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Motivation
Given an interaction potentialW : Rd → (−∞,∞], an entropy function U : [0,∞)→
R, and a temperature ε > 0, we consider the continuity equation

∂tρ = ∇ · ((∇W ∗ ρ)ρ) + ε∇ ·
(
∇U ′(ρ)ρ

)
, ρ ∈ P(Rd), t > 0. (1)

We want to derive conditions on the relationship between W and U, ε for the
existence/nonexistence of stationary states of (1).

We study the minimizers of the associated 2-Wasserstein energy to (1),

Eε(ρ) =W(ρ) + εEU (ρ), ρ ∈ P(Rd),
where

W(ρ) =
1

2

∫
Rd

∫
Rd
W (x− y) dρ(x) dρ(y)

and

EU (ρ) =

{∫
Rd U(ρ(x)) dx if ρ ∈ Pac(Rd),

+∞ if ρ ∈ P(Rd) \ Pac(Rd).

• When ε = 0 we know minimizers exist for a wide class of interaction poten-
tials [Carrillo–Cañizo–P. (2015), Simione–Slepčev–Topaloglu (2015), Choksi–Fetecau–Topaloglu

(2014)].

When ε > 0 is small enough and 1 < m 6 2, minimizers exist for
bounded, fully attractive interaction potentials [Kaib (2017)].
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tials [Carrillo–Cañizo–P. (2015), Simione–Slepčev–Topaloglu (2015), Choksi–Fetecau–Topaloglu

(2014)].

When ε > 0 is small enough and 1 < m 6 2, minimizers exist for
bounded, fully attractive interaction potentials [Kaib (2017)].

4/16



Motivation
Given an interaction potentialW : Rd → (−∞,∞], an entropy function U : [0,∞)→
R, and a temperature ε > 0, we consider the continuity equation

∂tρ = ∇ · ((∇W ∗ ρ)ρ) + ε∇ ·
(
∇U ′(ρ)ρ

)
, ρ ∈ P(Rd), t > 0. (1)

We want to derive conditions on the relationship between W and U, ε for the
existence/nonexistence of stationary states of (1).

We study the minimizers of the associated 2-Wasserstein energy to (1),

Eε(ρ) =W(ρ) + εEU (ρ), ρ ∈ P(Rd),
where

W(ρ) =
1

2

∫
Rd

∫
Rd
W (x− y) dρ(x) dρ(y)

and

EU (ρ) =

{∫
Rd U(ρ(x)) dx if ρ ∈ Pac(Rd),

+∞ if ρ ∈ P(Rd) \ Pac(Rd).

• When ε = 0 we know minimizers exist for a wide class of interaction poten-
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Motivation

Typical interaction potentials. For a given β > −d the power-law interaction
potential is defined by

Wβ(x) =

{
|x|β
β

if β 6= 0,

log |x| if β = 0,
for all x ∈ Rd.

Typical entropy functions. The power diffusion is given by

Um(r) =
rm

m− 1
, m 6= 1, m > 0, for all r ∈ [0,∞),

and the linear diffusion (m = 1) is given by

U1(r) = r log r for all r ∈ [0,∞).

General hypotheses.

• W : Rd → (−∞,∞] is locally integrable lower semicontinuous and even.

• U : [0,∞) → R is continuous, of class C2 on (0,∞) and convex, and
U(0) = 0.

5/16



Motivation

Typical interaction potentials. For a given β > −d the power-law interaction
potential is defined by

Wβ(x) =

{
|x|β
β

if β 6= 0,

log |x| if β = 0,
for all x ∈ Rd.

Typical entropy functions. The power diffusion is given by

Um(r) =
rm

m− 1
, m 6= 1, m > 0, for all r ∈ [0,∞),

and the linear diffusion (m = 1) is given by

U1(r) = r log r for all r ∈ [0,∞).

General hypotheses.

• W : Rd → (−∞,∞] is locally integrable lower semicontinuous and even.

• U : [0,∞) → R is continuous, of class C2 on (0,∞) and convex, and
U(0) = 0.

5/16



Motivation

Typical interaction potentials. For a given β > −d the power-law interaction
potential is defined by

Wβ(x) =

{
|x|β
β

if β 6= 0,

log |x| if β = 0,
for all x ∈ Rd.

Typical entropy functions. The power diffusion is given by

Um(r) =
rm

m− 1
, m 6= 1, m > 0, for all r ∈ [0,∞),

and the linear diffusion (m = 1) is given by

U1(r) = r log r for all r ∈ [0,∞).

General hypotheses.

• W : Rd → (−∞,∞] is locally integrable lower semicontinuous and even.

• U : [0,∞) → R is continuous, of class C2 on (0,∞) and convex, and
U(0) = 0.

5/16



Motivation

Questions.

• How stable are the (local) minimizers with zero diffusion ε = 0 when small noise
ε is switched on? Can we relate this to metastability? [Evers–Kolokolnikov (2016)]

• Is there a sharp general condition between W and U, ε separating the existence
from the nonexistence of global minimizers? [Calvez–Carrillo–Hoffmann (2017)]

Answers.

• We show for bounded-at-infinity, attraction-repulsion interaction potentials and
m 6 1 that no minimizers (local or global) of the energy exist as soon as ε > 0,
no matter how small ε.

• We get a sufficient condition on general interaction potentials and diffusion for
the unboundeness from below of the energy. The result is sharp for U(r) = rm

m−1
,

with m > 1. The result is not sharp for U(r) = rm, with m < 1 [Calvez–Carrillo–

Hoffmann (2017)].
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Main results

Theorem 1. Let U(r) = r log(r), and let W be positive and such that W ∈
L∞(Rd \ Bδ) for any δ > 0. Then Eε does not admit any Wp-local minimizer
for any p ∈ [1,∞] in P(Rd). Moreover, if W is Lipschitz continuous, then there
are no critical points of Eε in Pac(Rd).

• This asserts that no stationary state of the continuity equation exists for ε > 0
in the whole space Rd.

However, on a bounded domain Ω with no-flux boundary
conditions, a ground state ρ always exists and satisfies

‖ρ‖L∞(Rd) ≤ |Ω|
−1e

‖W‖L∞−infΩ W

ε .

So the larger the domain, the smaller the L∞-norm of any steady state.

• We can extend the theorem to any U which is convex with u (the McCann’s
scaling function u(r) = rdU(r−d)) nonincreasing and limr→0 U

′(r) = −∞.

8/16



Main results

Theorem 1. Let U(r) = r log(r), and let W be positive and such that W ∈
L∞(Rd \ Bδ) for any δ > 0. Then Eε does not admit any Wp-local minimizer
for any p ∈ [1,∞] in P(Rd). Moreover, if W is Lipschitz continuous, then there
are no critical points of Eε in Pac(Rd).

• This asserts that no stationary state of the continuity equation exists for ε > 0
in the whole space Rd.

However, on a bounded domain Ω with no-flux boundary
conditions, a ground state ρ always exists and satisfies

‖ρ‖L∞(Rd) ≤ |Ω|
−1e

‖W‖L∞−infΩ W

ε .

So the larger the domain, the smaller the L∞-norm of any steady state.

• We can extend the theorem to any U which is convex with u (the McCann’s
scaling function u(r) = rdU(r−d)) nonincreasing and limr→0 U

′(r) = −∞.

8/16



Main results

Theorem 1. Let U(r) = r log(r), and let W be positive and such that W ∈
L∞(Rd \ Bδ) for any δ > 0. Then Eε does not admit any Wp-local minimizer
for any p ∈ [1,∞] in P(Rd). Moreover, if W is Lipschitz continuous, then there
are no critical points of Eε in Pac(Rd).

• This asserts that no stationary state of the continuity equation exists for ε > 0
in the whole space Rd. However, on a bounded domain Ω with no-flux boundary
conditions, a ground state ρ always exists and satisfies

‖ρ‖L∞(Rd) ≤ |Ω|
−1e

‖W‖L∞−infΩ W

ε .

So the larger the domain, the smaller the L∞-norm of any steady state.

• We can extend the theorem to any U which is convex with u (the McCann’s
scaling function u(r) = rdU(r−d)) nonincreasing and limr→0 U

′(r) = −∞.

8/16



Main results

Theorem 1. Let U(r) = r log(r), and let W be positive and such that W ∈
L∞(Rd \ Bδ) for any δ > 0. Then Eε does not admit any Wp-local minimizer
for any p ∈ [1,∞] in P(Rd). Moreover, if W is Lipschitz continuous, then there
are no critical points of Eε in Pac(Rd).

• This asserts that no stationary state of the continuity equation exists for ε > 0
in the whole space Rd. However, on a bounded domain Ω with no-flux boundary
conditions, a ground state ρ always exists and satisfies

‖ρ‖L∞(Rd) ≤ |Ω|
−1e

‖W‖L∞−infΩ W

ε .

So the larger the domain, the smaller the L∞-norm of any steady state.

• We can extend the theorem to any U which is convex with u (the McCann’s
scaling function u(r) = rdU(r−d)) nonincreasing and limr→0 U

′(r) = −∞.

8/16



Main results
Proof of Theorem 1. For simplicity, let us assume that W ∈ L∞(Rd). We proceed
by contradiction.

First assume ρ ∈ P(Rd) is Wp-local minimizer.

• The Euler–Lagrange conditions for ρ give{
ε log(ρ) +W ∗ ρ = Ci on Ai,

ε log(ρ) +W ∗ ρ > Ci on Rd,

where Ai is any closed, connected component of supp(ρ), for some Ci ∈ R.

• Since ‖W‖L∞(Rd) < ∞, the Euler–Lagrange inequality implies that ρ cannot

vanish on Rd, otherwise we would have a point x ∈ Rd such that

−∞ = ε log(0) = ε log(ρ(x)) > C1 − ‖W‖L∞(Rd) > −∞.

So supp(ρ) = Rd.

• Then, for all x ∈ Rd, the Euler–Lagrange equation gives

ρ(x) = exp

(
C1 −W ∗ ρ(x)

ε

)
> exp

(
C1 − ‖W‖L∞(Rd)

ε

)
,

which contradicts ρ 6∈ P(Rd).

If now we assume ρ is a critical point, then we can show, using a bootstrap argument,
ρ ∈ Cα(Rd), α > 1 [Carrillo–Hittmeir–Volzone–Yao (2016)].
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Main results

Theorem 2. Suppose that the interaction potential W is differentiable away
from the origin, and suppose that U is such that u is nonincreasing. If

lim sup
r→∞

(
1

2
sup
z∈B2r

(∇W (z) · z)− εv(rω
1/d
d )

)
< 0

or

lim inf
r→0

(
1

2
inf

z∈B2r

(∇W (z) · z)− εv(rω
1/d
d )

)
> 0,

where v(r) = −ru′(r), then Eε is not bounded below.

10/16



Main results
When we consider the power cases for U and W , the theorem’s conditions become

lim
r→∞

(
2β−1rβ − εdω1−m

d r(1−m)d
)
< 0 if β > 0,

and
lim
r→0

(
2β−1rβ − εdω1−m

d r(1−m)d
)
> 0 if β 6 0.

Therefore, the theorem shows that the energy is not bounded below whenever

β < (1−m)d.

We can show that this result is

• sharp if m > 1, meaning: (1−m)d < β < 0 =⇒ minimizers exist;
• not sharp if m < 1;

[Calvez–Carrillo–Hoffmann (2016, 2017), Carrillo–Hittmeir–Volzone–Yao (2016), Carrillo–Hoffmann–

Mainini–Volzone (2017)]

• sharp if m = 1, meaning: β > 0 =⇒ minimizers exist.

For the critical case β = (1 −m)d, it depends on the size of ε. The energy is not
bounded below in the cases

• m > 1 and εd < 2β−1ωm−1
d ;

• m < 1 and εd > 2β−1ωm−1
d ;

[Calvez–Carrillo–Hoffmann (2016, 2017)]

• m = 1 and 2εd 6= 1.
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Main results
Proof of Theorem 2. Considering ρr = r−dω−1

d χBr , we claim that if either condition
in the theorem holds, then limr→∞Eε(ρr) = −∞ or limr→0Eε(ρr) = −∞.

• Changing variables,

Eε(ρr) =
1

2ω2
d

∫
B1

∫
B1

W (r(x− y)) dxdy + εrdωdU(r−dω−1
d ).

• Differentiating in r,

dEε(ρr)

dr
=

1

r

(
1

2ω2
d

∫
B1

∫
B1

∇W (r(x− y)) · r(x− y) dxdy − εv(rω
1/d
d )

)
.

• Estimating the integral,

dEε(ρr)

dr
≤ 1

r

(
1

2
sup
z∈B2r

∇W (z) · z − εv(rω
1/d
d )

)
.

• When the first theorem’s condition holds, there exists r0 > 0 and δ > 0 with

dEε(ρr)

dr
6 −δ

r
for any r > r0.

• Integrating for any r > r0

Eε(ρr) ≤ δ log(r0/r) + Eε(ρr0) −−−→
r→∞

−∞.

• We proceed analogously for the second condition.
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Main results

Theorem 3 (sharpness for m = 1). Suppose that the entropy function is given
by U(r) = r log r and that W is positive. If

lim sup
|x|→∞

∇W (x) · x < 2dε,

then Eε is not bounded below. Alternatively, if

lim inf
|x|→∞

∇W (x) · x > 2dε,

then Eε is bounded below; more precisely, there exists ρ∞ ∈ P(Rd) such that

Eε(ρ∞) = inf Eε > −∞.
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Main results

Consider the energy functional

1

2

∫
Rd

∫
Rd

log |x− y| dρ(x) dρ(y) + ε

∫
Rd
ρ(x) log ρ(x) dx,

corresponding to the Keller–Segel model.

It is known that there is a critical value of
the noise, εc = 1/(2d), such that the energy functional is bounded from below if and
only if ε = εc [Dolbeault–Perthame (2004), Blanchet–Dolbeault-Perthame (2006), Blanchet–Carrillo–

Laurençot (2009). Blanchet–Carlen–Carrillo (2012)].

Similarly, our theorem shows that if W is bounded from below and

lim
|x|→∞

∇W (x) · x = L > 0,

then there also exists a critical diffusion εc = L/(2d) separating the boundedness
from the unboundeness from below of the energy.
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Outlook

Open questions.

• When there are no local minimizers, how do the metastable states behave in
infinite time? Do they flatten as t→∞?

• When m = 1, what happens if ε = εc? Do we have minimizers? If yes, how
many?
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