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• Cellular structures are ubiquitous: most materials, natural and engineered, are 
polycrystalline, consisting of a myriad of small grains separated by interfaces, the grain 
boundaries. Our interest is texture. 

• Microstructures coarsen, according to thermodynamics with topological constraints, 
dissipating energy as some cells, or grains, expand, while others disappear. 

• Grain Boundary Character Distribution (GBCD) is a portrayal of texture and shows 
that the boundary network has order. 

Al thin film (Barmak)
resistivity of thin films: 
Mayadas-Schatzke theory

Ni cells showing orientations

Al: conventional pole figure
showing distribution of
cell boundaries: not uniform

material microstructure  texture
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• interfacial energy depends on crystallography alone  ⇒ GBCD is a Boltzmann 
distribution.

• Among the simplest distributions, corresponding to independent trials with respect 
to the interfacial energy density. Why does such simplicity emerge from such 
complexity?

• Simulate the evolution of this network using conventional univerally accepted theory. 
This by itself is an enterprise.

• Harvest GBCD statistics 

scrapbook of
Boltzmanns
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misorientation angle
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• GBCD is the solution of an equation: will introduce a mass transport 
based theory

consistent with experiment
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gradient flow

gradient flow for Fokker-Planck  (De Giorgi minimizing movements)
Ambrosio, Gigli, Savaré
Santambrogio

⇢ = 0,

Z

⌦
⇢dx = 1

F (⇢) =

Z

⌦
( ⇢+ �⇢ log ⇢)dx free energy

conventional gradient flow:
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dt
= �r'(⇠)

'(⇠(t))� '(⇠(t+ ⌧))�
 
1

2

Z t+⌧

t
|r'|2dt0 + 1

2

Z t+⌧

t
|d⇠
dt

|2dt0
!

5 0

= 0 , only for gradient flow

De Giorgi
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entropy by itself does not characterize a gradient flow
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1

2⌧
d(⇢, ⇢⇤)2 + F�(⇢) = inf

realize solution of equation (and gradient flow) 
as implicit scheme for the (Kantorovich-Rubinstein-)Wasserstein metric

given ⇢⇤ = ⇢(k�1) determine ⇢(k) = ⇢ as the solution of

Set

⇢(⌧)(x, t) = ⇢(⌧,k)(x) for (k � 1)⌧ < t 5 k⌧

⇢ = lim
⌧!0

⇢(⌧) is solution of FP

Jordan, K, Otto 
(SIAM Math Anal 1998)
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GF condition satisfied with  =   with W metric at level of the implicit scheme: 
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leads to 
discrete GF conditions

discrete Euler equation is

� = transfer function from ⇢ to ⇢⇤
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gradient flow
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• the collection of harvested statistics satisfies the discrete GF conditions and thus 
GBCD statistics arise as the iterates of the W-implicit scheme 

• GBCD is a gradient flow  ⇒  solution of Fokker-Planck PDE

our theme:

• verification is astonishingly accurate
• can we explore other systems?



C.S. Smith (1951) on microstructural coarsening

(Le Caer's Law)

Soap froth

coarsening is governed by two global features
•  cell growth according to a local evolution law 
in competition with
•  space filling constraint

simulation is the testbed to examine these two features

The average number of facets per cell = 6 (constraint on Euler characteristic of simplicial 
decomposition of the plane when only triple junctions are permitted)*

!11
* W.G. Graustein, Ann. of Math., 1932; applied to plant cells
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Evolving networks (reprise)

curvature driven growth: Burkart and Read → ....  → Mullins and Herring

n
t α

Γ

T J

n = (cos ✓, sin ✓)

vn = normal velocity

 = curvature

 (n,↵) = GB energy

Mullins Equation

Herring Condition
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• local evolution
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vn = µ( ✓✓ +  ) on �
X

TJ

( ✓n+  t) = 0 at TJ’s



• space filling constraint
critical events or rearrangement events:

facet interchange
grain deletion

Introduction Motivation

Motivation

Processes that alter GB distributions:

Continuous part
Incremental changes in the areas of faces:
as grain boundaries migrate, areas of GB
faces increase or decrease.

Discontinuous (jump) part
Critical events:
- collapse and creation of grain faces
- collapse of small grains

Doesn’t affect misorientations.
Can be modeled using calculus on manifolds.
Will not be discussed in this presentation

Affects the misorientations and
interfacial energy. Needs stochastic
analysis techniques.
The main focus of this work

Emelianenko et al (CMU) Toward a statistical theory of texture evolution CNA conference, Oct 21, 2006 5 / 13
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Bronsard & Reitich
K & Liu

von Neumann-Mullins n - 6  rule:
if a cell has n facets then
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�

3

recent result of MacPherson & Srolovitz (2007)
for high dimension (Hadwiger measure)

dA

dt
= c(n� 6) when  = const.



dissipation 

local dissipation equation
(no critical events)
ensemble of inertia free springs

X
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objective: upscale to a dissipation relation for GBCD
success leads to explanation of the Boltzmann

energy
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•  coarsening does not follow von Neumann-Mullins n - 6 rule:
➥
•  suggests importance of the effect of network rearrangement events

leads to simplifed coarsening model:
rearrangement without curvature

another system we seek to establish as a gradient flow
will defer discussion 

stochasticity in network coarsening
entropy role for rearrangement events

average area of 5-sided grains
in growth experiment 
Al thin film (Barmak)

average area of 5-sided cells
in a simulation

average area of all cells
by facet class in a simulation

failure of Lewis Law
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outline of theory
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F�(⇢)
���
⌧
 F�(⇢)

���
0

upscale of ensemble⇢(↵, t) GBCD

F�(⇢) =

Z

⌦
( ⇢+ �⇢ log ⇢)d↵



Success  ⇒  ρ(α,t) = GBCD, empirical first order texture statistic, resembles 
solution of a F-P Equation

employ (Kullback-Leibler) relative entropy 

��(�) ! 0 as t ! 1 for solution of FP equation

��(⇢) =�(⇢k⇢�) =
Z

⌦
⇢ log
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d↵ = 0
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+ logZ�,

Z

!
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determine parameter σ

maximimum liklihood
calculate dual function



2D coarsening
⇤(�) = 1 + ⇥ sin2 2�, ⇥ =

1
2
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��(⇢k⇢�) =
Z
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⇢ log

⇢

⇢�
d↵ = 0; �� ! 0 as t ! 1

increasing (math) entropy indicates the development
of order during the evolution

Z

⌦
⇢ log ⇢dx
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GBCD statistic (averaged over 10 trials)
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blue:  empirical distribution (10 trials)
20,000 initial cells

red:  Boltzmann for σ  determined by
relative entropy condition
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our context:  discrete sampling of a process
exploit the implicit scheme

Euler equation is

� = transfer function from ⇢ to ⇢⇤

GF condition satisfied with  =   with W metric at level of the implicit scheme 

1

2⌧
d(⇢, ⇢⇤)2 + F (⇢) = inf

gradient flow (validation: de Giorgi minimizing movements)
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Label the frames {⇢j}
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the frames {⇢j} arise as the iterates in an implicit scheme
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essential to establish time scale
regard the simulation steps, ‘frames,’ as samples of an evolving process

sampling
calibration and rescaling

establish the sequence of time intervals
of the frames by comparison
with a computed solution of
the PDE

an inverse problem:
‘machine time’ ≠ ‘fokker planck time’

holds even for simple systems like
Ehrenfest Urn
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simplified problem
coarsening: energy decay and dissipation
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2D coarsening: energy decay and dissipation

GBCD evolution consistent with gradient flow
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some challenges



GBCD for geological
processes
K. Marquardt, Bayreuth

Significant current interest

W/ferrite comparison

Xuan Liu, Dooho Choi, Hossein 
Beladi, Noel T. Nuhfer, Gregory S. 
Rohrer, and Katayun Barmak (2013)
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GBCD:  relative character distribution
• consistency between experiment and simulation
• interfacial energy  ψ = ψ(α)  ⇒  GBCD is a Boltzmann distribution

gradient flow

gradient flow identification is first use of mass transport in this context
other systems: eg., random walk

Summary
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mass transport based theory describes evolution of GBCD:
harvested statistics are iterates of implicit scheme
GBCD solution of a Fokker-Planck Equation


