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Some preliminaries: \-convexity and slopes

Let (X, d) be a complete metric space.

We consider a lower semicontinuous (l.s.c.) functional ¢ : X — (—o0, +0o0] with
nonempty domain (i.e. ¢ is proper — taken for granted from now on)

Dom(¢) := {x € X : ¢(x) < +o0}.

Given X € R, we say that ¢ is (geodesically) A-convex if for every xo, X1 € Dom(¢) there
exists a (minimal, constant speed) geodesic x, : [0, 1] — X such that

Bx0) < (1~ 0)6(x0) + 9(x1) — H9(1 ~D)(x1,x0) ¥ € [0,1].

In particular, in this case Dom(¢) is a geodesic space.
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If ¢ is A\-convex, one can show that the functional x — ¢(x) — 3d°(x, o) is linearly
bounded from below for all 0 € X:

B(x) > %dz(x, 0) —lod(x,0) —¢co  ¥x € X, forsome o, Co>0.

The metric slope |0¢| is defined for all x € Dom(¢) by

L (¢(x) — ¢(¥))
|09(x) := |'T§Ep W )

with |0¢|(Xx) := +o0 if x € X'\ Dom(¢) and |9¢|(x) := 0 if x € Dom(¢) is isolated.

If ¢ is A-convex then |d¢| coincides with the (I.s.c.) global \-slope:

_ 22 (x,
e [6100) = sup ) ¢(dy()x,+y§ oy,

y#x
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N
EVI and Gradient Flows

First we want to give a meaning to u = —9¢(u) in our metric framework.

Evolution Variational Inequalities (EVI) [Ambrosio-Gigli-Savaré '05]

A continuous curve u: t € (0, +00) — u; € Dom(¢) is a solution to EVIL\ (X, d, ¢) if

1d*

5 55 (V) + 3, v) < 6(v) —9(u)  t> 0, ¥ € Dom(4).

Here

w (upper right Dini derivative) .

dr . ¢
— ((t) :=limsu
a ¢ 1sup

Gradient Flows (GF)

A X-Gradient Flow of ¢ is a family of continuous maps S; : Dom(¢) — Dom(¢), t > 0,
such that for every uy € Dom(¢) there hold

St+n(Uo) = Sn(Se(wo)) Vt,h>0, |tlln3 St(uo) = So(to) = Uy,

the curve t — S:(up) is a solution of EVI,\ (X, d, ¢) .
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A classical example: Hilbert spaces

Let (X, (-)) be a Hilbert space, with d(x, y) := [x — y|= /(X — y,x — y). Let
¢ : X — (—o0, +0o0] be a l.s.c. A\-convex functional. In other words, x — ¢(x) — 5|x|? is
a convex functional in the usual sense.

Then [Brézis '73] a continuous curve u: t € (0, 400) — u; € Dom(¢) is a solution to
EVI,\(X,d, ¢) if and only if u is locally Lipschitz and

ur € —0¢(ur) fora.e. t >0
(for every t > 0 if we use right derivatives), where
w € d¢(u) & (w,v—u>+%|v—u|2§¢(v)—¢(u) Y e X,
i.e. 0¢ is the subgradient of ¢. In this case,

|0¢|(U) := min{|w|: w € do(u)}.
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A more elaborate example: drift diffusion with nonlocal interaction

Let X := 2,(RY) be the space of Borel probability measures, with finite quadratic
moment, endowed with the Wasserstein distance Ws.

We consider the following functional on X’:

o) = [ otogoax+ [ vausg [ (/RdW(x—y)du(y)) au(x)  ifp= o2
o(p) ==+ oo if u & 29,

i.e. the sum of internal, potential and interaction energy. Here V : RY — Ris a
l.s.c. convex function and W : RY — R is a C'(R?), even and convex function
satisfying a suitable “doubling” condition.

Then [Carrillo-McCann-Villani ’03, Ambrosio-Gigli-Savaré '05] the functional ¢ admits a
GF in X, which is given by solutions to the drift-diffusion (with interaction) equation

ot = Dot +div[o (VV + VW g)] inR?, lim o LY=o in Z(RY).
—
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Main properties of solutions to EVI

Theorem

Let¢p : X — (—o0, +00] be a l.s.c. functional and \ € R. Let u,u', u? € C°([0, +o0); X)
be solutions to EVI,(X,d, ¢). The following properties hold:

@ \-contraction and uniqueness:

d(uf,u?) <e M9d(ul,u?) VO<s<t<+oo.

In particular, for each uy € Dom(¢) there is at most one solution s.t. lim; o us = Up.
@ Regqularizing effects:
e u s locally Lipschitz in (0, +o0) and u; € Dom(|0¢|) C Dom(¢) for allt > 0;
e the map t € [0, +00) — ¢(ur) is nonincreasing and (locally) semi-convex;
o the mapt € [0, +o00) — e*|¢|(ur) is nonincreasing and right continuous.
@ A priori estimates: for every v € Dom(¢) andt > 0

A 2
%’dz(uu V) + Ex() (0(u) — 0() + EX 00 (w) < S, v),

where Ex(t) := [ e**d
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Theorem (continued)
@ Right, left limits and energy identity: for every t > 0 the right limits

d(uryn, ur) d(Utsn) — d(ur)
h

. . d .
[Ury | == uig h ; a¢(ut+) = L!?g

exist finite, satisfy
d .
G = = |0 [* = —|00[*(ur) = —S[¢](w)  VE>0

and define a right-continuous map. In particular, the functional
x — ¢(x) — 3d%(x, 0) is linearly bounded from below for all 0 € X.
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Minimizing Movements (MM)

Given T > 0, we consider the quadratically-perturbed functional
O(r, U V)= g (U V) +6(V) YU VeX.
T

We say that {U] }nen is a discrete minimizing sequence if

U? € Argmin &(7, U""' V) ¥ne N\ {0},

veX
i.e. U! satisfies
LU U+ 0(UD) < (U V) +9(V) WV e X.
2T 2T
The corresponding discrete minimizing movement is the piecewise-constant interpolant
Ut)y:=U! ifte((n-1rnr], U.00)=U~uw.
Following [De Giorgi '93, Aimgren-Taylor-Wang '93, Jordan-Kinderlehrer-Otto '98], the

MM method can be used to construct the gradient flow of ¢. However, without
coercivity assumptions on ¢, one cannot hope to have exact minimizers.
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Ekeland’s variational principle and relaxed MM

Ekeland’s variational principle
Let ® : X — (—o0, +o0] be a l.s.c. functional bounded from below. Then for every
U € Dom(@®) and every n > 0 there exists U,, € Dom(®) s.t.

®(Uy) < @(U) —nd(Uy, V)

o(Uy) < ®(V) +nd(Uy, V) forevery V € X\ {U,}.

In particular,
|0®|(Uy) < Lo[@](Uy) < 7.

Our idea is to apply Ekeland’s variational principle to the functional

T

Vs o(r, UL V) = 217d2(U£;,1, V) +6(V).
By letting U = UZ,' and choosing the above 1 carefully, we can find U7, satisfying

1 _ 1 _ _
Zdz(un 1 Ug,n) + ‘b(Ug,n) < Zdz(u‘,r],n17 V) + ¢( V) + gd(U£,n17 U‘C,n)d(Ug,m V)

TN

for every V € X and
1 n— n n n—
dZ(U ! UT)+¢(UT,7]) §¢(Ur,n1 N

27\
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Two key inequalities satisfied by n-Ekeland movements

We denote by U, ,, the piecewise-constant interpolant of the n-Ekeland sequence
{U?,, }nen, which we call a discrete n-Ekeland movement.

In order to generate such a movement, we only need ¢ to be a l.s.c. functional
quadratically bounded from below (7 small enough).

Let ¢ : X — (—o0,+o0] be a l.s.c. A-convex functional (A < 0). Then, for any n-Ekeland
sequence {U; ,} there hold
(U, Ur)

T

(1 37)100°(UL,,) <

and 2 n—1 n
Puz, Ur . ,
(1 - 7I2>\ )W <¢(U,771)7¢(U7—,71)'

Such inequalities are closely related to the energy identity satisfied by solutions to EVI.

Matteo Muratori (Polimi) Gradient Flows in Metric Spaces gth —13th April 2018 1/21



Uniform discrete-approximation error estimates

By exploiting the above inequalities plus the EVI properties, we can prove the following.

Theorem

Let¢ : X — (—o0, +o0] be a I.s.c. A-convex functional (A < 0), which admits a
X-Gradient Flow. Fix a time interval [0, T] and T € (0, T). Then, if
U2, = up € Dom(|9¢|), there exists a constant C = C(T, \,n) > 0 such that

d(ur, Uy, (1)) < Cl0d|(wo) VT VE€[O,T],

whenceU, ,,(t) — u; as T | 0 with rate \/7 (at least).

Thus, the minimizing movement (limit of Um(t) as 7 | 0) exists and coincides with u;.
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-
The stability problem

We consider the delicate problem of stability w.r.t. ¢.

That is, let ¢" : X — (—o0, +o0], h € N, be a family of |.s.c. functionals “converging” in
a suitable sense as h — oo to a l.s.c. functional ¢ : X — (—o0, +00].

We suppose that each ¢" admits a A-Gradient Flow S” (except ¢).

The crucial questions

(Under which assumptions) Can we deduce that
also ¢ admits a \-Gradient Flow S
and that
SP(ud) converges to Si(ug) as h — oo, if ufl — uy ?
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I and Mosco convergence

Having in mind the Hilbert case, natural assumptions involve '-convergence [Dal Maso
'93]. We recall the definitions of I'-liminf and I'- lim sup of a sequence {¢"}nen:

r-hliminf¢>" (x) = inf{lihminwh(xh): x" = x} = lim liminf inf o,
— 00 — 00 ri

h—oo Br(x)

r-limsup ¢” (x) := inf{lim sup¢"(x") : x" = x} = lim lim sup inf ",
h— oo h— oo

h—oo Br(x)

for all x € X. If the I'-liminf and the I'- lim sup coincide, we set

¢>*I’ I|m¢> =T- I|m|nf¢> =T- Ilmsup¢> ,

h— oo

in which case we say that {¢"} -converges to ¢. This is equivalent to

vxeX, X" x = Iihminfth(xh) > ¢(x) (%)

vxe X 3x"}: X" = x, "(x") = B(x).

If X is Hiloert one also has weak topology. We say that {¢"} Mosco-converges to ¢ if it
I-converges w.r.t. both the strong and the weak topology, i.e. (x) holds for all x” — x.
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The stability result in the Hilbert case

Theorem (Crandall, Liggett, Bénilan, Pazy, Attouch — mostly during the 70’s)

Let X be a Hilbert space and {¢"}nen U {0} be a sequence of I.s.c. and convex
functionals. Let A" := 9¢" and A := 8¢. Then the following properties are equivalent:

@ Convergence of the flows: if u§ — Uy € Dom(), with uf € Dom(¢"),
lim SP(ud) = Si(w)  Vt>0.
h— oo

@ Convergence of the resolvents: for every u € X andt > 0

Jim (/+ AN u=(+7A)""u.

@ Convergence of the Moreau-Yosida regularizations: for every u € X and+ > 0

: : h 1 . l 2
lim |n}‘(¢ (v) + Zd (v,u) = Vlrg}‘(gﬁ(v)Jr 2Td (v,u).

h—oo ve

@ Mosco-convergence of the functionals: {$"} Mosco-converges to ¢.
@ G-convergence of the subgradients: for every v € A(u) there exist {u"}, {v"} s.t.

Vie A", s u, Vo,

v
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Some related remarks

(]

Mosco-limits of convex functionals are convex: in particular, S exists thanks e.g. to
the Crandall-Liggett Theorem (without assuming a priori the convexity of ¢).

For every v € A(u) one can construct a recovery sequence v € A"(u") s.t.
—u, Vs, (W) = s(u).

If {¢"} is strongly coercive (bdd sequences {x"} s.t. ¢"(x") < C are rel. compact),
then Mosco convergence < I'-convergence. Otherwise, limits of ¢"(x") along
weakly convergent sequences are involved, whence the weak I'-liminf.

The resolvent operator is strictly related to MM:
urh = + AN U

In order to prove convergence of the flows, it is therefore convenient to exploit
convergence of the minimizing movements along with uniform error estimates:

d(uf, ur) < d(ul, Ul (6)) + AT (1), T, (1)) + d([T, (1), ur),

where uf' :== SI(ul) and u; := Si(wo).
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Additional difficulties due to the abstract metric setting

@ We do not know a priori whether the limit A\-Gradient Flow S exists.

@ Resolvents are not well defined: one should use n-Ekeland movements instead.
@ A natural weak topology is missing.

@ We would like to study stability without strong-coercivity assumptions.

@ On the other hand, if we lack coercivity, minimizing movements (a fortiori
n-Ekeland movements) are not stable under I'-convergence.

We point out that, at least in the strongly coercive case, it is possible to pass to the limit
in the integral version of the EVI:
e>\(tfs)
2

F(uf V")~ S W) < Ea(t - 5) (80— o(eh)

for every 0 < s < tand vhe Dom(¢”), which yields existence of S “for free”.
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The main stability result

Theorem

Let {¢"}nen U {4} be a sequence of |.s.c. functionals. Let each ¢" admit a \-Gradient
Flow S" and let ¢ be A-convex. The following claims are equivalent:

Convergence of the flows: also S exists and if ufl — uy € Dom(¢>), ufl € Dom(¢"),

Jim SY(ug) = Se(w)  Vt>0.
Recovery sequence: for every u € Dom(|d¢|) there exists u”" € Dom(|9¢"|) s.t.
U=, ¢'(U") = o(u), limsup |99"|(u") < 106().

I-convergence of ¢" and |04"|: ¢ = I-lim ¢" and |9¢|= T-lim |9¢"| in Dom(¢).
Qualified T -convergence: T -lim sup ¢" < ¢ in Dom(|d¢|) and for every u € Dom(|¢|),
e>0and7 >0, there exists T € (0, 7) s.t.

liminf inf ¢" > inf ¢ —er.

h—oo0 Br(u) ¢ 2 BT(u)d) T

Local Moreau-Yosida regularizations: I'-lim sup ¢" < ¢ in Dom(|d¢|) and for every
u € Dom(|d¢|), e > 0 and 7 > 0, there exists T € (0, 7) s.t.
Lo 1 . 1
h 2 2
— > — —eT.
IlhrELrlf Vlg(d) (v) + 2Td (v,u) > Vlg}‘(¢>(v) + 2Td (v,u) —er
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Strategy of proof of the existence of the limit flow

@ We generate a n-Ekeland sequence {U7 ,,} for ¢, which satisfies

d2(U£n1,U£,,) o(U7,") — ¢(U7)

(1 - 1) |0A(Un,) < *)

T

@ We exploit M-convergence of ¢ and |0¢"| to approximate U?,, by sequences U}
satisfying, for large h, the e-version of (x):

i sup d(Um( ),0!, (1) =0

h—oo te[o,T]

@ We use the discrete-approximation error estimate, which yields
d(f,U7(0) < € (106"1(W8) VT +VE/T)  vteo, T].
@ By combining the two estimates and choosing U% h » appropriately, we deduce that

limsup sup d(uf,uf) < C (\ﬁ+ \/5/7) ,

hk—o0 t€[0,T]
which shows that {u},},, is Cauchy, since 7 > 0 and ¢ > 0 are arbitrary.
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-
An application to RCD spaces

Let (X,d, m) be an RCD(\, oo) metric measure space and let ¢ : X — (—o0, +o0] be a
continuous and geodesically A-convex functional.

Theorem (Sturm ’14)
If (X,d) is locally compact then 1 admits a \-Gradient Flow.

Corollary of our results

The local-compactness assumption can be removed.

Indeed, Sturm’s proof relies on the construction of the A\-GF for the functional
o) = [ v in(2a(X), W)

by means of the approximations ¢"(u) := ¢(u) + + Ent(u|m). At least when
m e 22(X), one can check that the assumptions of our main stability result are met.
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Some extensions concerning the stability result

@ Completeness of X can be dropped: we only need ¢ to have complete sublevels.

@ Convexity of ¢ can, to some extent, be relaxed: if Dom(¢) is geodesic, then it is
just a consequence of the existence of the flows for ¢”.

@ Alternatively, it is enough to ask that ¢ is approximately A\-convex, namely that for
every Xo, X1 € Dom(¢) and every 9, ¢ € (0, 1) there exists xy,. € Dom(¢) s.t.

A —

5 S9(1 — 9)d3(x1, Xo)

P(x9,e) < (1= 0)d(X0) + F(x1) —

and
d(Xy,e,X0) < 9d(X1,%0) + €, d(xv,x1) < (1 —9)d(x1,%0) + €.
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Some extensions concerning the stability result

@ Completeness of X can be dropped: we only need ¢ to have complete sublevels.

@ Convexity of ¢ can, to some extent, be relaxed: if Dom(¢) is geodesic, then it is
just a consequence of the existence of the flows for ¢”.

@ Alternatively, it is enough to ask that ¢ is approximately A\-convex, namely that for
every Xo, X1 € Dom(¢) and every 9, ¢ € (0, 1) there exists xy,. € Dom(¢) s.t.

A—¢€
2

B(X0.c) < (1 —9)d(X0) + Ip(X1) — 9(1 — 9)d?(x1,%o)

and

d(X§,57 Xo) < ﬂd(X1 s Xo) + £, d(qu,X1) < (1 — ﬂ)d(XhXo) + €.

THANK YOU FOR YOUR ATTENTION!
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