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Figure 6. Bound states of the two-dimensional Schrödinger operator

Subsequently, we conclude that there is at least one and at most finitely many (counting by
multiplicity) negative eigenvalues.

Since it is infeasible to compute on an unbounded domain with finite elements, a standard
approximation technique is to consider A with zero Dirichlet boundary conditions on the
bounded domain [�D, D]2 for su�ciently large D. Since the essential spectrum of A is
[0,1i and there are only finitely many negative eigenvalues we conclude that the eigenvalues
of the operator restricted to [�D, D]2 will accumulate at zero from above and not from below
as D ! 1. Based on this we know that it is safe to chose a filter over the set [�50,��], for
�, 0 < � << 1.

We used the trapezoidal filter with N = 8 on the circular contour of center y = �40 and
radius � = 30. Mesh element diameters were constrained to be never more than h = 0.4. We
performed several experiments varying D and p, starting each one with a subspace spanned
by 10 random vectors. In all cases, the iterations converged to a six-dimensional eigenspace.
The basis functions for this eigenspace, computed in the case D = 5 and p = 5, denoted by
e1, . . . , e6, are displayed in Figure 6 in both surface and patch plots. The surface plots of
the eigenfunctions are overlaid with that of the potential well V to illustrate the localized
behaviour of the eigenfunctions. Table 2 reports the corresponding eigenvalues in this case
as well as for higher p. The first and the fourth eigenvalues seem to be simple, while the
remaining eigenvalues seem to be approximating two distinct eigenvalues each of multiplicity
two. Doubling D from 5 to 10 did not change these eigenvalues up to seven significant digits,
as shown in the last row of the table.

7. Conclusion

In this paper we have proposed a method which yields both algorithms as well as the-
oretical results for analyzing eigenvalues of self-adjoint operators in a Hilbert space. The
method which we developed is based on an availability of a discretization of the resolvent
of the operator and is independent of the discretization itself. We have provided an actual
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Basic Discretizations: Finite Differences
1D Model Problem (Strong Form):

−u′′ = λu in (0, 1) , u(0) = u(1) = 0

• un = sin(nπx), λn = (nπ)2, n ∈ N

Finite Difference Discretization:
−ũj−1 + 2ũj − ũj+1

h2
= λ̃ũj for 1 ≤ j ≤ N , ũ0 = ũN+1 = 0

• Uniform grid: h = 1/(N + 1), xj = jh, 0 ≤ j ≤ N + 1

• Taylor’s theorem: u′′(xj) =
u(xj−1)− 2u(xj) + u(xj+1)

h2
−
u(4)(zj)

12
h2
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h2
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ũ = λ̃ũ Aũ = λ̃ũ
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Basic Discretizations: Finite Differences
Exact and Discrete Eigenvalues/Vectors:

• un = sin(nπx), λn = (nπ)2, n ∈ N

• ũn = (sin(nπx1), . . . , sin(nπxN )), λ̃n = 2−2 cos(nπh)

h2 , 1 ≤ n ≤ N

• Relative errors: 0 <
λn − λ̃n
λn

= 1−
2− 2 cos(nπh)

(nπh)2
0 < nπh < π
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=
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x2
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Basic Discretizations: Finite Elements
1D Model Problem (Weak Form):∫ 1

0
u′v′ dx = λ

∫ 1

0
uv dx for all v ∈ H1

0 (0, 1)

• Integration-by-parts, a(u, v) =
∫ 1

0 u
′v′ dx, b(u, v) =

∫ 1
0 uv dx

Finite Element Discretization:

a(û, v) = λ̂ b(û, v) for all v ∈ V

• Uniform grid: h = 1/(N + 1), xj = jh, 0 ≤ j ≤ N + 1, Ik = [xk−1, xk]

• V = {v ∈ C[0, 1] : v|Ik
∈ P1(Ik) , v(0) = v(1) = 0} = span{φ1, . . . , φN}

0 1xk

ϕk
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Basic Discretizations: Finite Elements

Generalized (Matrix) Eigenvalue Problem:

1

h
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û = λ̂

h

6



4 1

1 4

. . .

. . .
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û Aû = λ̂Bû

Exact and Discrete Eigenvalues/Vectors:
• un = sin(nπx), λn = (nπ)2, n ∈ N

• ûn =
∑n
k=1 sin(nπxk)φk , λ̂n = 6

h2
2−2 cos(nπh)
4+2 cos(nπh)

, 1 ≤ n ≤ N

• Relative errors: 0 <
λ̂n − λn
λn

=
6

(nπh)2

2− 2 cos(nπh)

4 + 2 cos(nπh)
− 1 < 0.444 0 < nπh < π

x2

12
<

6

x2

2− 2 cosx

4 + 2 cosx
− 1 <

x2

12
+

x4

360
for 0 ≤ x ≤ 2
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Finite Element Discretization in 2D

35.6685 , 72.4200 , 104.0508 , 131.8838 , 141.8885 , 194.9604
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A Relationship Between Eigenvalue and Eigenvector Error
Variational Eigenvalue Problem: Find λ ∈ R, non-zero u ∈ H such that

a(u, v) = λb(u, v) for all v ∈ H

• b an inner product, assoc. norm ‖ · ‖b

• a a semi-inner product, assoc. seminorm | · |a

A Simple Identity: (λ, u) an eigenpair, with ‖u‖b = 1, û ∈ H any vector with
‖û‖b = 1, λ̂ = a(û, û) (Rayleigh quotient)

λ̂− λ = |u− û|2a − λ‖u− û‖2
b

• “Eigenvalue error behaves like square of eigenvector error”

• Methods (e.g. finite elements) typically focus on controlling eigenvector error

• Results like this for clusters of eigenvalues, assoc. invariant subspaces?
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Elements of Error Estimation
Model Problem(s): Find non-zero u ∈ H1

0 (Ω) and λ ∈ R such that∫
Ω
D∇u · ∇v + ruv dx︸ ︷︷ ︸

a(u,v)

= λ

∫
Ω
uv dx︸ ︷︷ ︸

b(u,v)

for all v ∈ H1
0 (Ω)

Given a finite dimensional subspace V ⊂ H1
0 (Ω), find non-zero û ∈ V and λ̂ ∈ R such that

a(û, v) = λ̂ b(û, v) for all v ∈ V (1)

• 0 < λ1 < λ2 ≤ · · · , 0 < λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂dim(V ) , λi ≤ λ̂i

Error Estimation: Let (λ̂i, ûi) be an eigenpair of (1), with ‖ûi‖b = 1.

inf
u∈E(λi)

‖u− ûi‖ ≤ C(λ̂i, λ̂)‖u∗i − ûi‖ , 0 ≤ λ̂i − λi ≤ inf
u∈E(λi)

‖u− ûi‖2
a

• ‖ · ‖ can be either a-norm or b-norm , C(λ̂i, λ̂) = maxµ∈Spec\{λi}
µ

|µ−λ̂i|

• u∗i ∈ H1
0 (Ω) satisfies a(u∗i , v) = b(λ̂iûi, v) for all v ∈ H1

0 (Ω)

• Many techniques exist for computing estimates of quantities like ‖u∗i − ûi‖
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Challenges: Singularities

• Sector of unit disk with opening angle π/α, α ∈ [1/2, 1)

• λm,n = z2
m,n, ψm,n = Jnα(zm,nr) sin(nαθ) ∼ rnα

• zm,n is mth positive root of Jnα

• Singular and analytic eigenvectors interspersed throughout spectrum

• Below, slit disk (α = 1/2); r1/2-singularities in red J1/2(x) =
√

2
πx

sinx

2 3 4 5 6 7 8

39.47841760

88.82643961

157.9136704

246.7401100

355.3057584

483.6106157

631.6546817

Λ52=246.49546613 Λ53=246.74011003
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Challenges: Singularities
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Challenges: Repeated Eigenvalues

19.73920880 49.34802201 49.34802201

19.76625421 49.69585432 49.81886913

19.74078972 49.37241709 49.37251974

Babuška-Osborn Example

φ(x) = π−αsign(x)|x|1+α

φ′(x) = π−α(1 + α)|x|α

−
(
u′(x)

φ′(x)

)′
= λφ′(x)u(x)

u(−π) = u(π)

u′(−π)

φ′(−π)
=
u′(π)

φ′(π)

• λ0 = 0, u0 = 1

• λ2n−1 = λ2n = n2 n ∈ N

u2n−1(x) = sin(nφ(x))

u2n(x) = cos(nφ(x))
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Challenges: Clustered Eigenvalues

λ1 λ2 λ3 λ4 λ5 λ6

h = 2−3 19.318164 19.364766 47.449173 47.726913 49.320389 49.320606

h = 2−4 19.308869 19.356441 47.408335 47.691800 49.318090 49.318225

h = 2−5 19.305146 19.353140 47.391660 47.677648 49.317276 49.317411

h = 2−6 19.303796 19.351947 47.385594 47.672517 49.316990 49.317126

“exact” 19.302911 19.351166 47.381613 47.669156 49.316805 49.316941
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Problem of Interest

Problem of Interest: Compute “slice” of spectrum

Λ = spec(A) ∩ (y − γ, y + γ)

E = span{ψ ∈ dom(A) : Aψ = λψ for some λ ∈ Λ}
• A : dom(A) ⊂ H → H (unbounded) closed, selfadjoint operator on a Hilbert space

e.g. H = L2(Ω), A = −∆ + V

• Λ contains finitely many eigenvalues, each with finite multiplicity

• spec(A) \ Λ ⊂ {x ∈ R : |x− y| ≥ (1 + δ)γ} for some δ > 0

�� ��

y = 65/2

γ = 23/2

δ = 0.178512
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Filtering
Filtering

Suppose that f is real-valued, bounded and continuous on spec(A). Then
f(A) : H → H is bounded and selfadjoint, and if λ ∈ spec(A) and Aψ = λψ for
some ψ ∈ dom(A), then f(A)ψ = f(λ)ψ.

Choose f so that:

• E is dominant eigenspace of f(A),

min
λ∈Λ
|f(λ)| > sup

λ∈spec(A)\Λ
|f(λ)|

• Action of f(A) is (approx.) computable

f(z) = wN +

N−1∑
k=0

wk(zk − z)−1

f(A) = wN +

N−1∑
k=0

wk(zk −A)−1
�������� �����������

�
�
�
�
�
�
�
��
�
�
�
�
��
�
�

�� ��

�

�

�
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Guidance for Selecting Filters
Cauchy’s Integral Formula:

Let Γ ⊂ C \ spec(A) be a positively oriented, simple, closed contour that encloses
Λ and excludes spec(A) \ Λ, and let G ⊂ C be the open set whose boundary is Γ.
Then,

r(z) =
1

2πi

∮
Γ
(ξ − z)−1 dξ =

1, z ∈ G,
0, z ∈ C \ (G ∪ Γ).

Spectral Projector (Ideal Filter)

S = r(A) =
1

2πi

∮
Γ
R(ξ) dξ , R(z) = (z −A)−1 , E = Range(S)

Rational Filter (Quadrature Approximation)

rN (z) =

N−1∑
k=0

wk(zk − z)−1 , SN = rN (A) =

N−1∑
k=0

wkR(zk)

Portland State University Slide 15 BIRS Workshop on Spectral Geometry, Banff, Alberta



Example Filters

Circle Filter

rN (z) =
1

1 + ((z − y)/γ)N

y-γ y+γ

1

2

1

Ellipse Filter

rN (z) =
ρN−ρ−N

2

ρN+ρ−N

2
+ TN ( ρ+ρ−1

2
z−y
γ

)

• ρ > 1 governs eccentricity

• Approaches circle as ρ→∞

• Approaches interval as ρ→ 1

y-γ y+γ

1

2

1
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Several Contour Integral Based Methods
SSM

• Sakurai/Sugiura, A projection method for generalized eigenvalue problems using numerical integration, J. Comput.
Math. Appl. (2003)

• Sakurai/Tadano, CIRR: A Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems,
Hokkaido Math. J. (2007)

• Beyn, An integral method for solving non-linear eigenvalue problems, Linear Algebra Appl. (2012)

• Austin/Trefethen, Computing eigenvalues of real symmetric matrices with rational filters in real arithmetic, SISC
(2015)

FEAST
• Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B (2009)

• Tang/Polizzi, FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection, SIMAX
(2014)

• Güttel/Polizzi/Tang/Viaud, Zolotarev quadrature rules and load balancing for the FEAST eigensolver, SISC (2015)

• Gopalakrishan/Grubišić /Ovall (2017/2018)

RIM
• Sun/Xu/Zeng, A spectral projection method for transmission eigenvalue problem, Science China Math. (2016)

• Huang/Struthers/Sun/Zhang, Recursive integral method for transmission eigenvalues, JCP (2016)
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Filtered Subspace Iteration
Ideal Filtered Subspace Iteration

• Eigenspace of interest, E, is dominant eigenspace of SN

• Let E(0) ⊂ H be a (random) finite dimensional subspace such that SE(0) = E

– Must have dim(E(0)) ≥ dim(E)
.

= m; would like dim(E(0)) = m

• E(`) ≈ E generated by subspace iteration,

E(`+1) = SNE
(`)

– (Periodically) orthogonalize basis of E(`)—implicitly via Rayleigh-Ritz procedure

– dim(E(`)) paired down (if necessary) so that dim(E(`)) = m for ` suff. large

• Λ(`) ≈ Λ generated by Rayleigh-Ritz procedure on restriction of A to E(`)

Key Questions

(In what sense) do E(`) → E and Λ(`) → Λ? At what rates?

What are the effects of discretization, ShN =
∑N−1
k=0 wkRh(zk) ≈ SN?
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Iteration Error in Ideal Filtered Subspace Iteration
Iteration Error Theorem: Suppose that SE(0) = E, and ψ ∈ E is an eigenvector of
A with eigenvalue λ ∈ Λ. There is a sequence {w(`) ∈ E(`) : ` ≥ 0} such that

w(`) − ψ =
1

[rN (λ)]`
S`N (I − S)(w(0) − ψ)

‖w(`) − ψ‖V ≤ (κ(λ))` ‖w(0) − ψ‖V , κ(λ) =
max{|rN (µ)| : µ ∈ Spec(A) \ Λ}

|rN (λ)|

• Recall that min{|rN (λ)| : λ ∈ Λ} > max{|rN (µ)| : µ ∈ Spec(A) \ Λ}

• Additional Hilbert space V (allows V = H)

– V dense and continuously embedded in H (e.g. V = H1
0 (Ω) in H = L2(Ω))

– E ⊂ V and V invariant w.r.t. resolvent R(z) = (z −A)−1

– (R(z)v, w)V = (v,R(z)w)V for all v, w ∈ V

• Contraction factor independent of norm!

• Variants on this result allowing for subspaces generated by perturbed versions of SN .
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Illustrating the Iteration Error Theorem

Matrix Eigenvalue Problem: Ax = λx

• A ∈ Rn×n tridiagonal w/ stencil (−1, 2,−1)

• Eigenvalues λj = 2− 2 cos(j π
n+1

), eigenvectors [ψj ]i = sin(ij π
n+1

)

• With n = 100, y = 1/3, γ = 1/18, we have Λ = {λ18, λ19, λ20}

Eigenvalue Error:

• We compute {ψ(`)
18 ,ψ

(`)
19 ,ψ

(`)
20 }, not {w

(`)
18 ,w

(`)
19 ,w

(`)
20 } from theorem

• We compute λ(`)
j = |||ψ(`)

j |||
2/‖ψ(`)

j ‖
2, where |||x|||2 = xTAx, ‖x‖2 = xTx

• Eigenvalue error: λ(`)
j − λj = |||ψj −ψ

(`)
j |||

2 − λj‖ψj −ψ
(`)
j ‖

2

• ERR = ERR(`) = |λj − λ
(`)
j |, RAT = RAT(`) = ERR(`)/ERR(`− 1)

• Hope: RAT(`) ∼ κ2
j , can compute κ2

j explicitly in this case

Portland State University Slide 20 BIRS Workshop on Spectral Geometry, Banff, Alberta



Illustrating the Iteration Error Theorem

λ17 λ18 λ19

κ̂2 ` ERR RAT ERR RAT ERR RAT

C
irc

le
Fi
lt
er

4.
77

3e
-0
1

2 2.947e-04 1.961e-01 2.602e-04 1.573e-01 1.569e-03 1.848e-01

3 3.584e-05 1.216e-01 3.109e-05 1.195e-01 2.321e-04 1.460e-01

4 4.312e-06 1.203e-01 3.706e-06 1.192e-01 3.331e-05 1.435e-01

5 5.187e-07 1.203e-01 4.420e-07 1.193e-01 4.762e-06 1.429e-01

6 6.240e-08 1.203e-01 5.274e-08 1.193e-01 6.803e-07 1.429e-01

7 7.507e-09 1.203e-01 6.293e-09 1.193e-01 9.718e-08 1.429e-01

E
lli
ps
e
Fi
lt
er

1.
56

3e
-0
1

2 5.844e-05 3.820e-02 1.408e-04 4.163e-02 4.597e-04 5.512e-02

3 2.243e-06 3.838e-02 6.015e-06 4.272e-02 1.917e-05 4.171e-02

4 8.627e-08 3.846e-02 2.576e-07 4.283e-02 7.900e-07 4.120e-02

5 3.319e-09 3.847e-02 1.103e-08 4.283e-02 3.254e-08 4.118e-02

6 1.277e-10 3.847e-02 4.726e-10 4.283e-02 1.340e-09 4.118e-02

7 4.910e-12 3.847e-02 2.024e-11 4.283e-02 5.518e-11 4.118e-02
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Discretization Error Theorem
Theorem: Suppose that E(`+1)

h = ShNE
(`)
h for ` ≥ 0, Ph = 1

2πi

∮
Θ(z − ShN )−1 dz, and

dim(E
(0)
h ) = dim(PhE

(0)
h ) = dim(E), There is an h0 > 0 such that, for 0 < h < h0, the

subspace iterates E(`)
h converge (in gap) to Eh = Range(Ph). Furthermore,

gapV (E,Eh) ≤ Chmin(p,sE ) , dist(Λ,Λh) ≤ Ch2 min(p,sE )

• V = H1(Ω), A a Laplace-like operator

• h mesh-size, p polynomial degree

• sE (worst-case) regularity index for functions in E

• Hausdorff distance between sets of numbers X,Y

dist(X,Y ) = max

[
sup
x∈X

inf
y∈Y
|x− y| , sup

y∈Y
inf
x∈X

|x− y|
]

• Gap between subspaces X and Y

gapV (X,Y ) = max

[
sup
x∈X

inf
y∈Y

‖x− y‖V
‖x‖V

, sup
y∈Y

inf
x∈X

‖x− y‖V
‖y‖V

]
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Dirichlet Laplace on Unit Square

FEAST Implementation

• Gopalakrishnan. Pythonic FEAST. https://bitbucket.org/jayggg/pyeigfeast

• Schöberl. NGSolve. http://ngsolve.org
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Dirichlet Laplace on L-Shape

• Individual eigenvalue convergence rates in accordance corresponding eigenvector
regularities, not (worst-case) cluster regularity
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Dirichlet Laplace on Dumbbell

Search Interval (1262, 1264), p = 3

≈ 1262.41 128π2

h λ1 λ2

2−4 1263.178867 1264.020566

2−5 1262.447629 1263.319956

2−6 1262.418298 1263.309521

2−7 1262.410062 1263.309366
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Dirichlet Laplace on “Three Bulb” Domain, Localization

2π2
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Schrödinger Operator on H = L2(R2)

−∆ψ − 50e−(x2+y2)ψ = λψ in R2
26 JAY GOPALAKRISHNAN, LUKA GRUBIŠIĆ AND JEFFREY OVALL
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Figure 6. Bound states of the two-dimensional Schrödinger operator

Subsequently, we conclude that there is at least one and at most finitely many (counting by
multiplicity) negative eigenvalues.

Since it is infeasible to compute on an unbounded domain with finite elements, a standard
approximation technique is to consider A with zero Dirichlet boundary conditions on the
bounded domain [�D, D]2 for su�ciently large D. Since the essential spectrum of A is
[0,1i and there are only finitely many negative eigenvalues we conclude that the eigenvalues
of the operator restricted to [�D, D]2 will accumulate at zero from above and not from below
as D ! 1. Based on this we know that it is safe to chose a filter over the set [�50,��], for
�, 0 < � << 1.

We used the trapezoidal filter with N = 8 on the circular contour of center y = �40 and
radius � = 30. Mesh element diameters were constrained to be never more than h = 0.4. We
performed several experiments varying D and p, starting each one with a subspace spanned
by 10 random vectors. In all cases, the iterations converged to a six-dimensional eigenspace.
The basis functions for this eigenspace, computed in the case D = 5 and p = 5, denoted by
e1, . . . , e6, are displayed in Figure 6 in both surface and patch plots. The surface plots of
the eigenfunctions are overlaid with that of the potential well V to illustrate the localized
behaviour of the eigenfunctions. Table 2 reports the corresponding eigenvalues in this case
as well as for higher p. The first and the fourth eigenvalues seem to be simple, while the
remaining eigenvalues seem to be approximating two distinct eigenvalues each of multiplicity
two. Doubling D from 5 to 10 did not change these eigenvalues up to seven significant digits,
as shown in the last row of the table.

7. Conclusion

In this paper we have proposed a method which yields both algorithms as well as the-
oretical results for analyzing eigenvalues of self-adjoint operators in a Hilbert space. The
method which we developed is based on an availability of a discretization of the resolvent
of the operator and is independent of the discretization itself. We have provided an actual
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Figure 6. Bound states of the two-dimensional Schrödinger operator

p D �sch
1 �sch

2 �sch
3 �sch

4 �sch
5 �sch

6

4 5 �36.8759926 �24.8609439 �24.8609244 �15.1384305 �14.0895444 �14.0894693
5 5 �36.8760274 �24.8609749 �24.8609736 �15.1388526 �14.0897524 �14.0897520
6 5 �36.8760276 �24.8609775 �24.8609775 �15.1388553 �14.0897540 �14.0897540
7 5 �36.8760276 �24.8609775 �24.8609775 �15.1388555 �14.0897541 �14.0897541
7 10 �36.8760276 �24.8609775 �24.8609775 �15.1388555 �14.0897541 �14.0897541

Table 3. Eigenvalues corresponding to the bound Schrödinger states

The basis functions for this eigenspace, computed in the case D = 5 and p = 5, denoted by
e1, . . . , e6, are displayed in Figure 6 in both surface and patch plots. The surface plots of
the eigenfunctions are overlaid with that of the potential well V to illustrate the localized
behaviour of the eigenfunctions. Table 3 reports the corresponding eigenvalues in this case
as well as for higher p. The first and the fourth eigenvalues seem to be simple, while the
remaining eigenvalues seem to be approximating two distinct eigenvalues each of multiplicity
two. Doubling D from 5 to 10 did not change these eigenvalues up to seven significant digits,
as shown in the last row of the table.
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• Spec(A) ⊂ (−50,∞), EssSpec(A) = [0,∞)
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Some Technical Details

SN =
N−1∑
k=0

wkR(zk) , Sh
N =

N−1∑
k=0

wkRh(zk)

Limit Space: Existence of limit space Eh assumes

lim
h→0
‖Rh(zk)−R(zk)‖V = 0 for 0 ≤ k ≤ N − 1

Resolvent Estimates for Eigenvalue/Vector Convergence Theorem: For
each z in resolvent set of A, there are C, h0 > 0 such that, for all h < h0,

‖R(z)−Rh(z)‖V ≤ Chr , ‖[R(z)−Rh(z)]|E‖V ≤ Ch
rE

‖R(z)−Rh(z)‖H ≤ Ch2r , ‖[R(z)−Rh(z)]|E‖H ≤ Ch
r+rE

where r = min(s, p), rE = min(sE , p).

Eigenvalue Discretization Error: If ‖u‖V = ‖|A|1/2u‖H, then

dist(Λ,Λh) ≤ (Λmax
h )2gapV (E,Eh)2 + C0‖AE‖gapH(E,Eh)2
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Different Classifications within Spectrum

• Resolvent Set: Res(A) = {z ∈ C : z −A : dom(A)→H is bijective} open set

• Spectrum: Spec(A) = C \ Res(A) closed set

1. Point Spectrum (Eigenvalues): Specp(A) = {λ ∈ C : z −A is not injective}

2. Residual Spectrum: Specr(A) = {λ ∈ C : z−A is injective, but Ran(z −A) 6= H}

3. Continuous Spectrum:
Specc(A) = {λ ∈ C : z−A is injective, and Ran(z −A) = H but Ran(z−A) 6= H}

Spec(A) = Specp(A) ∪ Specr(A) ∪ Specc(A)

Some authors define Specc(A) slightly differently, allowing Specr(A) ∩ Specc(A) 6= ∅

• Discrete Spectrum: Eigenvalues of finite multiplicity that are isolated points of Spec(A)

• Essential Spectrum: Complement of discrete spectrum in Spec(A)

• If A has compact resolvent, then its spectrum, point spectrum and discrete spectrum
are the same

• Spec(A) 6= ∅ (for normal operators)

Portland State University Slide 29 BIRS Workshop on Spectral Geometry, Banff, Alberta


