

Filtered Subspace Iteration for Selfadjoint Operator Eigenvalue Problems

† Jeffrey Ovall, Portland State University, jovall@pdx.edu

Jay Gopalakrishnan, Portland State University

Luka Grubišić, University of Zagreb

NSF DMS-1414365 and DMS-1522471

Portland State University

Basic Discretizations: Finite Differences

1D Model Problem (Strong Form):

$$-u'' = \lambda u ext{ in } (0,1) \quad , \quad u(0) = u(1) = 0$$

•
$$u_n = \sin(n\pi x)$$
, $\lambda_n = (n\pi)^2$, $n \in \mathbb{N}$

Finite Difference Discretization:

$$rac{- ilde{u}_{j-1}+2 ilde{u}_j- ilde{u}_{j+1}}{h^2}= ilde{\lambda} ilde{u}_j ext{ for } 1\leq j\leq N \quad, \quad ilde{u}_0= ilde{u}_{N+1}=0$$

• Uniform grid: h = 1/(N+1), $x_j = jh$, $0 \le j \le N+1$

• Taylor's theorem:
$$u^{\prime\prime}(x_j) = rac{u(x_{j-1}) - 2u(x_j) + u(x_{j+1})}{h^2} - rac{u^{(4)}(z_j)}{12} h^2$$

Basic Discretizations: Finite Differences

Exact and Discrete Eigenvalues/Vectors:

•
$$u_n=\sin(n\pi x)$$
, $\lambda_n=(n\pi)^2$, $n\in\mathbb{N}$

• $\tilde{\mathbf{u}}_n = (\sin(n\pi x_1), \dots, \sin(n\pi x_N)), \ \tilde{\lambda}_n = \frac{2-2\cos(n\pi h)}{h^2}, \ 1 \le n \le N$

• Relative errors:
$$0 < \frac{\lambda_n - \tilde{\lambda}_n}{\lambda_n} = 1 - \frac{2 - 2\cos(n\pi h)}{(n\pi h)^2}$$
 $0 < n\pi h < \pi$

Basic Discretizations: Finite Elements

1D Model Problem (Weak Form):

$$\int_0^1 u'v'\,dx = \lambda \int_0^1 uv\,dx \text{ for all } v \in H^1_0(0,1)$$

• Integration-by-parts, $a(u,v) = \int_0^1 u'v' \, dx$, $b(u,v) = \int_0^1 uv \, dx$

Finite Element Discretization:

$$a(\hat{u}, v) = \hat{\lambda} b(\hat{u}, v)$$
 for all $v \in V$

• Uniform grid: h = 1/(N+1), $x_j = jh$, $0 \le j \le N+1$, $I_k = [x_{k-1}, x_k]$

•
$$V = \{ v \in C[0,1] : v_{|_{I_k}} \in \mathbb{P}_1(I_k), v(0) = v(1) = 0 \} = span\{\phi_1, \dots, \phi_N\}$$

Basic Discretizations: Finite Elements

Generalized (Matrix) Eigenvalue Problem:

Exact and Discrete Eigenvalues/Vectors:

•
$$u_n = \sin(n\pi x)$$
, $\lambda_n = (n\pi)^2$, $n \in \mathbb{N}$

•
$$\hat{u}_n = \sum_{k=1}^n \sin(n\pi x_k) \phi_k$$
, $\hat{\lambda}_n = \frac{6}{h^2} \frac{2-2\cos(n\pi h)}{4+2\cos(n\pi h)}$, $1 \le n \le N$

• Relative errors:
$$0 < \frac{\hat{\lambda}_n - \lambda_n}{\lambda_n} = \frac{6}{(n\pi h)^2} \frac{2 - 2\cos(n\pi h)}{4 + 2\cos(n\pi h)} - 1 < 0.444$$
 $0 < n\pi h < \pi$
$$\frac{x^2}{12} < \frac{6}{x^2} \frac{2 - 2\cos x}{4 + 2\cos x} - 1 < \frac{x^2}{12} + \frac{x^4}{360} \text{ for } 0 \le x \le 2$$

 $A\hat{\mathbf{u}} = \hat{\lambda}B\hat{\mathbf{u}}$

A Relationship Between Eigenvalue and Eigenvector Error

Variational Eigenvalue Problem: Find $\lambda \in \mathbb{R}$, non-zero $u \in \mathcal{H}$ such that

 $a(u,v) = \lambda b(u,v)$ for all $v \in \mathcal{H}$

- b an inner product, assoc. norm $\|\cdot\|_b$
- *a* a semi-inner product, assoc. seminorm $|\cdot|_a$

A Simple Identity: (λ, u) an eigenpair, with $||u||_b = 1$, $\hat{u} \in \mathcal{H}$ any vector with $||\hat{u}||_b = 1$, $\hat{\lambda} = a(\hat{u}, \hat{u})$ (Rayleigh quotient)

$$\hat{\lambda} - \lambda = |u - \hat{u}|_a^2 - \lambda ||u - \hat{u}||_b^2$$

- "Eigenvalue error behaves like square of eigenvector error"
- Methods (e.g. finite elements) typically focus on controlling eigenvector error
- Results like this for clusters of eigenvalues, assoc. invariant subspaces?

Elements of Error Estimation

Model Problem(s): Find non-zero $u \in H_0^1(\Omega)$ and $\lambda \in \mathbb{R}$ such that

$$\underbrace{\int_{\Omega} D\nabla u \cdot \nabla v + ruv \, dx}_{a(u,v)} = \lambda \underbrace{\int_{\Omega} uv \, dx}_{b(u,v)} \text{ for all } v \in H^1_0(\Omega)$$

Given a finite dimensional subspace $V \subset H^1_0(\Omega)$, find non-zero $\hat{u} \in V$ and $\hat{\lambda} \in \mathbb{R}$ such that

$$a(\hat{u}, v) = \hat{\lambda} b(\hat{u}, v) \text{ for all } v \in V$$
(1)

•
$$0 < \lambda_1 < \lambda_2 \leq \cdots$$
 , $0 < \hat{\lambda}_1 \leq \hat{\lambda}_2 \leq \cdots \leq \hat{\lambda}_{\dim(V)}$, $\lambda_i \leq \hat{\lambda}_i$

Error Estimation: Let $(\hat{\lambda}_i, \hat{u}_i)$ be an eigenpair of (1), with $\|\hat{u}_i\|_b = 1$.

$$\inf_{u \in E(\lambda_i)} \|u - \hat{u}_i\| \le C(\hat{\lambda}_i, \hat{\lambda}) \|u_i^* - \hat{u}_i\| \quad , \quad 0 \le \hat{\lambda}_i - \lambda_i \le \inf_{u \in E(\lambda_i)} \|u - \hat{u}_i\|_a^2$$

- $\|\cdot\|$ can be either *a*-norm or *b*-norm , $C(\hat{\lambda}_i, \hat{\lambda}) = \max_{\mu \in \text{Spec} \setminus \{\lambda_i\}} \frac{\mu}{|\mu \hat{\lambda}_i|}$
- $u_i^* \in H_0^1(\Omega)$ satisfies $a(u_i^*, v) = b(\hat{\lambda}_i \hat{u}_i, v)$ for all $v \in H_0^1(\Omega)$
- Many techniques exist for computing estimates of quantities like $\|u_i^* \hat{u}_i\|$

Challenges: Singularities

- Sector of unit disk with opening angle $\pi/lpha$, $lpha\in [1/2,1)$
- $\lambda_{m,n} = z_{m,n}^2$, $\psi_{m,n} = J_{n\alpha}(z_{m,n}r) \sin(n\alpha\theta) \sim r^{n\alpha}$
- $z_{m,n}$ is m^{th} positive root of $J_{n\alpha}$
- Singular and analytic eigenvectors interspersed throughout spectrum
- Below, slit disk ($\alpha = 1/2$); $r^{1/2}$ -singularities in red

$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$

Portland State University

BIRS Workshop on Spectral Geometry, Banff, Alberta

Challenges: Singularities

Portland State University

Challenges: Repeated Eigenvalues

19.73920880 49.34802201 49.34802201 19.76625421 49.69585432 49.81886913 19.74078972 49.37241709 49.37251974

Babuška-Osborn Example $\phi(x) = \pi^{-\alpha} \operatorname{sign}(x) |x|^{1+\alpha}$ $\phi'(x) = \pi^{-\alpha} (1+\alpha) |x|^{\alpha}$ $-\left(\frac{u'(x)}{\phi'(x)}\right)' = \lambda \phi'(x)u(x)$ $u(-\pi) = u(\pi)$ $\frac{u'(-\pi)}{\phi'(-\pi)} = \frac{u'(\pi)}{\phi'(\pi)}$ • $\lambda_0 = 0, u_0 = 1$ • $\lambda_{2n-1} = \lambda_{2n} = n^2$ $n \in \mathbb{N}$ $u_{2n-1}(x) = \sin(n\phi(x))$ $u_{2n}(x) = \cos(n\phi(x))$

Portland State University

Challenges: Clustered Eigenvalues

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
$h = 2^{-3}$	19.318164	19.364766	47.449173	47.726913	49.320389	49.320606
$h = 2^{-4}$	19.308869	19.356441	47.408335	47.691800	49.318090	49.318225
$h = 2^{-5}$	19.305146	19.353140	47.391660	47.677648	49.317276	49.317411
$h = 2^{-6}$	19.303796	19.351947	47.385594	47.672517	49.316990	49.317126
"exact"	19.302911	19.351166	47.381613	47.669156	49.316805	49.316941

Problem of Interest

Problem of Interest: Compute "slice" of spectrum

 $\Lambda = \operatorname{spec}(A) \cap (y - \gamma, y + \gamma)$ $E = \operatorname{span}\{\psi \in \operatorname{dom}(A) : A\psi = \lambda\psi \text{ for some } \lambda \in \Lambda\}$

- A : dom(A) ⊂ H → H (unbounded) closed, selfadjoint operator on a Hilbert space
 e.g. H = L²(Ω), A = −Δ + V
- Λ contains finitely many eigenvalues, each with finite multiplicity
- $\operatorname{spec}(A) \setminus \Lambda \subset \{x \in \mathbb{R} : |x y| \ge (1 + \delta)\gamma\}$ for some $\delta > 0$

BIRS Workshop on Spectral Geometry, Banff, Alberta

Filtering

Filtering

Suppose that f is real-valued, bounded and continuous on spec(A). Then $f(A) : \mathcal{H} \to \mathcal{H}$ is bounded and selfadjoint, and if $\lambda \in \text{spec}(A)$ and $A\psi = \lambda \psi$ for some $\psi \in \text{dom}(A)$, then $f(A)\psi = f(\lambda)\psi$.

Choose f so that:

• E is dominant eigenspace of f(A),

$$\begin{split} \min_{\lambda \in \Lambda} |f(\lambda)| &> \sup_{\lambda \in \operatorname{spec}(A) \setminus \Lambda} |f(\lambda)| \\ \bullet \text{ Action of } f(A) \text{ is (approx.) computable} \\ f(z) &= w_N + \sum_{k=0}^{N-1} w_k (z_k - z)^{-1} \\ f(A) &= w_N + \sum_{k=0}^{N-1} w_k (z_k - A)^{-1} \end{split}$$

Guidance for Selecting Filters

Cauchy's Integral Formula:

Let $\Gamma \subset \mathbb{C} \setminus \operatorname{spec}(A)$ be a positively oriented, simple, closed contour that encloses Λ and excludes $\operatorname{spec}(A) \setminus \Lambda$, and let $G \subset \mathbb{C}$ be the open set whose boundary is Γ . Then,

$$r(z) = \frac{1}{2\pi \mathfrak{i}} \oint_{\Gamma} (\xi - z)^{-1} d\xi = \begin{cases} 1, & z \in G, \\ 0, & z \in \mathbb{C} \setminus (G \cup \Gamma). \end{cases}$$

Spectral Projector (Ideal Filter)

$$S = r(A) = \frac{1}{2\pi i} \oint_{\Gamma} R(\xi) d\xi \quad , \quad R(z) = (z - A)^{-1} \quad , \quad E = \operatorname{Range}(S)$$

Rational Filter (Quadrature Approximation)

$$r_N(z) = \sum_{k=0}^{N-1} w_k (z_k - z)^{-1}$$
, $S_N = r_N(A) = \sum_{k=0}^{N-1} w_k R(z_k)$

¢

Example Filters

Circle Filter

Ellipse Filter

- $\rho > 1$ governs eccentricity
- Approaches circle as $\rho \to \infty$
- Approaches interval as ho
 ightarrow 1

Several Contour Integral Based Methods

SSM

- Sakurai/Sugiura, A projection method for generalized eigenvalue problems using numerical integration, J. Comput. Math. Appl. (2003)
- Sakurai/Tadano, CIRR: A Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems, Hokkaido Math. J. (2007)
- Beyn, An integral method for solving non-linear eigenvalue problems, Linear Algebra Appl. (2012)
- Austin/Trefethen, Computing eigenvalues of real symmetric matrices with rational filters in real arithmetic, SISC (2015)

FEAST

- Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B (2009)
- Tang/Polizzi, FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection, SIMAX (2014)
- Güttel/Polizzi/Tang/Viaud, Zolotarev quadrature rules and load balancing for the FEAST eigensolver, SISC (2015)
- Gopalakrishan/Grubišić /Ovall (2017/2018)

RIM

- Sun/Xu/Zeng, A spectral projection method for transmission eigenvalue problem, Science China Math. (2016)
- Huang/Struthers/Sun/Zhang, Recursive integral method for transmission eigenvalues, JCP (2016)

Filtered Subspace Iteration

Ideal Filtered Subspace Iteration

- Eigenspace of interest, ${\cal E}$, is dominant eigenspace of ${\cal S}_N$
- Let $E^{(0)} \subset \mathcal{H}$ be a (random) finite dimensional subspace such that $SE^{(0)} = E$

- Must have dim $(E^{(0)}) \ge \dim(E) \doteq m$; would like dim $(E^{(0)}) = m$

• $E^{(\ell)} \approx E$ generated by subspace iteration,

$$E^{(\ell+1)} = S_N E^{(\ell)}$$

- (Periodically) orthogonalize basis of $E^{(\ell)}$ —implicitly via Rayleigh-Ritz procedure
- dim $(E^{(\ell)})$ paired down (if necessary) so that dim $(E^{(\ell)}) = m$ for ℓ suff. large
- $\Lambda^{(\ell)} \approx \Lambda$ generated by Rayleigh-Ritz procedure on restriction of A to $E^{(\ell)}$

Key Questions

(In what sense) do $E^{(\ell)} \to E$ and $\Lambda^{(\ell)} \to \Lambda$? At what rates?

What are the effects of discretization, $S_N^h = \sum_{k=0}^{N-1} w_k R_h(z_k) \approx S_N$?

Iteration Error in Ideal Filtered Subspace Iteration

Iteration Error Theorem: Suppose that $SE^{(0)} = E$, and $\psi \in E$ is an eigenvector of A with eigenvalue $\lambda \in \Lambda$. There is a sequence $\{w^{(\ell)} \in E^{(\ell)} : \ell \geq 0\}$ such that

$$w^{(\ell)} - \psi = \frac{1}{[r_N(\lambda)]^{\ell}} S_N^{\ell} (I - S) (w^{(0)} - \psi)$$
$$\|w^{(\ell)} - \psi\|_{\mathcal{V}} \le (\kappa(\lambda))^{\ell} \|w^{(0)} - \psi\|_{\mathcal{V}} \quad , \quad \kappa(\lambda) = \frac{\max\{|r_N(\mu)| : \mu \in \operatorname{Spec}(A) \setminus \Lambda\}}{|r_N(\lambda)|}$$

• Recall that $\min\{|r_N(\lambda)| : \lambda \in \Lambda\} > \max\{|r_N(\mu)| : \mu \in \operatorname{Spec}(A) \setminus \Lambda\}$

• Additional Hilbert space
$$\mathcal{V}$$
 (allows $\mathcal{V} = \mathcal{H}$)

- \mathcal{V} dense and continuously embedded in \mathcal{H} (e.g. $\mathcal{V} = H_0^1(\Omega)$ in $\mathcal{H} = L^2(\Omega)$)

- $E \subset \mathcal{V}$ and \mathcal{V} invariant w.r.t. resolvent $R(z) = (z - A)^{-1}$

-
$$(R(z)v, w)_{\mathcal{V}} = (v, R(\overline{z})w)_{\mathcal{V}}$$
 for all $v, w \in \mathcal{V}$

- Contraction factor independent of norm!
- Variants on this result allowing for subspaces generated by perturbed versions of S_N .

Illustrating the Iteration Error Theorem

Matrix Eigenvalue Problem: $A\mathbf{x} = \lambda \mathbf{x}$

- $A \in \mathbb{R}^{n \times n}$ tridiagonal w/ stencil (-1, 2, -1)
- Eigenvalues $\lambda_j = 2 2\cos(j \frac{\pi}{n+1})$, eigenvectors $[\psi_j]_i = \sin(ij \frac{\pi}{n+1})$
- With n=100, y=1/3, $\gamma=1/18$, we have $\Lambda=\{\lambda_{18},\lambda_{19},\lambda_{20}\}$

Eigenvalue Error:

• We compute $\{\psi_{18}^{(\ell)}, \psi_{19}^{(\ell)}, \psi_{20}^{(\ell)}\}$, not $\{\mathbf{w}_{18}^{(\ell)}, \mathbf{w}_{19}^{(\ell)}, \mathbf{w}_{20}^{(\ell)}\}$ from theorem

• We compute
$$\lambda_j^{(\ell)} = ||\!| \psi_j^{(\ell)} ||\!|^2 / ||\psi_j^{(\ell)}||^2$$
, where $||\!| \mathbf{x} ||\!|^2 = \mathbf{x}^T A \mathbf{x}$, $|\!| \mathbf{x} ||\!|^2 = \mathbf{x}^T \mathbf{x}$

- Eigenvalue error: $\lambda_j^{(\ell)} \lambda_j = ||\!| \psi_j \psi_j^{(\ell)} ||\!|^2 \lambda_j ||\psi_j \psi_j^{(\ell)} ||^2$
- $\mathsf{ERR} = \mathsf{ERR}(\ell) = |\lambda_j \lambda_j^{(\ell)}|$, $\mathsf{RAT} = \mathsf{RAT}(\ell) = \mathsf{ERR}(\ell) / \mathsf{ERR}(\ell 1)$
- Hope: $\mathsf{RAT}(\ell) \sim \kappa_j^2$, can compute κ_j^2 explicitly in this case

Illustrating the Iteration Error Theorem

			λ_{17}		λ_{18}		λ_{19}	
	$\hat{\kappa}^2$	l	ERR	RAT	ERR	RAT	ERR	RAT
Circle Filter	4.773e-01	2	2.947e-04	1.961e-01	2.602e-04	1.573e-01	1.569e-03	1.848e-01
		3	3.584e-05	1.216e-01	3.109e-05	1.195e-01	2.321e-04	1.460e-01
		4	4.312e-06	1.203e-01	3.706e-06	1.192e-01	3.331e-05	1.435e-01
		5	5.187e-07	1.203e-01	4.420e-07	1.193e-01	4.762e-06	1.429e-01
		6	6.240e-08	1.203e-01	5.274e-08	1.193e-01	6.803e-07	1.429e-01
		7	7.507e-09	1.203e-01	6.293e-09	1.193e-01	9.718e-08	1.429e-01
Ellipse Filter	1.563e-01	2	5.844e-05	3.820e-02	1.408e-04	4.163e-02	4.597e-04	5.512e-02
		3	2.243e-06	3.838e-02	6.015e-06	4.272e-02	1.917e-05	4.171e-02
		4	8.627e-08	3.846e-02	2.576e-07	4.283e-02	7.900e-07	4.120e-02
		5	3.319e-09	3.847e-02	1.103e-08	4.283e-02	3.254e-08	4.118e-02
		6	1.277e-10	3.847e-02	4.726e-10	4.283e-02	1.340e-09	4.118e-02
		7	4.910e-12	3.847e-02	2.024e-11	4.283e-02	5.518e-11	4.118e-02

Discretization Error Theorem

Theorem: Suppose that $E_h^{(\ell+1)} = S_N^h E_h^{(\ell)}$ for $\ell \ge 0$, $P_h = \frac{1}{2\pi i} \oint_{\Theta} (z - S_N^h)^{-1} dz$, and $\dim(E_h^{(0)}) = \dim(P_h E_h^{(0)}) = \dim(E)$, There is an $h_0 > 0$ such that, for $0 < h < h_0$, the subspace iterates $E_h^{(\ell)}$ converge (in gap) to $E_h = \operatorname{Range}(P_h)$. Furthermore,

$$\mathsf{gap}_{\mathcal{V}}(E, E_h) \leq Ch^{\min(p, s_E)} \quad , \quad \mathsf{dist}(\Lambda, \Lambda_h) \leq Ch^{2\min(p, s_E)}$$

- $\mathcal{V} = H^1(\Omega)$, A a Laplace-like operator
- h mesh-size, p polynomial degree
- s_E (worst-case) regularity index for functions in E
- Hausdorff distance between sets of numbers X, Y

$$dist(X,Y) = \max \left[\sup_{x \in X} \inf_{y \in Y} |x - y|, \sup_{y \in Y} \inf_{x \in X} |x - y| \right]$$

• Gap between subspaces X and Y

$$\operatorname{gap}_{\mathcal{V}}(X,Y) = \max\left[\sup_{x \in X} \inf_{y \in Y} \frac{\|x - y\|_{\mathcal{V}}}{\|x\|_{\mathcal{V}}}, \sup_{y \in Y} \inf_{x \in X} \frac{\|x - y\|_{\mathcal{V}}}{\|y\|_{\mathcal{V}}}\right]$$

FEAST Implementation

- Gopalakrishnan. Pythonic FEAST. https://bitbucket.org/jayggg/pyeigfeast
- Schöberl. NGSolve. http://ngsolve.org

Dirichlet Laplace on L-Shape

• Individual eigenvalue convergence rates in accordance corresponding eigenvector regularities, not (worst-case) cluster regularity

Dirichlet Laplace on Dumbbell

Search Interval (1262, 1264), p = 3

 ≈ 1262.41

h	λ_1	λ_2
2^{-4}	1263.178867	<u>126</u> 4.020566
2^{-5}	1262.447629	<u>1263.3</u> 19956
2^{-6}	1262.418298	<u>1263.309</u> 521
2^{-7}	1262.410062	<u>1263.30936</u> 6

Schrödinger Operator on $\mathcal{H} = L^2(\mathbb{R}^2)$

$$-\Delta\psi-50e^{-(x^2+y^2)}\psi=\lambda\psi$$
 in \mathbb{R}^2

• Spec $(A) \subset (-50, \infty)$, EssSpec $(A) = [0, \infty)$

Some Technical Details

$$S_N = \sum_{k=0}^{N-1} w_k R(z_k) \quad , \quad S_N^h = \sum_{k=0}^{N-1} w_k R_h(z_k)$$

Limit Space: Existence of limit space E_h assumes

$$\lim_{h\to 0} \|R_h(z_k) - R(z_k)\|_{\mathcal{V}} = 0 \text{ for } 0 \le k \le N-1$$

Resolvent Estimates for Eigenvalue/Vector Convergence Theorem: For each z in resolvent set of A, there are $C, h_0 > 0$ such that, for all $h < h_0$,

$$\|R(z) - R_h(z)\|_{\mathcal{V}} \le Ch^r \quad , \quad \|[R(z) - R_h(z)]|_E \|_{\mathcal{V}} \le Ch^{r_E}$$
$$|R(z) - R_h(z)\|_{\mathcal{H}} \le Ch^{2r} \quad , \quad \|[R(z) - R_h(z)]|_E \|_{\mathcal{H}} \le Ch^{r+r_E}$$

where $r = \min(s, p)$, $r_E = \min(s_E, p)$.

Eigenvalue Discretization Error: If $||u||_{\mathcal{V}} = ||A|^{1/2}u||_{\mathcal{H}}$, then $\operatorname{dist}(\Lambda, \Lambda_h) \leq (\Lambda_h^{\max})^2 \operatorname{gap}_{\mathcal{V}}(E, E_h)^2 + C_0 ||A_E|| \operatorname{gap}_{\mathcal{H}}(E, E_h)^2$

Different Classifications within Spectrum

• Resolvent Set: $\operatorname{Res}(A) = \{z \in \mathbb{C} : z - A : \operatorname{dom}(A) \to \mathcal{H} \text{ is bijective}\}$ open set

• Spectrum:
$$Spec(A) = \mathbb{C} \setminus Res(A)$$
 closed set

- 1. Point Spectrum (Eigenvalues): $\operatorname{Spec}_p(A) = \{\lambda \in \mathbb{C} : z A \text{ is not injective}\}$
- 2. Residual Spectrum: $\operatorname{Spec}_r(A) = \{\lambda \in \mathbb{C} : z A \text{ is injective, but } \overline{\operatorname{Ran}(z A)} \neq \mathcal{H}\}$
- 3. Continuous Spectrum: $\operatorname{Spec}_{c}(A) = \{\lambda \in \mathbb{C} : z - A \text{ is injective, and } \overline{\operatorname{Ran}(z - A)} = \mathcal{H} \text{ but } \operatorname{Ran}(z - A) \neq \mathcal{H} \}$

 $\operatorname{Spec}(A) = \operatorname{Spec}_p(A) \cup \operatorname{Spec}_r(A) \cup \operatorname{Spec}_c(A)$

Some authors define $\operatorname{Spec}_c(A)$ slightly differently, allowing $\operatorname{Spec}_r(A) \cap \operatorname{Spec}_c(A) \neq \emptyset$

- Discrete Spectrum: Eigenvalues of finite multiplicity that are isolated points of Spec(A)
- Essential Spectrum: Complement of discrete spectrum in Spec(A)
- If A has compact resolvent, then its spectrum, point spectrum and discrete spectrum are the same
- Spec(A) $\neq \emptyset$ (for normal operators)