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Some preliminaries: λ-convexity and slopes

Let (X , d) be a complete metric space.

We consider a lower semicontinuous (l.s.c.) functional φ : X → (−∞,+∞] with
nonempty domain (i.e. φ is proper – taken for granted from now on)

Dom(φ) := {x ∈ X : φ(x) < +∞} .

Given λ ∈ R, we say that φ is (geodesically) λ-convex if for every x0, x1 ∈ Dom(φ) there
exists a (minimal, constant speed) geodesic xϑ : [0, 1]→ X such that

φ(xϑ) ≤ (1− ϑ)φ(x0) + ϑφ(x1)− λ

2
ϑ(1− ϑ)d2(x1, x0) ∀ϑ ∈ [0, 1] .

In particular, in this case Dom(φ) is a geodesic space.
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If φ is λ-convex, one can show that the functional x 7→ φ(x)− λ
2 d2(x , o) is linearly

bounded from below for all o ∈ X :

φ(x) ≥ λ

2
d2(x , o)− `od(x , o)− co ∀x ∈ X , for some `o, co ≥ 0 .

The metric slope |∂φ| is defined for all x ∈ Dom(φ) by

|∂φ|(x) := lim sup
y→x

(φ(x)− φ(y))+
d(x , y)

,

with |∂φ|(x) := +∞ if x ∈ X \ Dom(φ) and |∂φ|(x) := 0 if x ∈ Dom(φ) is isolated.

If φ is λ-convex then |∂φ| coincides with the (l.s.c.) global λ-slope:

Lλ[φ](x) := sup
y 6=x

(
φ(x)− φ(y) + λ

2 d2(x , y)
)
+

d(x , y)
.

Matteo Muratori (Polimi) Gradient Flows in Metric Spaces 8th – 13th April 2018 3 / 21



EVI and Gradient Flows

First we want to give a meaning to u̇ = −∂φ(u) in our metric framework.

Evolution Variational Inequalities (EVI) [Ambrosio-Gigli-Savaré ’05]

A continuous curve u : t ∈ (0,+∞) 7→ ut ∈ Dom(φ) is a solution to EVIλ(X , d, φ) if

1
2

d
dt

+

d2(ut , v) +
λ

2
d2(ut , v) ≤ φ(v)− φ(ut ) ∀t > 0 , ∀v ∈ Dom(φ) .

Here
d
dt

+

ζ(t) := lim sup
h↓0

ζ(t + h)− ζ(t)
h

(upper right Dini derivative) .

Gradient Flows (GF)

A λ-Gradient Flow of φ is a family of continuous maps St : Dom(φ)→ Dom(φ), t ≥ 0,
such that for every u0 ∈ Dom(φ) there hold

St+h(u0) = Sh(St (u0)) ∀t , h ≥ 0 , lim
t↓0

St (u0) = S0(u0) = u0 ,

the curve t 7→ St (u0) is a solution of EVIλ(X , d, φ) .
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A classical example: Hilbert spaces

Let (X , 〈·〉) be a Hilbert space, with d(x , y) := |x − y |=
√
〈x − y , x − y〉. Let

φ : X → (−∞,+∞] be a l.s.c. λ-convex functional. In other words, x 7→ φ(x)− λ
2 |x |

2 is
a convex functional in the usual sense.

Then [Brézis ’73] a continuous curve u : t ∈ (0,+∞) 7→ ut ∈ Dom(φ) is a solution to
EVIλ(X , d, φ) if and only if u is locally Lipschitz and

u̇t ∈ −∂φ(ut ) for a.e. t > 0

(for every t > 0 if we use right derivatives), where

w ∈ ∂φ(u) ⇔ 〈w , v − u〉+
λ

2
|v − u|2 ≤ φ(v)− φ(u) ∀v ∈ X ,

i.e. ∂φ is the subgradient of φ. In this case,

|∂φ|(u) := min{|w |: w ∈ ∂φ(u)} .
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A more elaborate example: drift diffusion with nonlocal interaction

Let X := P2(Rd ) be the space of Borel probability measures, with finite quadratic
moment, endowed with the Wasserstein distance W2.

We consider the following functional on X :

φ(µ) :=

∫
Rd
% log % dx +

∫
Rd

V dµ+
1
2

∫
Rd

(∫
Rd
W(x − y) dµ(y)

)
dµ(x) if µ ≡ %L d ,

φ(µ) := +∞ if µ 6� L d ,

i.e. the sum of internal, potential and interaction energy. Here V : Rd → R is a
l.s.c. convex function andW : Rd → R+ is a C1(Rd ), even and convex function
satisfying a suitable “doubling” condition.

Then [Carrillo-McCann-Villani ’03, Ambrosio-Gigli-Savaré ’05] the functional φ admits a
GF in X , which is given by solutions to the drift-diffusion (with interaction) equation

∂t%t = ∆%t + div [%t (∇V +∇W ∗ %t )] in Rd , lim
t→0

%t L d = µ0 in P2(Rd ) .
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Main properties of solutions to EVI

Theorem

Let φ : X → (−∞,+∞] be a l.s.c. functional and λ ∈ R. Let u, u1, u2 ∈ C0([0,+∞); X )
be solutions to EVIλ(X , d, φ). The following properties hold:

λ-contraction and uniqueness:

d(u1
t , u

2
t ) ≤ e−λ(t−s)d(u1

s , u
2
s ) ∀ 0 ≤ s < t < +∞ .

In particular, for each u0 ∈ Dom(φ) there is at most one solution s.t. limt↓0 ut = u0.

Regularizing effects:

u is locally Lipschitz in (0,+∞) and ut ∈ Dom(|∂φ|) ⊂ Dom(φ) for all t > 0;

the map t ∈ [0,+∞) 7→ φ(ut ) is nonincreasing and (locally) semi-convex;

the map t ∈ [0,+∞) 7→ eλt |∂φ|(ut ) is nonincreasing and right continuous.

A priori estimates: for every v ∈ Dom(φ) and t > 0

eλt

2
d2(ut , v) + Eλ(t) (φ(ut )− φ(v)) +

(Eλ(t))2

2
|∂φ|2(ut ) ≤

1
2

d2(u0, v) ,

where Eλ(t) :=
∫ t

0 eλs ds.
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Theorem (continued)

Right, left limits and energy identity: for every t > 0 the right limits

|u̇t+| := lim
h↓0

d(ut+h, ut )

h
,

d
dt
φ(ut+) := lim

h↓0

φ(ut+h)− φ(ut )

h

exist finite, satisfy

d
dt
φ(ut+) = − |u̇t+|2 = −|∂φ|2(ut ) = −L2

λ[φ](ut ) ∀t > 0

and define a right-continuous map. In particular, the functional
x 7→ φ(x)− λ

2 d2(x , o) is linearly bounded from below for all o ∈ X.
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Minimizing Movements (MM)

Given τ > 0, we consider the quadratically-perturbed functional

Φ(τ,U,V ) :=
1

2τ
d2(U,V ) + φ(V ) ∀U,V ∈ X .

We say that {Un
τ}n∈N is a discrete minimizing sequence if

Un
τ ∈ Argmin

V∈X
Φ(τ,Un−1

τ ,V ) ∀n ∈ N \ {0} ,

i.e. Un
τ satisfies

1
2τ

d2(Un−1
τ ,Un

τ ) + φ(Un
τ ) ≤ 1

2τ
d2(Un−1

τ ,V ) + φ(V ) ∀V ∈ X .

The corresponding discrete minimizing movement is the piecewise-constant interpolant

Uτ (t) := Un
τ if t ∈ ((n − 1)τ, nτ ] , Uτ (0) = U0

τ ≈ u0 .

Following [De Giorgi ’93, Almgren-Taylor-Wang ’93, Jordan-Kinderlehrer-Otto ’98], the
MM method can be used to construct the gradient flow of φ. However, without
coercivity assumptions on φ, one cannot hope to have exact minimizers.
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Ekeland’s variational principle and relaxed MM

Ekeland’s variational principle

Let Φ : X → (−∞,+∞] be a l.s.c. functional bounded from below. Then for every
U ∈ Dom(Φ) and every η > 0 there exists Uη ∈ Dom(Φ) s.t.

Φ(Uη) ≤ Φ(U)− η d(Uη,U)

Φ(Uη) < Φ(V ) + η d(Uη,V ) for every V ∈ X \ {Uη} .

In particular,
|∂Φ|(Uη) ≤ L0[Φ](Uη) ≤ η .

Our idea is to apply Ekeland’s variational principle to the functional

V 7→ Φ(τ,Un−1
τ,η ,V ) =

1
2τ

d2(Un−1
τ,η ,V ) + φ(V ) .

By letting U ≡ Un−1
τ,η and choosing the above η carefully, we can find Un

τ,η satisfying

1
2τ

d2(Un−1
τ,η ,U

n
τ,η) + φ(Un

τ,η) ≤ 1
2τ

d2(Un−1
τ,η ,V ) + φ(V ) +

η

2
d(Un−1

τ,η ,U
n
τ,η) d(Un

τ,η,V )

for every V ∈ X and
1

2τ
d2(Un−1

τ,η ,U
n
τ ) + φ(Un

τ,η) ≤ φ(Un−1
τ,η ) .

Matteo Muratori (Polimi) Gradient Flows in Metric Spaces 8th – 13th April 2018 10 / 21



Two key inequalities satisfied by η-Ekeland movements

We denote byUτ,η the piecewise-constant interpolant of the η-Ekeland sequence
{Un

τ,η}n∈N, which we call a discrete η-Ekeland movement.

In order to generate such a movement, we only need φ to be a l.s.c. functional
quadratically bounded from below (τ small enough).

Let φ : X → (−∞,+∞] be a l.s.c. λ-convex functional (λ ≤ 0). Then, for any η-Ekeland
sequence {Un

τ,η} there hold

τ
(
1− η

2 τ
)2 |∂φ|2(Un

τ,η) ≤
d2(Un−1

τ,η ,Un
τ,η)

τ

and (
1− η−λ

2 τ
) d2(Un−1

τ,η ,Un
τ,η)

τ
≤ φ(Un−1

τ,η )− φ(Un
τ,η) .

Such inequalities are closely related to the energy identity satisfied by solutions to EVI.
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Uniform discrete-approximation error estimates

By exploiting the above inequalities plus the EVI properties, we can prove the following.

Theorem

Let φ : X → (−∞,+∞] be a l.s.c. λ-convex functional (λ ≤ 0), which admits a
λ-Gradient Flow. Fix a time interval [0,T ] and τ ∈ (0,T ). Then, if
U0
τ,η = u0 ∈ Dom(|∂φ|), there exists a constant C = C(T , λ, η) > 0 such that

d(ut ,Uτ,η(t)) ≤ C |∂φ|(u0)
√
τ ∀t ∈ [0,T ] ,

whenceUτ,η(t)→ ut as τ ↓ 0 with rate
√
τ (at least).

Thus, the minimizing movement (limit ofUτ,η(t) as τ ↓ 0) exists and coincides with ut .
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The stability problem

We consider the delicate problem of stability w.r.t. φ.

That is, let φh : X → (−∞,+∞], h ∈ N, be a family of l.s.c. functionals “converging” in
a suitable sense as h→∞ to a l.s.c. functional φ : X → (−∞,+∞].

We suppose that each φh admits a λ-Gradient Flow Sh (except φ).

The crucial questions

(Under which assumptions) Can we deduce that

also φ admits a λ-Gradient Flow S
and that

Sh
t (uh

0 ) converges to St (u0) as h→∞, if uh
0 → u0 ?

Matteo Muratori (Polimi) Gradient Flows in Metric Spaces 8th – 13th April 2018 13 / 21



Γ and Mosco convergence

Having in mind the Hilbert case, natural assumptions involve Γ-convergence [Dal Maso
’93]. We recall the definitions of Γ- lim inf and Γ- lim sup of a sequence {φh}h∈N:

Γ- lim inf
h→∞

φh (x) := inf
{

lim inf
h→∞

φh(xh) : xh → x
}

= lim
r↓0

lim inf
h→∞

inf
Br (x)

φh ,

Γ- lim sup
h→∞

φh (x) := inf
{

lim sup
h→∞

φh(xh) : xh → x
}

= lim
r↓0

lim sup
h→∞

inf
Br (x)

φh ,

for all x ∈ X . If the Γ- lim inf and the Γ- lim sup coincide, we set

φ = Γ- lim
h→∞

φh = Γ- lim inf
h→∞

φh = Γ- lim sup
h→∞

φh ,

in which case we say that {φh} Γ-converges to φ. This is equivalent to

∀x ∈ X , xh → x ⇒ lim inf
h→∞

φh(xh) ≥ φ(x) (∗)

∀x ∈ X ∃{xh} : xh → x , φh(xh)→ φ(x) .

If X is Hilbert one also has weak topology. We say that {φh} Mosco-converges to φ if it
Γ-converges w.r.t. both the strong and the weak topology, i.e. (∗) holds for all xh ⇀ x .
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The stability result in the Hilbert case

Theorem (Crandall, Liggett, Bénilan, Pazy, Attouch – mostly during the 70’s)

Let X be a Hilbert space and {φh}h∈N ∪ {φ} be a sequence of l.s.c. and convex
functionals. Let Ah := ∂φh and A := ∂φ. Then the following properties are equivalent:

Convergence of the flows: if uh
0 → u0 ∈ Dom(φ), with uh

0 ∈ Dom(φh),

lim
h→∞

Sh
t (uh

0 ) = St (u0) ∀t ≥ 0 .

Convergence of the resolvents: for every u ∈ X and τ > 0

lim
h→∞

(I + τAh)−1u = (I + τA)−1u .

Convergence of the Moreau-Yosida regularizations: for every u ∈ X and τ > 0

lim
h→∞

inf
v∈X

φh(v) +
1

2τ
d2(v , u) = inf

v∈X
φ(v) +

1
2τ

d2(v , u) .

Mosco-convergence of the functionals: {φh} Mosco-converges to φ.

G-convergence of the subgradients: for every v ∈ A(u) there exist {uh}, {vh} s.t.

vh ∈ Ahuh , uh → u , vh → v .
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Some related remarks

Mosco-limits of convex functionals are convex: in particular, S exists thanks e.g. to
the Crandall-Liggett Theorem (without assuming a priori the convexity of φ).

For every v ∈ A(u) one can construct a recovery sequence vh ∈ Ah(uh) s.t.

uh → u , vh → v , φh(uh)→ φ(u) .

If {φh} is strongly coercive (bdd sequences {xh} s.t. φh(xh) ≤ C are rel. compact),
then Mosco convergence⇔ Γ-convergence. Otherwise, limits of φh(xh) along
weakly convergent sequences are involved, whence the weak Γ-lim inf.

The resolvent operator is strictly related to MM:

Un,h
τ = (1 + τAh)−1Un−1,h

τ .

In order to prove convergence of the flows, it is therefore convenient to exploit
convergence of the minimizing movements along with uniform error estimates:

d(uh
t , ut ) ≤ d(uh

t ,U
h
τ (t)) + d(U

h
τ (t),Uτ (t)) + d(Uτ (t), ut ) ,

where uh
t := Sh

t (uh
0 ) and ut := St (u0).
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Additional difficulties due to the abstract metric setting

We do not know a priori whether the limit λ-Gradient Flow S exists.

Resolvents are not well defined: one should use η-Ekeland movements instead.

A natural weak topology is missing.

We would like to study stability without strong-coercivity assumptions.

On the other hand, if we lack coercivity, minimizing movements (a fortiori
η-Ekeland movements) are not stable under Γ-convergence.

We point out that, at least in the strongly coercive case, it is possible to pass to the limit
in the integral version of the EVI:

eλ(t−s)

2
d2(uh

t , v
h)− 1

2
d2(uh

s , v
h) ≤ Eλ(t − s)

(
φh(vh)− φ(uh

t )
)
,

for every 0 ≤ s ≤ t and vh ∈ Dom(φh), which yields existence of S “for free”.
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The main stability result

Theorem

Let {φh}h∈N ∪ {φ} be a sequence of l.s.c. functionals. Let each φh admit a λ-Gradient
Flow Sh and let φ be λ-convex. The following claims are equivalent:
Convergence of the flows: also S exists and if uh

0 → u0 ∈ Dom(φ∞), uh
0 ∈ Dom(φh),

lim
h→∞

Sh
t (uh

0 ) = St (u0) ∀t ≥ 0 .

Recovery sequence: for every u ∈ Dom(|∂φ|) there exists uh ∈ Dom(|∂φh|) s.t.

uh → u , φh(uh)→ φ(u) , lim sup
h→∞

|∂φh|(uh) ≤ |∂φ|(u) .

Γ-convergence of φh and |∂φh|: φ = Γ- lim φh and |∂φ|= Γ- lim |∂φh| in Dom(φ).
Qualified Γ-convergence: Γ- lim sup φh ≤ φ in Dom(|∂φ|) and for every u ∈ Dom(|∂φ|),
ε > 0 and τ̄ > 0, there exists τ ∈ (0, τ̄) s.t.

lim inf
h→∞

inf
Bτ (u)

φh ≥ inf
Bτ (u)

φ− ετ .

Local Moreau-Yosida regularizations: Γ- lim sup φh ≤ φ in Dom(|∂φ|) and for every
u ∈ Dom(|∂φ|), ε > 0 and τ̄ > 0, there exists τ ∈ (0, τ̄) s.t.

lim inf
h→∞

inf
v∈X

φh(v) +
1

2τ
d2(v , u) ≥ inf

v∈X
φ(v) +

1
2τ

d2(v , u)− ετ .
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Strategy of proof of the existence of the limit flow

We generate a η-Ekeland sequence {Un
τ,η} for φ, which satisfies

τ
(
1− η

2 τ
)2 |∂φ|2(Un

τ,η) ≤
d2(Un−1

τ,η ,Un
τ,η)

τ
≤
φ(Un−1

τ,η )− φ(Un
τ,η)

1− η−λ
2 τ

. (?)

We exploit Γ-convergence of φh and |∂φh| to approximate Un
τ,η by sequences Un,h

τ,η

satisfying, for large h, the ε-version of (?):

lim
h→∞

sup
t∈[0,T ]

d(Uτ,η(t),U
h
τ,η(t)) = 0 .

We use the discrete-approximation error estimate, which yields

d(uh
t ,U

h
τ,η(t)) ≤ C

(
|∂φh|(uh

0 )
√
τ +

√
ε/τ
)

∀t ∈ [0,T ] .

By combining the two estimates and choosing U0,h
τ,η appropriately, we deduce that

lim sup
h,k→∞

sup
t∈[0,T ]

d(uh
t , u

k
t ) ≤ C′

(√
τ +

√
ε/τ
)
,

which shows that {ut
h}h is Cauchy, since τ > 0 and ε > 0 are arbitrary.
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An application to RCD spaces

Let (X , d,m) be an RCD(λ,∞) metric measure space and let ψ : X → (−∞,+∞] be a
continuous and geodesically λ-convex functional.

Theorem (Sturm ’14)

If (X , d) is locally compact then ψ admits a λ-Gradient Flow.

Corollary of our results

The local-compactness assumption can be removed.

Indeed, Sturm’s proof relies on the construction of the λ-GF for the functional

φ(µ) :=

∫
X
ψ dµ in (P2(X ),W2)

by means of the approximations φh(µ) := φ(µ) + 1
h Ent(µ|m). At least when

m ∈P(X ), one can check that the assumptions of our main stability result are met.
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Some extensions concerning the stability result

Completeness of X can be dropped: we only need φ to have complete sublevels.

Convexity of φ can, to some extent, be relaxed: if Dom(φ) is geodesic, then it is
just a consequence of the existence of the flows for φh.

Alternatively, it is enough to ask that φ is approximately λ-convex, namely that for
every x0, x1 ∈ Dom(φ) and every ϑ, ε ∈ (0, 1) there exists xϑ,ε ∈ Dom(φ) s.t.

φ(xϑ,ε) ≤ (1− ϑ)φ(x0) + ϑφ(x1)− λ− ε
2

ϑ(1− ϑ)d2(x1, x0)

and
d(xϑ,ε, x0) ≤ ϑd(x1, x0) + ε , d(xϑ, x1) ≤ (1− ϑ)d(x1, x0) + ε .

THANK YOU FOR YOUR ATTENTION!
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