V}}=\left\||A|^{1 / 2} u\right\|_{\mathcal{H}}$, then

$$
\operatorname{dist}\left(\Lambda, \Lambda_{h}\right) \leq\left(\Lambda_{h}^{\max }\right)^{2} \operatorname{gap}_{\mathcal{V}}\left(E, E_{h}\right)^{2}+C_{0}\left\|A_{E}\right\| \operatorname{gap}_{\mathcal{H}}\left(E, E_{h}\right)^{2}
$$

Different Classifications within Spectrum

- Resolvent Set: $\operatorname{Res}(A)=\{z \in \mathbb{C}: z-A: \operatorname{dom}(A) \rightarrow \mathcal{H}$ is bijective $\} \quad$ open set
- Spectrum: $\operatorname{Spec}(A)=\mathbb{C} \backslash \operatorname{Res}(A)$

1. Point Spectrum (Eigenvalues): $\operatorname{Spec}_{p}(A)=\{\lambda \in \mathbb{C}: z-A$ is not injective $\}$
2. Residual Spectrum: $\operatorname{Spec}_{r}(A)=\{\lambda \in \mathbb{C}: z-A$ is injective, but $\overline{\operatorname{Ran}(z-A)} \neq \mathcal{H}\}$
3. Continuous Spectrum:
$\operatorname{Spec}_{c}(A)=\{\lambda \in \mathbb{C}: z-A$ is injective, and $\overline{\operatorname{Ran}(z-A)}=\mathcal{H}$ but $\operatorname{Ran}(z-A) \neq \mathcal{H}\}$

$$
\operatorname{Spec}(A)=\operatorname{Spec}_{p}(A) \cup \operatorname{Spec}_{r}(A) \cup \operatorname{Spec}_{c}(A)
$$

Some authors define $\operatorname{Spec}_{c}(A)$ slightly differently, allowing $\operatorname{Spec}_{r}(A) \cap \operatorname{Spec}_{c}(A) \neq \emptyset$

- Discrete Spectrum: Eigenvalues of finite multiplicity that are isolated points of $\operatorname{Spec}(A)$
- Essential Spectrum: Complement of discrete spectrum in $\operatorname{Spec}(A)$
- If A has compact resolvent, then its spectrum, point spectrum and discrete spectrum are the same
- $\operatorname{Spec}(A) \neq \emptyset$ (for normal operators)

